segment routing 路由教程

合集下载

route 的使用

route 的使用

route 的使用路由是计算机网络中的重要概念,用于确定数据包在网络中的传输路径。

在互联网中,路由决定了数据包从源主机到目标主机的路径,通过路由器进行转发。

在本文中,我们将探讨路由的使用,以及如何正确配置和管理路由。

让我们了解一下路由的基本概念。

路由是一种网络设备,用于将数据包从源主机发送到目标主机。

它通过比较目标主机的IP地址和路由表中的条目来确定数据包的下一跳。

路由表是一个存储在路由器中的数据结构,其中包含了网络的拓扑结构和路由信息。

根据路由表中的信息,路由器可以决定数据包的最佳路径,并将其转发到下一个路由器或目标主机。

在配置和管理路由时,我们需要考虑一些重要的因素。

首先是路由器的性能和容量。

路由器处理大量的数据包,因此需要具备足够的处理能力和存储空间。

此外,路由器还需要支持适当的路由协议,以确保正确地转发数据包。

常见的路由协议包括RIP(Routing Information Protocol)、OSPF(Open Shortest Path First)和BGP(Border Gateway Protocol)等。

我们需要考虑网络的拓扑结构和需求。

不同的网络拓扑结构需要不同的路由配置。

例如,对于星型网络,我们可以使用静态路由或动态路由协议来进行配置。

静态路由是手动配置的路由表条目,由网络管理员根据网络拓扑结构进行设置。

动态路由协议则是路由器之间自动交换路由信息的协议,根据网络的变化来更新路由表。

根据网络的需求,我们可以选择适当的路由配置方案。

还需要考虑网络的安全性。

路由器是网络的重要组成部分,因此需要采取适当的安全措施来保护路由器免受恶意攻击。

常见的安全措施包括设置访问控制列表(ACL)来限制路由器的访问权限,使用加密协议来保护路由器之间的通信等。

在日常管理中,我们还需要定期检查和维护路由器的配置。

这包括检查路由表,更新路由信息,排除故障等。

通过定期的维护,我们可以确保路由器的正常运行,并及时发现和解决潜在的问题。

SR-TE

SR-TE

新一代Segment Routing 流量工程___(SR-TE)体系目录01概述 (2)02流量工程回顾 (3)2.1RSVP-TE的不足 (3)2.2SR-TE 的优势 (5)03SR-TE 的两种体系-隧道接口vs SR Policy (5)3.1隧道接口 (5)3.2SR Policy (6)04SR Policy 的关键创新 (8)4.1SR Policy 模型 (8)4.2SR 原生算法 (10)4.3自动引流 (11)4.3.1 自动引流架构 (11)4.3.2基于流的自动引流 (12)4.4按需下一跳 (15)4.5灵活算法 (16)4.6性能测量 (19)05SR Policy 技术实现与标准体系 (20)5.1SR Policy 技术实现 (20)5.2SR Policy 的标准体系 (21)5.3多厂商互操作 (23)06概述SR Policy 典型应用场景 (23)6.15G 网络切片 (23)6.2低时延多云互联 (24)07总结与展望 (25)摘要:本文介绍新一代Segment Routing 流量工程(SR-TE)体系- SR Policy。

SR Policy 是全新设计的一套SR-TE 体系架构,完全不同于传统的基于隧道接口的实现方式。

基于SR Policy 之上的一系列创新,例如按需下一跳(ODN)、自动引流、灵活算法(Flex-Algo)、原生算法等,极大地拓展了SR-TE 的适用范围、简化了部署、优化了性能。

基于SR Policy 的SR-TE 已得到业界的广泛接受,将在5G 、多云、物联网中得到广泛的应用。

01概述随着5G 、多云、物联网的发展以及行业数字化进程的深入,网络需要服务的范围(从5G 承载网的接入、汇聚、核心再到骨干网、云数据中心、虚拟化/容器化网元的调度)、规模(海量物联网终端)和颗粒度(区分同一租户的不同应用)都需要提升,同时网络需要能用一种更灵活的方式被上层应用所使用(或者叫驱动)。

基于P4的Segment Routing 设计方案

基于P4的Segment Routing 设计方案

计算机工程应用技术本栏目责任编辑:梁书基于P4的Segment Routing 设计方案陈梅,苏晨,赵静雅,高震宇(北京电子科技职业学院电信工程学院,北京100176)摘要:本文结合Segment Routing 业内常使用的SR-MPLS 转发平面的规则,设计了基于P4的Segment Routing 方案。

P4程序部分包括了基本转发逻辑和Segment Routing 标签处理逻辑,用于在P4交换机上编译运行实现数据平面功能。

使用ONOS 控制器做Segment Routing 的控制平面指导流表的下发,底层P4交换机从ONOS 控制器的通告中得知对每个Segment 的处理方法。

关键词:Segment Routing ;P4;软件定义网络;协议无关中图分类号:TP393文献标识码:A文章编号:1009-3044(2021)10-0223-03开放科学(资源服务)标识码(OSID ):1引言当前基于互联网的业务发展速度非常迅猛,这一现象给网络基础架构发出了很大的挑战,业界需要一种全新的技术来支撑越来越被人们重视的基于业务和应用的超大规模流量工程。

