DSP在电力系统多通道同步交流采样中的应用

DSP在电力系统多通道同步交流采样中的应用
DSP在电力系统多通道同步交流采样中的应用

—255—

DSP 在电力系统多通道同步交流采样中的应用

余绍雄,赖玉龙

(华东计算技术研究所,上海 200233)

摘 要:针对电力系统中由部分设备工作不正常引起电网功率变化而损坏其他设备的问题,提出利用数字信号处理器(DSP)芯片

TMS320F2812和模数转换器AD7656实现多通道同步交流采样的硬件电路及控制程序,硬件部分包括电流到电压转换的调理电路、模/数转换控制电路和CAN 总线,软件部分包括主体控制程序、中断服务程序和软件优化方法等。应用结果验证了DSP 在电力系统自动化控制中的优越性及该电路的实用性。

关键词:同步采样;交流采样;数字信号处理器;AD7656转换器;CAN 总线

Application of DSP in Multi-channel Synchronous

AC Sampling of Electric Power System

YU Shao-xiong, LAI Yu-long

(East China Institute of Computer Technology, Shanghai 200233)

【Abstract 】Aiming to the problem of part of equipments working non-normally in electric power system, this paper proposes the hardware circuit and software arithmetic achieving synchronous AC sampling of multi-channel electric power system with Digital Signal Processor(DSP)TMS320F2812 and AD7656. The hardware circuits include the circuits of current changed to voltage, analog signals changed to digital and CAN bus. The software includes the main program, interrupt service program and methods of program optimized. Experimental results show the advantages of DSP in auto-control of electric power system and practicability of the circuit.

【Key words 】synchronous sampling; AC sampling; Digital Signal Processor(DSP); AD7656; CAN bus

计 算 机 工 程Computer Engineering 第34卷 第20期

Vol.34 No.20 2008年10月

October 2008

·工程应用技术与实现·

文章编号:1000—3428(2007)07—0255—02

文献标识码:A

中图分类号:N945

传统的信号处理或控制系统大多采用模拟技术进行设计和分析,随着电子技术的发展,数字信号处理技术逐渐替代了传统的模拟处理技术。采用数字信号处理器(Digital Signal Processor, DSP)实现数字化处理和控制已经成为未来的发展趋势。本文以TI 公司的2000系列DSP TMS320F2812为例,探讨DSP 在电力系统多通道同步交流采样中的应用。

1 硬件设计

在一些独立的空间(如舰船、飞行器)中,发电机的输出功率受到一定的条件限制,为了保证重要设备的供电,在某些辅助设备功率骤然提升时,必须立即限制这些设备的用电量。为此,本文设计开发了DSP 数据采集处理装置,其原理如图1所示,主要功能是采集配电间的输出电流信号,进行实时处理和发出相应的控制指令。此外,通过CAN 总线网络与上位机进行信息交换,接收相关的指令并将实时采集的信息数据传送给上位机。

图1 DSP 数据采集处理装置原理

1.1 CPU

CPU 选用TI 公司2000系列DSP TMS320F2812。2812是目前控制领域中性能最高的处理器,具有精度高、速度快、集成度高等特点,其中,C28X 内核是当今世界上在数字控制应用方面高性能的DSP 内核[1]。

1.2 电流→电压转换电路和调理电路

电流→电压转换电路和调理电路如图2所示。

图2 电流→电压转换、调理电路逻辑

电流互感器采用CT201,其主要功能是将额定的0 A~5 A 电流转化成0 mA~2 mA 电流输出,30倍不饱和;调理电路由电阻、运算放大器、保护限幅二极管等组成。在模/数转换

中,如果模/数转换器损坏,

则检测和控制的功能就不能实现,为了保障模/数转换器的安全,在它的前端增加了限幅电路。

作者简介:余绍雄(1952-),男,工程师,主研方向:计算机控制系

统;赖玉龙,助理工程师

收稿日期:2008-01-02 E-mail :dragon8205@https://www.360docs.net/doc/0015081291.html,

另外,为了保障采样精度,设置了精测和粗测2个通道,精测输出的电压幅值可达±40 V,这里的2个二极管起限幅作用,其所需的±10 V电压由±15 V分压而来。在运放输出后是Π形滤波网络,主要用途为抗干扰。