路由收敛速度的主要问题往往不在于控制平面和路径计算算法,而是在于路由处理器往线卡发送FIB 更新的时间,以及从线卡CPU 往线卡硬件转发表写入这些更新的时间。

Segment Routing 正是将这一个问题进行了思想的革新[1]。

Segment Rout⁃ing 是在SDN 环境下一种全新的应用驱动网络思想,它将网络中的指令抽象成Segment,直接使用报文头部的字段指导交换机的动作[2]。

SDN 控制器由于其具有的集中式管控的全局视角很适合作为Segment Routing 的控制平面,但是在使用SDN 交换机作为转发工具时,会存在硬件限制,白盒交换机不足以支持Segment Routing 灵活的标签栈需求[3]。

在这种情况下,使用可以自定义转发规则的P4交换机就可以更好地支持Segment Routing 和SDN 控制器的结合[4]。

SegmentRouting体系结构中的域内路由保护方案

SegmentRouting体系结构中的域内路由保护方案
耿海军 .Segment Routing 体系结构中的域内路由保护方案 . 计算机工程与应用,2019,55(8):80-85. GENG Haijun. Intra-domain routing protection scheme in segment routing architecture. Computer Engineering and Applications, 2019, 55(8):80-85.
提高域内路由可用性的方法[13]主要包括被动恢复 方法和路由保护方法。因为被动恢复方法[14-15]容易引起
基金项目:国家自然科学基金(No.61702315)。 作者简介:耿海军(1983—),男,博士,讲师,主要研究方向为网络体系结构和路由算法等,E-mail:ghj123025449@。 收稿日期:2018-01-15 修回日期:2018-04-13 文章编号:1002-8331(2019)08-0080-06 CNKI 网络出版:2018-08-31, /kcms/detail/11.2127.TP.20180829.1656.011.html
80 2019,55(8)
Computer Engineering and Applications 计算机工程与应用
Segment Routing 体系结构中的域内路由保护方案
耿海军 山西大学 软件学院,太原 030006
摘 要:学术界和工业界提出利用路由保护方案来提高域内路由协议应对故障的能力,从而加速网络故障恢复,降 低由于网络故障引起的网络中断时间。目前互联网普遍采用的路由保护方案包括 LFA 和 U-turn,由于它们的简单 和高效,受到了互联网服务提供商的支持,但是这两种方案的单链路故障保护率较低。因此,段路由(Segment Routing, SR)被提出解决上述两种方案存在的问题,已有的针对 SR 的研究主要集中在其体系结构和应用场景。研究如何在 SR 中计算 segments,将该问题表述为一个整数线性规划问题,提出一种两阶段的启发式算法(Two Phase Heuristic Algorithm,TPHA)求解该问题,将算法在不同网络拓扑中进行了模拟。模拟结果表明,TPHA 的单链路故障保护率 远远高于 LFA 和 U-turn 的单链路故障保护率。 关键词:段路由 ;整数线性规划 ;路由保护 文献标志码:A 中图分类号:TP309.7 doi:10.3778/j.issn.1002-8331.1801-0239

segment routing详解第一卷 笔记

segment routing详解第一卷 笔记

segment routing详解第一卷笔记Segment Routing,又称片段路由,是一种新兴的网络技术,它通过将路径的相关信息编码在数据包的头部,使得网络可以灵活地进行路径选择和转发,具有简洁、灵活、高效的特点。

本文将对Segment Routing进行详细的介绍和解析。

一、Segment Routing简介Segment Routing是一种基于源路由的网络架构,它采用了基于SDN(软件定义网络)的思想,将网络中的路径信息分割成多个片段(Segment),并将这些片段编码到数据包的头部中。

通过这样的方式,数据包可以在网络中按照指定的路径进行转发,从而实现了对网络的灵活控制。

Segment Routing的核心概念是Segment,每个Segment代表网络中的一个特定的路径,可以是一个节点或一个链路。

数据包通过在头部中设置一系列的Segment标记,就可以按照指定的路径进行转发。

这种方式不仅简化了网络的控制和管理,还可以提高网络的转发效率和可扩展性。

二、Segment Routing的工作原理Segment Routing的工作原理可以分为两个部分:路径编码和路径转发。

1. 路径编码路径编码是指将网络中的路径信息进行分割,并将分割后的片段编码到数据包的头部中。

Segment Routing使用了一种称为SID(Segment Identifier,片段标识符)的标志来表示每个Segment。

在路由器中,可以将不同的SID与特定的路径关联起来,从而将路径信息存储在网络中。

2. 路径转发路径转发是指根据数据包头部中的Segment标记,将数据包按照指定的路径进行转发。

路由器根据当前的Segment标记,查找与之对应的路径信息,并将数据包转发到下一个Segment。

通过这种方式,数据包可以在网络中按照指定的路径达到目的地。

三、Segment Routing的优势和应用Segment Routing作为一种新兴的网络技术,具有许多优势和应用场景。

Segment Routing技术及其应用分析

Segment Routing技术及其应用分析

Segment Routing技术及其应用分析摘要:随着网络规模的不断扩大和业务需求的多样化,传统的网络路由技术在高效性、可扩展性和灵活性等方面面临挑战。

Segment Routing(SR)作为一种新型的网络路由技术,能够在满足不同业务需求的同时,保持网络架构的简单和高效。

本文主要对Segment Routing技术进行了全面的分析与研究,包括其概念、原理、架构设计以及应用场景。

关键词:Segment Routing;SR-MPLS;SRv6;网络架构设计引言在当今互联网时代,网络规模不断扩大,业务需求日益多样化。

为了满足这些需求,传统的网络路由技术在高效性、可扩展性和灵活性等方面面临挑战。

Segment Routing(SR)作为一种新型的网络路由技术,能够在满足不同业务需求的同时,保持网络架构的简单和高效。

SR技术将路由信息编码为一系列段(Segment),实现了对网络流量的精细控制和优化。

SR技术的出现,为解决传统网络路由技术的局限性提供了新的可能。

一、Segment Routing技术介绍1.1Segment Routing的概念、原理和架构Segment Routing(SR)是一种新型的网络路由技术,它将路由信息编码为一系列段(Segment),通过源节点对数据包进行编码,从而实现对网络流量的精细控制和优化。

SR技术的核心思想是将端到端的路径分解为多个独立的段,每个段代表一个子路径。

数据包在源节点被编码后,依次经过这些子路径到达目的节点。

Segment Routing的原理主要基于两个关键概念:Segment ID(SID)和Segment List。

SID是一个用于标识网络节点或者特定操作的唯一标识符,而Segment List则是一个SID序列,代表了源节点到目的节点的完整路径。

数据包在源节点根据预先计算好的Segment List进行编码,然后沿着Segment List中指定的路径传输。

Segment Routing TI-LFA FRR 保护中的Tiebreaker规则

Segment Routing TI-LFA FRR 保护中的Tiebreaker规则

Segment Routing TI-LFA FRR 保护中的Tiebreaker规则文档版本02发布日期2020-12-31版权所有 © 华为技术有限公司 2020。

保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明和其他华为商标均为华为技术有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。

除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。

除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

华为技术有限公司地址:深圳市龙岗区坂田华为总部办公楼邮编:518129网址:https://客户服务邮箱:support@客户服务电话:4008302118Segment Routing TI-LFA FRR 保护中的Tiebreaker规则目录目录1 Segment Routing TI-LFA FRR保护中的Tiebreaker规则 (1)1.1 简介 (1)1.2 SRLG (1)1.3 IS-IS SRLG (2)1.4 TE SRLG (3)1.5 Tiebreaker (6)1.6 TI-LFA FRR保护的Tiebreaker (8)1.7 总结 (13)1.8 相关信息 (14)1 Segment Routing TI-LFA FRR保护中的Tiebreaker规则1.1 简介Segment Routing的TI-LFA FRR保护存在默认的备份路径计算规则,但是在某些特殊场景备份路径可能也会失效,或者用户存在特殊需求需要优选其他备份路径,此时就需要改变TI-LFA FRR保护中的Tiebreaker(决胜者)规则。

segment vxlan三层互通原理-概述说明以及解释

segment vxlan三层互通原理-概述说明以及解释

segment vxlan三层互通原理-概述说明以及解释1.引言1.1 概述概述:Segment VXLAN是现代网络中常见的一种技术,结合了Segment Routing(SR)和VXLAN的特点,实现了三层网络之间的互通。

本文主要探讨了Segment VXLAN的原理及其在网络中的应用。

首先将介绍SR 和VXLAN的基本概念,然后详细解释Segment VXLAN三层互通的实现原理。

最后,我们将总结这种技术的优势和应用前景,为读者提供全面的了解和展望。

1.2 文章结构2. 正文2.1 Segment Routing (SR) 简介2.2 VXLAN 简介2.3 Segment VXLAN 三层互通原理- 2.3.1 Segment Routing 和VXLAN 的结合- 2.3.2 Segment VXLAN 的工作原理- 2.3.3 Segment VXLAN 的三层互通实现方式- 2.3.4 实际部署案例分析2.4 实验及验证- 2.4.1 搭建Segment VXLAN 实验环境- 2.4.2 验证三层互通功能2.5 问题与解决方案- 2.5.1 可能遇到的问题- 2.5.2 解决方案2.6 拓展阅读- 2.6.1 深入了解Segment Routing 和VXLAN- 2.6.2 探索其他网络互通解决方案- 2.6.3 最新技术趋势和发展预测1.3 目的:本文旨在探讨Segment VXLAN三层互通原理,帮助读者更深入地了解该技术,并且为网络工程师提供实践指导。

通过分析和讨论Segment Routing (SR)和VXLAN的基本概念,以及它们在网络架构中的应用,我们将详细介绍Segment VXLAN的工作原理和实现方法。