1.3 模/数转换及控制电路

TMS320F2812芯片上有一个12 bit、转换频率为25 MHz 的模/数转换器[2],其前端为2个8选1的多路切换器和2路

采样/保持器,在要求不高的场合下可以利用它构成同步采样电路。因为要求三相电流并且分为精测和粗测,所以共有6路信号必须在同一时刻进行采样,另外对采集精度和速率的要求都比较高,因此,选用了外置的6通道16 bit模/数转换器AD7656。模块采用硬件同步采样方式,为了使采样信号f*(t)能反映被采样的模拟信号f(t),采样频率必须满足采样定理,即采样频率f s必须大于模拟量所含最高次有效谐波频率f max的2倍。实际采样时,为保证采样信号能够准确地代表被采样的模拟信号,f s应尽可能的大,但如果采样频率过高,则会大大增加处理器的负担,影响实时性。在该装置中,考虑到电流信号的频率为50 Hz,采样频率采用2 kHz。

1.4 CAN总线

CAN总线是一种串行通信协议,具有较强的抗干扰能力,可以应用在电磁噪声比较大的场合,通信速率最高可达1 Mb/s[3]。TMS320F2812 自带一个eCAN总线接口(与CAN2.0B标准接口完全兼容),但考虑到系统需要双网冗余,必须增加外扩CAN接口,这样2个CAN接口的初始化程序不同,为了简化程序、方便操作,选用2个外扩CAN接口组成双网冗余。目前通信速率为150 Kb/s,通信距离为100 m。

2 软件设计

本系统的软件分为主程序和中断服务程序2个部分,主程序流程如图3所示,主要实现如下功能:(1)对各模块的初始化;(2)对采样数据的相关运算;(3)对异常情况的判断;

(4)对CAN总线收发信号的控制。

图3 主程序流程

初始化的模块包括看门狗、锁相环、Flash、通用I/O口、Timer0、中断扩展模块和CAN总线控制器。其中,锁相环设置成5倍频,使用Timer0产生0.5 ms中断;CAN

总线控制器的初始化包含了工作模式、波特率、验证码、屏蔽码等参数的配置.另外,使能2路外部中断,用于CAN总线信号的接收,同时使能Timer0中断。

ADC中断服务程序流程如图4所示,主要完成AD采样控制的功能。由于ADC每次采样所需最大采样时间为14 μs,为了提高采样精度,在ADC转换速率允许的情况下,在实际应用中每0.5 ms采样10次,然后取平均值,实现对三相电流的高精度采样。

图4 中断服务程序流程

软件采用C语言和汇编语言混合编程,遵循模块化的编程思想。程序的大部分采用C语言编写,为了提高代码的运行效率,在编写过程中考虑了一些常用的优化策略,例如数据类型选择优化、数值操作优化、变量定义和使用优化、函数调用优化、程序流程优化[4],对一些调用率高的函数使用inline关键字进行优化,还可以根据实际情况,适当使用DSP 开发环境CCS附带的优化选项等。

3 应用结果

DSP数据采集处理装置样机生产后通过了高低温、振动、冲击、摇摆、霉菌以及EMC等环境试验,功能试验包含电源适应性、A/D转换精度、异常情况动作时间以及CAN总线通信等,各项测试数据均能满足用户要求。其中,在电流互感器的前端输入1 A~150 A等隔值电流测量A/D转换精度,平均相对误差为0.849 9%;通过模拟配电系统发生异常情况测试装置的控制功能,平均动作时间为2.75 ms;在CAN总线网络中使用150 Kb/s的速率与上位机进行通信,传输的数据完整性和准确性均较好。以上测试数据表明本文的数据采集处理装置具有良好的性能。

4 结束语

本文对电力系统多通道同步交流采样提出了利用DSP实现的硬件电路和软件算法,其中的电路和算法对提高多通道电流同步交流采样的速率和精度有一定的借鉴意义。该装置已经通过用户验收,其良好的性能受到了用户的好评。

参考文献

[1] 苏奎峰, 吕强, 耿庆锋, 等. TMS320F2818原理与开发[M]. 北

京: 电子工业出版社, 2006.

[2] Texas Instruments. TMS320F2812 Digital Signal Processors Data

Manual[Z]. 2003.

[3] BOSCH. CAN specification 2.0[Z]. 1991.

[4] Texas Instruments. TMS320C28x Optimizing C/C++ Compiler

User’s Guide[Z]. 2001.