同时,本文还将探讨Segment VXLAN在实际网络部署中的优势和挑战,以及未来发展的趋势和展望。

通过深入研究这一主题,读者将能够更好地理解和运用Segment VXLAN技术,为构建高效、灵活和可扩展的数据中心网络提供有力支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Segment RoutingA tutorial• Paresh Khatri• DD-02-2016Agenda1. Introduction2. Use cases and applicability3. Deployment options4. IGP extensions for segment routing (if time permits)introduction• Two main protocols: LDP or RSVP-TE - LDP for scale and simplicity – extensions for fast re-route (loop-free alternates[LFAs])- RSVP-TE for TE and FRR for some time • To scale MPLS we enabled:- LDPoRSVP- Seamless MPLS: LBL-BGP with LDP • Traffic engineering: RSVP-TE based • Services through:- BGP/IGP shortcuts, PW (T-LDP/BGP), VPLS (LDP/BGP), VPRN (BGP), MVPN(BGP/mLDP/P2MP RSVP) • Issues:- TE solutions don’t scale when we want more granularity/dynamicity,RLFA too complex (dynamic T-LDPsignaling)LDP RSVP-TEOverview Multipoint to point Point to point Operation Simple LSP per destination/TE-pathDependencies Relies on IGP Relies on IGP TELBL allocation Local significant pernode (interface) Local significant per node (interface)Traffic Engineering No Yes Scaling 1 LBL per node(interface)Nx(N-1)Fast Reroute LFA, LFA Policies,RLFA - <100%coverage Link/Node protection (detour/facility) – 100% coverageMulticast mLDP P2MP RSVPIPv6 Extensions required Extensions required• Increasing network growth with traffic engineering (TE) requirement• RSVP-TE is the only widely-spread solution to provide TE• No LDP TE present• LDP Fast ReRoute (FRR) can be used in some parts of the network but is topology dependent • Pros:- Source Routed protocol ; iLER has full control to setup LSP to destination - Presence of strong FRR and TE capabilities • Cons:- Soft-state ; refresh mechanism required : refresh reduction (RFC2961) ; aggregatesmessages but not # soft-states- Mid-point state presence in network (when FRR) ; consumes CPU cycles and memoryWhat problem are we trying to solve ?SCALE RSVP-TEObjective of Segment RoutingThe primary objective for Segment Routing (SR) issource routing: the ability for a node to specify a unicast forwarding path, other than the normal shortest path,that a particular packet will traverse.• SPRING (Source Packet Routing in Networking) Working Group addresses the following:- IGP-based MPLS tunnels without the addition of any other signaling protocol• The ability to tunnel services (VPN, VPLS, VPWS) from ingress PE to egress PE with or without an explicit path, and without requiring forwarding plane or control plane state in intermediatenodes.- Fast Reroute• Any topology, pre-computation and setup of backup path without any additional signaling.• Support of shared-risk constraints, support of link/node protection, support of micro-loop avoidance.• SPRING (Source Packet Routing in Networking) Working Group addresses the following:- Traffic Engineering• The soft-state nature of RSVP-TE exposes it to scaling issues; particularly in the context of SDN where traffic differentiation may be done at a finer granularity.• Should include loose/strict options, distributed and centralised models, disjointness, ECMP-awareness, limited (preferably zero) per-service state on midpoint and tail-end routers.- All of this should allow incremental and selective deployment with minimal disruption• Segment Routing provides a tunneling mechanism that enables source routing.• Paths are encoded as sequences of topological sub-paths called segments, which are advertised by link-state routing protocols (IS-IS and OSPF).Introduction to Segment RoutingR1 R2 R3R5 R6R4 SegmentSegment Segment SegmentSegmentSegmentSegmentSegment SegmentSegmentSegment Segment• A Segment Routing (SR) tunnel, containing a single segment or a segment list, is encoded as:- A single MPLS label or an ordered list of hops represented by a stack of MPLS labels (no change to the MPLS data-plane). - A single IPv6 address, or an ordered list of hops represented by a number of IPv6 addresses in the IPv6 Extension header (Segment Routing Header).• The segment list can represent either a topological path (node, link) or a service.Encoding Segment Routing tunnels1001 1003 1007 1001 PacketThe segments can be thought as a set of instructions from the ingress PE such as “go to node D using the shortest path”, “go to node D using link/node/explicit-route L”Operations on segments• Three distinct operations:- PUSH: the insertion of a segment at the head of the Segment list.- NEXT: the active segment is completed; the next segment becomes active.- CONTINUE: the active segment is not completed and hence remains active.• MPLS instantiation of Segment Routing aligns with the MPLS architecture defined in RFC 3031• For each segment, IGP advertises an identifier referred to as a Segment ID (SID). A SID is a 32-bit entity; with the MPLS label being encoded as the 20 right-most bits of the segment• When Segment Routing is instantiated over the MPLS data-plane, the following actions apply :- A list of segments is represented as a stack of labels- The active segment is the top label- The CONTINUE operation is implemented as a SWAP operation- The NEXT operation is implemented as a POP operation- The PUSH operation is implemented as a PUSH operation• EPE ; Egress PeeringEngineering• Influence how to control traffic to adjacent AS • Signaled by BGP-LS (w/ EPE controller)• Example Prefix Segment in DC environment • DC GW representation • Signaled by BGP (in DC)• Locally unique – each SR router in the domain can use the same space • Typically single-hop • Signaled by IGPTypes of segmentsPrefix Segment• Globally unique – allocated from SRGB • Typically multi-hop • ECMP-aware shortest-path IGP route to a related prefix • Indexing or absolute SID• Signaled by IGPAdjacency Segment BGP Prefix Segment BGP Peer Segment DCCORE/WAN AS1CORE/WAN AS2CORE/WAN AS3• Prefix Segment (Prefix-SID)- Globally unique within the IGP/SR domain – allocated from the SR Global Block (SRGB)*- Represents the ECMP-aware shortest-path IGP route to the related prefix- Typically a multi-hop path- Includes “P” flag to allow neighbours to perform the “NEXT” (pop) operation whilst processing the segment (analogous to Penultimate Hop Popping in MPLS).- Two options exist; Indexing or Absolute-SID (described in later slides)* In an MPLS architecture, SRGB is the set of local labels reserved for global segments.• Node Segment ID (Node-SID)- A special prefix segment used to identify a specific router (loopback/system address).- Identified by “N” flag being set in advertised segment (Prefix-SID Sub-TLV).- Represents the ECMP-aware shortest-path IGP route to the specified node.Segment identifiers – anycast segments• Anycast Segment ID (Anycast-SID)- A prefix segment specifying a set of routers- Represents the ECMP-aware shortest-path IGP route to the closest node of the “anycast set”.- Potentially useful for coarse traffic engineering (i.e. route via plane A of dual-plane network, route via Region B of multi-region network) or node redundancy (i.e. traffic re-routes to shortest path towards any other router that is part of the “anycast set”).• PE2 advertises Node Segment into IGP (Prefix-SID Sub-TLV Extension to IS-IS/OSPF) • All routers in SR domain install the node segment to PE2 in the MPLS data-plane.- No RSVP and/or LDP control plane required.- When applied to MPLS, a Segment is essentially an LSP .PE1P3P1P2 Node-SID 300Node-SID 200Node-SID 100Node-SID 400PE2Node-SID 800FEC PE2 PUSH 800SWAP 800 to 800SWAP 800 to 800POP 800PHP based on p-bit setting of Prefix-SID advertised by PE2• For traffic from PE1 to PE2, PE1 pushes on node segment {800} and uses shortest IGP path to reach PE2. • Active segment is the top of the stack for MPLS:- P1 and P2 implement CONTINUE (swap) action in MPLS data-plane - P3 implements NEXT (pop) action (based on P-bit in Prefix-SID not being set).• No state held in network with the exception of segment list for tunnel held at PE1.PE1P3P1P2PacketNode-SID 300Node-SID 200 Node-SID 100Node-SID 400PE2Node-SID 800PacketFEC PE2 PUSH 800SWAP 800 to 800 SWAP 800 to 800POP 800800Packet800Packet800PHP based on p-bit setting of Prefix-SID advertised byPE2• The use of absolute SID values requires a single consistent SRGB on all SR routers throughout the IGP domain.Prefix segment identifiers – absolute SIDs• Example:- PE2 advertises MP-BGP label910 for VPN prefix Z.- To forward traffic to VPN prefixZ, and again assumingpreferred (non-ECMP) pathfrom PE1 to PE2 is PE1-P3-P4-PE2, PE1 pushes label 910onto bottom of stack, and label 600 (Node-SID for PE2) on top of stack.- Label (SID) does not change hop by hop.PE1 PE2P1 P2P3 P4PacketNode-SID300Node-SID600Node-SID200Node-SID100Node-SID400Node-SID500CE1A CE2 Z910MP-BGPLabel 910Packet910 Packet910Packet600600600Prefix SID indexing• Why ?- SR domain can be multi-vendor w/ possibility that each vendor uses a different MPLS label range - Prefix SID must be globally unique within SR domain• How ?- Indexing mechanism is required for prefix SIDs. All routers within the SR domain are expected to configure and advertise the same prefix SID index range for a given IGP instance.- The label value used by each router to represent a prefix ‘Z’ (= label programmed in ILM) can be local to that router by the use of an offset label, referred to as a start label :Local Label (for Prefix SID) = (local) start-label + {Prefix SID index}• For example, assume the SRGB is {1000, 1999}, and the SID Index Range is {1,100}. Example: Prefix SID indexing• Each SR router in the domain defines a start point in the SRGB (start-label), and an offset label called an SID index.