—256—

基于Ucos的多通道数据采集系统(DOC)(可编辑修改word版)

课程设计(论文)任务书 信息工程学院物联网专业2014-2 班 一、课程设计(论文)题目基于Ucos 的多通道数据采集系统 二、课程设计(论文)工作自2017 年06 月26 日起至2017 年06 月30 日止。三、 课程设计(论文) 地点:嵌入式系统实验室 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握嵌入式开发板(实验箱)各功能模块的基本工作原理; (2)培养嵌入式系统的应用能力及嵌入式软件的开发能力; (3)使学生较熟练地应用嵌入式操作系统及其API 开发嵌入式应用软件; (4)培养学生分析、解决问题的能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)分析所设计嵌入式软件系统中各功能模块的实现机制; (2)选用合适嵌入式操作系统及其API; (3)编码实现最终的嵌入式软件系统; (4)在实验箱上调试、测试并获得最终结果。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善嵌入式软件实时性能;扩展嵌入式软件功能及改善其图形用户界面。 3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文。 (2)论文包括目录、正文、小结、参考文献、谢辞、附录等(以上可作微调)。 (3)课程设计论文装订按学校的统一要求完成。 4)课程设计评分标准: (1)学习态度:20 分; (2)回答问题及系统演示:30 分 (3)课程设计报告书论文质量:50 分。 成绩评定实行优秀、良好、中等、及格和不及格五个等级。不及格者需重做。 5)参考文献: (1)罗蕾.《嵌入式实时操作系统及应用开发》北京航空航天大学出版社 (2)Jean https://www.360docs.net/doc/0015081291.html,brosse. 《嵌入式实时操作系统uC/OS-II》北京航空航天大学出版社 (3)王田苗.《嵌入式设计与开发实例》.北京航空航天大学出版社 (4)北京博创科技公司. 《嵌入式系统实验指导书》

基于NIELVIS_的温度采集系统设计

收稿日期:2009-09 作者简介:徐苒(1985—),女,硕士研究生,研究方向为在线检测技术。 基于N I E L V I S I I 的温度采集系统设计 徐 苒,金暄宏,戴曙光 (上海理工大学光电信息与计算机工程学院,上海200093) 摘要:介绍E L V I S 在温度采集系统设计中的应用,探讨以虚拟仪器为核心的数据采集系统及其实现信号检测技术的设计方案。利用E L V I SI I 实验板以及开发软件L a b V I E W 搭建一个温度检测系统,结果表明,E L V I S 平台比传统的数据采集装置更具有灵活性、创新性和实践性。 关键词:E L V I SI I ;虚拟仪器;温度信号检测 中图分类号:T P 39 文献标识码:B 文章编号:1006-2394(2010)02-0033-03 T h e T e m p e r a t u r e T e s t i n g E x p e r i m e n t B a s e d o n N I E L V I S I I X UR a n ,J I NX u a n -h o n g ,D A I S h u -g u a n g (S h a n g h a i U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y O p t i c a l -e l e c t r i c a l a n d C o m p u t e r E n g i n e e r i n g C o l l e g e ,S h a n g h a i 200093,C h i n a ) A b s t r a c t :T h e a p p l i c a t i o n o f E L V I S i n t h e s y s t e md e s i g n i s i n t r o d u c e d i n t h i s p a p e r .T h e d a t a a c q u i s i t i o n s y s t e m b a s e d o n v i r t u a l i n s t r u m e n t i s p r e s e n t e d ,a n d d e s i g n s c h e m e s o f s i g n a l d e t e c t i n g t e c h n i q u e a r e p r o p o s e d .T h e t e m p e r a -t u r e t e s t i n g s y s t e mi s b a s e d o n N I E L V I S I I a n d t h e L a b V I E W s o f t w a r e .T h e r e s u l t s p r o v e t h a t E L V I S i s m o r e f l e x i b l e ,i n n o v a t i v e a n d p r a c t i c a l c o m p a r e d w i t h t h e t r a d i t i o n a l d a t a a c q u i s i t i o n d e v i c e . K e y w o r d s :E L V I S ;v i r t u a l i n s t r u m e n t ;t e m p e r a t u r e s i g n a l d e t e c t i n g 1 E L V I S 简介 N I 教学实验室虚拟仪器套件(N I E L V I S )是动手设计与原型设计平台,它集成了最常用的12个仪器,包括示波器、数字万用表、函数发生器、波特图分析仪等,将它们集成在适合于硬件实验室中使用。基于N I L a b V I E W 图形化系统设计软件,带有U S B 即插即用功能的N I E L V I S 提供了虚拟仪器的灵活性,并且允许进行快速简单的测量采集与显示。全新的U S B 即插即用连接性简化了试验设备的搭建和维护,用户现在可以使用个人电脑对应用进行测试和原型设计,并通过U S BM 系列数据采集设备来完成数据采集任务。此外,本系统用到的N I E L V I S I I 还根据用户反馈,比之前的版本增加了牢固性。各部分名称如图1所示。1.1 安装在计算机上的软面板仪器(S F P ) 如图1所示,计算机平台上安装有虚拟仪器软件开发工具L a b V I E W ,E L V I S 加载了在L a b V I E W 中创建的S F P 仪器以及仪器的源代码,用户可以通过修改L a b V I E W 代码来修改S F P 的功能或者提高它们的功用。这些软面板仪器都是系统设计中典型的和必须的通用电子仪器的虚拟仪器,主要包括示波器、函数发生 器、数字万能表、可编程控制的电源以及波特分析器、动态信号分析仪与任意波形发生器。 1.2 用户自定义工作台 如图1,原型实验面包板与工作台相连接,在此上搭建模拟电路,允许设计过程中输入/输出信号的连接,同时原型面包板上给出了E L V I S 所有的信号终端,它们分列在电路面包板两旁,并通过电缆连接至电 ①计算机上的软面板仪器(S F P ) ②U S B 即插即用电缆 ③用户自定义工作台 ④原型实验面包板 ⑤和⑥是电源适配器和电源线 图1 N I E L V I S I I 系统 · 33·2010年第2期 仪表技术