- SR routers sum {start-label + SIDindex} to obtain a local label for aPrefix SID.- Assuming PE2 advertisesloopback 192.0.2.2/32 with a prefix index of 2:- PE2’s SID is {1010+2}= 1012- P4’s SID is {1020+2}= 1022- P3’s SID is {1030+2}=1032 etc.- PE2 advertises MP-BGP label 910 for VPN prefix Z.Node-SID 100Start-Label 1060PE1 PE2P1 P2P3 P4CE2 Z Packet910Packet910Packet910PacketNode-SID 300Start-Label 1040Node-SID 600Start-Label 1010Node-SID 200Start-Label 1050Node-SID 400Start-Label 1030Node-SID 500Start-Label 102010321022 1012MP-BGPLabel 910CE1A• Adjacency Segment ID (Adj-SID)- A segment identifying an adjacency or set of adjacencies that must be in the IGP.- Segment Identifier (SID) is local to the router that advertises it (every SR router in the domain can use the same segment space).- If:• AB is the Node-SID of node N, and...• ABC is an Adj-SID at node N to an adjacency over link L, then....• A packet with segment list {AB, ABC} will be forwarded along the shortest-path to node N, then switched by N towards link L without any consideration of shortest-path routing.- If the Adj-SID identifies a set of adjacencies, node N can load-balance the traffic over the members of that set.• All SR routers advertise Adjacency segment(s) into IGP (Adjacency-SID Sub-TLV Extension to IS-IS/OSPF).• Adjacency segments may be of local or global significance, but only the advertising SR router installs the adjacency segment into the MPLS data-plane- From a data-path perspective, it is analogous to a label-swap to implicit-null.• Provides for end-to-end source-routing capability where the Adjacency segments may determine the explicit hop-by-hop path through the network. • Beware however, label stack depth has implications on hardware.Example: SR tunnel with adjacency segmentsPE1P3P1P2P4P5Node-SID 300 Node-SID 200 Node-SID 100Node-SID 500Node-SID 600Node-SID 400P6Node-SID 700PE2Node-SID 8001001POP 10011007POP 10071003POP 10031001PacketPOP 1001Adj-SID 1001Adj-SID 1007Adj-SID 1003Adj-SID 10011001 1003 1007 1001 Packet10011003 1007 Packet1001 1003 Packet1001 Packet• A combination of node and adjacency segments is also possible.• This provides the ability to exercise ECMP paths to the next specified node segment, but enforce the use of a particular link (or links) from that node.• In this example, PE1wants to traverse the linkP2-P5 on the way to PE2, as it is under-utilised. • PE1 therefore imposes the segment list {300,1003, 800} representing the the Node-SID for P2, the Adj-SID for link P2-P5, and finally the Node-SID for PE2.PE1P3P1 P2P4 P5Node-SID 300Node-SID 200Node-SID100Node-SID 500 Node-SID 600Node-SID 400P6Node-SID 700PE2Node-SID 800POP {300, 1003}800SWAP 800800Packet300300 Adj-SID 1003POP 800 8001003300Packet8001003300Packet800Packet800PacketComparison with LDP and RSVP-TELDP RSVP-TE SROverview Multipoint to point Point to point Multipoint to pointOperation Simple LSP per destination/TE-pathSimpleDependencies Relies on IGP Relies on IGP TE Relies on IGP + offline TELBL allocation Local significant pernode (interface) Local significant pernode (interface)GlobalTraffic Engineering No Yes yesScaling 1 LBL per node(interface) Nx(N-1) 1 LBL per node/ localinterfaceFast Reroute LFA, LFA Policies,RLFA - <100%coverage Link/Node protection(detour/facility) – 100%coverageLFA, LFA Policies, RLFA/DLFA- can get to 100% coverage(better than LDP with RLFA)Multicast mLDP P2MP RSVP TBD IPv6 Extensions required Extensions required Nativeuse cases and applicability• For traffic from PE1 to PE2, PE1 pushes on segment list {800} and uses shortest IGP path to reach PE2 (PE1-P1-P2-P3-PE2)- P1 and P2 install ILMCONTINUE entry {label=800, NHLFE=label 800, Next-Hop=shortest path to PE2} - P3 installs ILM CONTINUE or NEXT entry {label=800,POP, Next-Hop=shortestpath to PE2}PE1P3P1 P2P4 P5Node-SID 300Node-SID 200Node-SID100Node-SID 500 Node-SID 600Node-SID 400P6Node-SID 700PE2Node-SID800 800800 800SWAP 800 SWAP 800 POP 800800Packet• All nodes advertise a unique node segment into the IGP.