基于LabVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010 年 03 月 20 日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1. 本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。 2. 本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

基于AD7606 的可扩展多通道同步采样数据采集系统的布局考虑

电路笔记 CN-0148 连接/参考器件 8通道DAS ,内置16位、双极性、同步采样ADC AD7606利用ADI 公司产品进行电路设计 Rev.0 “Circuits from the Lab” from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 https://www.360docs.net/doc/0015081291.html, Fax: 781.461.3113 ?2010 Analog Devices, Inc. All rights reserved. AD7606-66通道DAS ,内置16位、双极性、同步采样ADC 放心运用这些配套产品迅速完成设计。 欲获得更多信息和/或技术支持,请拨打4006-100-006或访问AD7606-44通道DAS ,内置16位、双极性、同步采样ADC https://www.360docs.net/doc/0015081291.html,/zh/circuits 。 ADR421 精密、低噪声XFET ?基准电压源 基于16位8通道DAS AD7606的可扩展多通道 同步采样数据采集系统(DAS)的布局考虑 电路描述 电路功能与优势 AD7606是一款集成式8通道数据采集系统,片内集成输入放大器、过压保护电路、二阶模拟抗混叠滤波器、模拟多路复用器、16位200 kSPS SAR ADC 和一个数字滤波器。在电力线路测量和保护系统中,需要对多相输配电网络的大量电流和电压通道进行同步采样。这些应用中,通道数量从6个到64个以上不等。AD7606 8通道数据采集系统(DAS)集成16位双极性同步采样SAR ADC 和片内过压保护功能,可大大简化信号调理电路,并减少器件数量、电路板面积和测量保护板的成本。高集成度使得每个AD7606只需9个低值陶瓷去耦电容就能工作。 图1所示电路包括两个AD7606器件,可以配置为使用2.5 V 内部基准电压源或2.5 V 外部基准电压源ADR421。如果REF SELECT 引脚接逻辑高电平,则选择内部基准电压源。如果REF SELECT 引脚接逻辑低电平,则选择外部基准电压源。 在测量和保护系统中,为了保持多相电力线网络的电流和电压通道之间的相位信息,必须具备同步采样能力。AD7606具有宽动态范围,是捕获欠压/欠流和过压/过流状况的理想器件。输入电压范围可以通过引脚编程设置为±5 V 或±10 V 。 此电路笔记详细介绍针对采用多个AD7606器件应用而推荐的印刷电路板(PCB)布局。该布局在通道间匹配和器件间匹配方面进行了优化,有助于简化高通道数系统的校准程序。当通道间匹配非常重要时,此电路可以使用2.5 V 内部基准电压源AD7606;而对于要求出色绝对精度的高通道数应用,此电路可以使用外部精密基准电压源ADR421,它具有高精度(B 级:最大值±1 mV )、低漂移(B 级:最大值3 ppm/°C )、低噪声(典型值1.75 μV p-p ,0.1 Hz 至10 Hz )等特性。低噪声及出色的稳定性和精度特性使得ADR421非常适合高精度转换应用。这两个器件相结合,能够实现业界前所未有的集成度、通道密度和精度。 电源要求如下:AV CC = 5 V ,V DRIVE = 2.3 V 至5 V (取决于外部逻辑接口要求)。 本电路笔记描述一个评估板的布局和性能,其中内置两个AD7606,构成一个16通道数据采集系统。欲浏览完整的16通道DAS PC 板文档,请访问: https://www.360docs.net/doc/0015081291.html,/CN0148_PCB_Documentation 。 为实现良好的通道间匹配和器件间匹配,模拟输入通道和器件去耦的对称布局非常重要。所示数据支持利用图1所示16通道ADC 实现的匹配性能。 16通道DAS 的双路AD7606板布局 在内置多个AD7606器件的系统中,为确保器件之间的性能匹配良好,这些器件必须采用对称布局。图2显示采用两个AD7606器件的布局。