• If PE1 has ECMP=>2, and equal-cost paths to the SRtunnel tail-end exist, allequal-cost paths can beexercised:- Based on hash output, flowsm routed PE1-P1-P2-P3-PE2 with segment list {800}- Based on hash output, flows n routed PE1-P4-P5-P6-PE2with segment list {800}PE1P3P1 P2P4 P5Node-SID 300Node-SID 200Node-SID100Node-SID 500 Node-SID 600Node-SID 400P6Node-SID 700PE2Node-SID800 800800 800800800 800ECMPSWAP 800 SWAP 800 POP 800800Packet• Adj-SID provides the capability to explicit-route on a hop-by-hop basis, but has the potential to create a deep label stack-depth if all hops are explicitly listed. • Assume we have a requirement to engineer traffic away from the P2-P3 link (due to high utilisation or link degradation) to some other under-utilised link(s).Use case 2: Source-routing with node-SIDPE1P3P1P2P4P5Node-SID 300 Node-SID 100Node-SID 500Node-SID 600Node-SID 400P6Node-SID 700PE2Node-SID 800300300POP 300600SWAP 300-300POP 600POPPacket800 800 600 300 Packet800 600 300 Packet800 600 Packet800 PacketP1• Traffic from PE2 to PE1 can be re-routed away from this link using segment list {300, 600, 800} constructed purely from Node-SIDs. • Alternative option if link utilisation permits is simply {600, 800}.• Disjointness describes two (or more) services that must be completely disjoint of each other. They should not share common network infrastructure – i.e. if one fails, the other must always be active.• Many networks employ the ‘dual-plane’ design, where inter-plane links are configured such that the route to a destination stays on that plane during a single failure scenario. • Disjointness can broadly be achieved using Anycast segments.- Service 1 at PE1 hassegment list {902, 300} including Anycast SID 902 and traverses the red plane before reaching PE3.- Service 2 at PE2 has segment list {901, 400}including Anycast SID 901 and traverses the blue plane before reaching PE4. • Assume service 1 between PE1 and PE3 must be disjoint from service 2 between PE2and PE4:PE1P1P3P2P4P5P6P8PE2PE3PE4Service 1Service 2Node-SID 100Node-SID200Node-SID 300Node-SID400Blue Plane Anycast SID 901Red Plane Anycast SID 902P7• Egress Peer Engineering defines three BGP Peering SIDs, that allow for programming of source-routedinter-domain paths; PeerNodeSID,PeerAdjSID, and PeerSetSID.• R1 is an EPE-enabled egress router and allocates the following:- PeerNode segment for each of its defined peers (R7, R8, and R9) - PeerAdj segment for each recursive interface to a multi-hop peer (R9) - PeerSet segment to a set of peers (R7 and R8) (AS300)AS 200R7AS 300R9R2 R1AS 100E B GPm u l ti h o pR8E B G PEPE ControllerNode-SID100BGP-LSFlowSpec• BGP-LS session establishedbetween EPE-enabled border router (R1) and the EPE controller:- R1 advertises PeerNode, PeerAdj, and PeerSet SIDs using SR extensions toBGP-LS, and programmes FIBaccordingly.• EPE Controller programmes source-routes from ingress routers to EBGP peers using FlowSpec/OpenFlow;i.e.AS 200R7AS 300R9R2 R1AS 100E B GPm u l ti h o pR8E B G PEPE ControllerNode-SID 100BGP-LSFlowSpec- 80% traffic to AS 300 with segment list {100, 1005} - 20% traffic to AS 200 with segment list {100, 1006} - Prefix <NLRI/Length> segment list {100, 1003}- Prefix <NLRI/Length> segment list {100, 1004} Incoming Label Operation Outgoing Interface1001 POP Link to R71002 POP Link to R81003 POP Upper link to R91004 POP Lower link to R91005 POP Load-balance on any link to R91006 POP Load-balance on any link to R7 or R8• In this example, two adjacencies exist between P1-P2.• Assuming capacity-based metrics are in use, the 10G link between P1 and P2 is unused for shortest path forwarding.PE1P1P2Node-SID 300Node-SID 200Node-SID 10010G PE2Node-SID 80040G800800PacketPOP 800SWAP 800-800No load-balancing on P1-P2 links800 Packet800 Packet• Adj-SID TLV provides the capability to load-balance across multiple adjacencies.PE1P1P210G PE240G800 PacketPOP 800Link Adj-SID Adj-Set Weight 10G 1001 1003 1 40G 1002 1003 4 Node-SID 200Node-SID 300Node-SID 800800POP 200, 1003Weighted load-balancing on P1-P2 links800 1003 200 Packet800 Packet- P1 advertises individual Adj-SIDs for the 10G link (1001) with weight 1, and 40G link (1002) with weight 4. - P1 also advertises an Adj-SID for the adjacency set (1003) - PE1 pushes segment list {200, 1003, 800}. Node-SID 200 gets the traffic to P1, while Adj-SID 1003 load-balances the traffic to P2 on a weighted 4:1 basis.PE1• Traffic Engineering information made available to CSPF for RSVP-TE based LSPs can also be made available to SR tunnels- Includes available link bandwidth, admin-groups, shared-risk link groups (SRLGs) etc.Use case 6: Distributed cspf-based traffic engineering (1)• In the example topology, assume that link P1-P2 is in SRLG 1.- The SRLG information isflooded into IS-IS (RFC 4874) or OSPF (RFC 4203).PE1P1P2 P3P4Node-SID 300Node-SID 200 Node-SID 100 Node-SID 500Node-SID 600PE2Node-SID 800SRLG 1Use case 6: Distributed cspf-based traffic engineering (2) • If PE1 computes a CSPF to PE2for a path that should avoidSRLG 1, it first prunes the linkssignalled as belonging to thatSRLG (i.e. link P1-P2) from thetopology.• From the remaining topology, it computes a path – in this simple case, the path PE1-P1-P3-P4-P2-PE2.• PE1 therefore imposes the segment list {200, 500, 600, 300, 800}, or even {500, 600, 800}.PE1 P1 P2P3 P4Node-SID 300Node-SID 200Node-SID 100Node-SID 500 Node-SID 600PE2Node-SID 800SRLG 1End-to-end scaling integrating SR/LDP/RSVP-TE• SR can be seen as alternative for LDP and RSVP-TE. This means that the same scaling requirements will remain in case of an E2E MPLS coverage in a multi-area/instance domain.• Seamless MPLS could be used to cross area or AS boundary, similar to what is available today with LDP and/or RSVP-TE. This approach has some clear advantages:- Smooth migration with existing MPLS domains- BGP is a field-proven scalable protocol- Non-SR nodes can still connect to a SR MPLS domainEnd-to-end scaling integrating SR/LDP/RSVP-TEAggregation-1 Segment RoutingAggregation-2Segment Routing CoreSegmentRoutingBGP in the Core,advertising BGPLBL routes(RFC3107) with RRBGP BGP BGP BGP Regions/area can still run LDP/RSVP, which allows for smooth migration… SR in the futureAccess-1 RSVP/LDP BGP BGPAccess-2 RSVP/LDP BGP BGPBGP peering, advertising BGP LBL routes (RFC3107)PE1 PE2 ABR1 PE3PE4 ABR1ABR3ABR4RRCo-routed service node provisioningOSS/BSSPCEPE1P1P2P4P5P7P6P8PE2PE3PE4P31OSS provisions diverse services on PE’sa. Type of service: VPWSb. Local attachment circuits (SAPs)c. Tunnel endpoints: Remote andLocald. Tunnel type: Segment Routing,RSVPe. Path constraints: Bandwidth, Co-routed service diversity, bi-directionality Step 12a. PE makes path computation request(PCReq), or path computation status report (PCRpt) to the PCE serverb. Note: Requires further extension toPCEP to signal path diversity with other services.Step 2(cont.) Co-routed service node provisioningOSS/BSSPCEPE1P1P2P4P5P7P6P8PE2PE3PE4P3a. PCE monitors LSP stats and re-optimises tunnels as required, downloading new paths to PE routers (same PLSP-ID)b. PE performs make-before-breakand moves to the new path.Step 412a. PCE computes and downloads thepaths for the tunnel set. b. PE’s bind service to pathsStep 33Global bandwidth optimisationOSS/BSSPCEPE1P1P2P4P5P7P6P8PE2PE3PE4P31OSS provisions parallel infrastructure tunnels between a pair of PE nodes a. Type of service: VPRN, VPLSVPWSb. Local attachment circuits (SAPs)c. Tunnel endpoints: Remote andLocald. Tunnel type: Segment Routing,RSVPe. Path constraints: min/maxbandwidth, diversity, admin-group Step 12a. PE makes path computation request (PCReq), or path computation status report (PCRpt) to the PCE server with path diversity constraints among the parallel set of tunnels.b. This may use the SVEC object ofPCEP (per RFC 5440) to perform a set of dependent path computation requests.Step 2Flow MapperGlobal bandwidth optimisationOSS/BSSPCEPE1P1P2P4P5P7P6P8PE2PE3PE4P312a. PCE computes and downloads thepath.b. PE node informs the external flowmapper of the set of LSP-ID values created between endpoints. Step 33Flow Mappera. External flow mapper pushes downthe mapping of flow/prefix/destination to the set of parallel tunnels using OpenFlow or XMPP . b. PE instantiates the ACLs to mapeach flow to the designated LSP-ID. Step 44a. External flow mapper pushes downthe mapping of flow/prefix/destination to the set of parallel tunnels using OpenFlow or XMPP . b. PE instantiates the ACLs to mapeach flow to the designated LSP-ID.Step 5deployment options• Greenfields:- Relatively straightforward- Requires “new” software with segment routing capabilities- Opportunity to bypass LDP or RSVP-TE altogether- Care needs to be taken to ensure that all service types, resiliency mechanisms andtraffic-engineering capabilities can besupported over segment routed tunnels • Existing networks:- Similar to greenfields with addedconsiderations:• Ability to introduce without disruption to existing services• Co-existence with LDP and/or RSVP-TE where deployed; “ships in the night” operation required • Option to only build new services with segment routed tunnels, leaving existing services onexisting tunnels• Migration to an SR-only networkDeployment options Two broad categoriesSegment routing and LDP inter-operability• If an MPLS Control Plane Client (i.e. LDP, RSVP, BGP, SR) installs forwarding entries into the MPLS data-plane, those entries need to be unique in order to function as “Ships in the Night”.• It’s also likely that these control planes can and will co-exist. For example, LDP and SR could co-exist, where:- LDP and SR are present on all routers in the network.Preference for LDP or SR for service tunnels is a localmatter at the head-end. SR can also be used toenhance FRR coverage.- SR is only present in parts of the network. LDP and SRcan be interworked to provide an end-to-end tunneland/or an FRR tunnel due to the presence of an SRMapping Server (SRMS).。

相关文档
最新文档