-基于Labview的多通道数据采集系统设计

第一节系统整体结构 系统的整体组成结构是测量目标经过传感器模块后转换成电信号,在由信号调理模块对信号做简单的调理工作,例如,scc-sg04全桥应变调整模块,scc-td02模块,scc-rtd01热电偶热电阻制约模块等,将调理好的信号传送到数据采集模块中进行数据采集,然后在用软件进行特定的处理。在采集的过程中同时将数据保存到指定数据库里。如图4-1多通道数据采集系统硬件结构图所示。 图4-1 多通道数据采集系统硬件结构图 第二节数据采集系统的硬件设计 一、PC机 传统仪器很多情况完成某些任务必须借助复杂的硬件电路,而由于计算机数据具备极强的信号处理能力,可以替代这些复杂的硬件电路,这便是虚拟仪器最大的特点。数据采集系统能够正常运行的前提便是选择一个优良的计算机平台。由于数据采集功能器件通常工作在工业领域中,往往伴随着强烈的振动,噪声,电源线的干扰和电磁干扰等。为了保证记录仪正常的运行,设计系统时选定工业计算机。考虑到计算机平台的可靠运行工业计算机通常采取了抗干扰措施。另一方面的考虑是工业计算机通常具有很多类型的接口,这样有利于功能进一步的扩展。 二、传感器 传感器设备能接受到来自测量目标发来的信号,而且把接受到的讯息,通

过设定的变换比例将其改变成为电信号亦或其它形式,从而能够完成数据信号的处理、存储、显示、记录和控制等任务。传感器是系统进行检测与控制的第一步。 三、信号调理 经过传感器的信号大多是要经过信号调理才可以被数据采集设备所接收,调理设备能够对信号进行放大、隔离、滤波、激励、线性化等处理。由于不同类型的传感器各有不同的功能,除了考虑一些通用功能之外,还要依据不同传感器的性质和要求来实现特殊的信号调理功能。信号调理电路的通用功能由如下几个方面: (1)放大功能为了提高系统的分辨率以及降低噪声干扰,微弱信号必须要进行放大,从而使放大之后信号电压与模数转换的电压范围一致。信号在经过传感器之后便直接进入信号调理模进行调理,这样就不易受到外部环境的影响,从而使得信噪比进一步的改善。 (2)隔离功能隔离是指为了避免直接的电连接,通过光线、交互电源或变压等方法,使得数据信息在系统之间进行传递。使用隔离的原因:一是为了安全考虑;二是能够保证采集到的数据不会受到其它原因的影响。 (3)滤波滤波是为了保证测量的信号的纯洁性,滤去不需要的信号。大部分的信号调理模块具有一个低通滤波器是用来过滤噪声。通常还需要抗混叠滤波器,滤除信号中感兴趣的最高频率以上的所有频率的信号。 (4)激励功能信号调理模块能够为某些传感器提供激励信号,而且很多信号调理模块都提供有电流源和电压源以便给传感器提供激励。 (5)线性化大部分的传感器是测量信号的线性和非线性响应的结合,为了使传感器误差补偿,对输出信号的线性化是必要的。目前,该数据采集系统可以通过软件解决这个问题。 四、输入信号的类型 要知道信号采集到的数据集,这是因为信号的要求和系统性能的不同的测量是不同的,只有了解被测信号的性质,才可以准确地选择合适的采集系统。 一个任意的信号在时间上是一个物理量的变化。在一般情况下,信号携带的信息是非常广泛的,如:状态,率,水平,形式,频率等。根据信号运载信息的不同,可以将信号分为数字信号或模拟信号。其中数字信号包括脉冲信号和开关信号两种类型。模拟信号包括直流信号、时域信号、频域信号等。 (1)数字信号 第一类数字信号为开关量信号,如图4-2所示。一个开关信号携带信息信

实验设计:多采样率数字信号处理

实验名称:多采样率数字信号处理 一.实验目的:1. 掌握信号抽取和插值的基本原理和实现; 2.掌握信号的有理数倍率转换。 二.实验原理: 多采样率数字信号处理共分为3方面的问题:信号的整数倍抽取、信号的整数倍插值和信号的有理数倍速率转换。 Matlab 信号处理工具箱提供了抽取函数decimate 用于信号整数倍抽取,其调用格式为: y=decimate(x,M) y=decimate(x,M,n) y=decimate(x,M,’fir’) y=decimate(x,M,n,’fir’) 其中y=decimate(x,M)将信号x 的采样率降低为原来的 M 1,抽取前缺省地采用8阶Chebyshev Ⅰ型低通滤波器压缩频带。 y=decimate(x,M,n)指定所采用Chebyshev Ⅰ型低通滤波器的阶数,通常13 n 。 y=decimate(x,M,’fir’)指定用FIR 滤波器来压缩频带。 y=decimate(x,M,n,’fir’) 指定所用FIR 滤波器的阶数。 Matlab 信号处理工具箱提供了插值函数interp 用于信号整数倍插值,其调用格式为: y=interp(x,L) y=interp(x,L,n,alpha) [y,b]=interp(x,L,n,alpha) 其中y=interp(x,L)将信号的采样率提高到原来的L 倍。 y=interp(x,L,n,alpha)指定反混叠滤波器的长度n 和截止频率alpha ,缺省值为4和0.5。 [y,b]=interp(x,L,n,alpha)在插值的同时,返回反混叠滤波器的系数向量。 信号的有理数倍速率转换是使信号的采样率经由一个有理因子M L 来改变,可以通过插值和抽取的级联来实现。Matlab 信号处理工具箱提供了重采样函数resample 用于有理倍数速率转换,其调用格式为: y=resample(x,L,M);

多通道同步数据采集与处理系统的设计与实现_王浩

297 2009年第01期,第42卷 通 信 技 术 Vol.42,No.01,2009总第205期 Communications Technology No.205,Totally 收稿日期:2008-06-26。 作者简介:王 浩(1982-),男,硕士研究生,主要研究方向为电路设计及D S P 技术;刘文怡(1970-),男,副教授,主要研究方向 为测控系统、信息识别、数据记录,以及相关软件技术;韩志军(1983-),男,硕士研究生,主要研究方向为电路设计。 多通道同步数据采集与处理系统的设计与实现 王 浩, 刘文怡, 韩志军 (中北大学 电子测试技术国家重点实验室,山西 太原 030051) 【摘 要】设计了一种基于DSP 与CPLD 的多通道同步数据采集与处理系统,系统分为多通道同步数据采集模块和DSP 数据处理模块。多通道同步数据采集可实现相关信号同时测量,进行相关分析后,得到信号间的相关信息的要求,而数据处理模块可满足数据处理,实现相关算法等功能。实验中DSP 内嵌数据压缩算法的试验结论表明,该系统能够满足多通道同步数据采集与处理的要求,性能安全,可靠。 【关键词】DSP ;CPLD ;多通道同步数据采集;数据处理 【中图分类号】TN919.5 【文献标识码】A 【文章编号】1002-0802(2009)01-0297-03 Design and Implementation of Multi-channel Synchronous Data Acquisition System WANG Hao , LIU Wen-yi ,HAN Zhi-jun (State Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan Shaanxi 030051, China) 【Abstract 】Multi-channel synchronous data acquisition system based on DSP and CPLD is designed. The system is constituted by multi-channel synchronous data acquisition module and DSP data processing module.Multi-channel synchronous data acquisition module can realize simulatneous test of the related signal and receive the related information after being analyzed. Data processing module can implements data processing and the related functions of the algorithm. The experiment on the data compression algorithm embedded in DSP indicated that this system can satisfy multichannel synchronous data acquisition and processing requirements,and its performance is secure and reliable. 【Key words 】DSP ;CPLD ;multi-channel synchronous data acquisition ;data processing 0 引言 在现代信号处理系统中,数据采集处理系统越来越广泛地用于各行各业。文中设计实现了基于DSP 与CPLD 的多通道同步数据采集与处理系统,其中,多通道同步数据采集可实现在实际应用中要求对一些相关信号同时进行测量,进行相关分析后,得到信号间的相关信息的要求,而处理模块可满足数据处理,在其系统框架内实现其算法等功能。文章设计的多通道同步数据采集与处理系统,通过程序控制,接口设计,DSP 初始化,DSP 的算法实现具有功能模块化、接口标准化、能够根据用户需求应用灵活多变的特点。 1 多通道同步数据采集模块组成及原理 多通道同步数据采集模块的硬件结构框图如图1所示,模拟信号通过SIN 和AGND 输入,经调理后,通过CPLD 对采样保持器的S/H 控制进行多路同步采样保持,通过CPLD 对模拟开关的SEL 控制进行路选通,这时,XCR3256控制AD 进行单路16位量化采集,然后将采集数据写入到FIFO 缓冲器中。 多通道同步数据采集模块的程序控制采用Verilog HDL 语言,VerilogHDL 是用于逻辑设计的硬件描述语言,并且已成为IEEE 标准[1]。

基于单片机的多通道的温度数据采集系统

摘要 由于数据采集系统的应用越来越广、其所涉及到的对信号的测量方式和涉及到的信号源的类型也将越来越多、因为对测量的要求也就越来越高,现在国内已有不少用于数据的测量与采集的系统,可很多系统存在着功能单一、采集速率比较低、操作非常复杂,并且对测试的环境要求较很高等问题。人们急切需要一种应用范围广、价格低廉的数据采集系统。 在分析了各种类型单片机的特点及其与PC机的各类通信技术的基础后,本人设计了由单片机控制的温度采集系统,并且通过串口通信的方式实现了单片机与PC机间的通信,实现了数据传送并将数据在PC机上进行显示或存储,完成了此次设计。 基于单片机的多通道的温度数据采集系统是由将来自温度传感器的信号进行放大、滤波、采样保持等分步处理之后,输入到A/D转换器转换为数字信号后由单片机进行采集的,然后再利用单片机与PC机之间的通信将数据传送至PC 机进行数据的存储处理及显示等,实现了数据的采集与处理等,此设计可广泛应用于工控、仪器仪表、机电智能化及智能家居等诸多的应用领域。 联系扣扣:2825772782 关键词:单片机;温度数据采集;多通道

Abstract S ince the wide range of data acquisition system, which involves the measurement signal and the type of signal source more and more, Surveyors are increasingly high requirements of the domestic now have a lot of data acquisition and measurement system But there are many single function systems, collecting less access, low collection rate, complicated operations, and the demands of the test environment and other issues.It requires abroad scope of application, high reliability and low-cost data acquisition system. Based on the analysis of the characteristics of different types of SCM and SCM and PC communication technology, SCM control of the collection system designed and adopted MCU serial communication between PC and communications, Data transmission and display of data stored on the PC.Single completed the multi-channel data acquisition system design and implementation. Based on SCM′s multi-channel data acquisition system is adopted will come from the sensor signal amplification, linear filtering, After processing maintain synchronous sampling, which converted to digital signal input A/D conversion by SCM Acquisition, Then, SCM and PC to PC communications data to the data storage, post-processing and display. a powerful data processing, visual shows, friendly interface and high performance-price ratio, a wide range of features. can be widely used in industrial control equipment, instruments, and electrical engineering integration, intelligent home and many other fields. Key words Multi-channel Data Acquisition Microcontroller

数字信号处理基础书后题答案中文版

Chapter 2 Solutions 2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。 2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f = 3.18 Hz 。信号的奈奎斯特采样频率为6.37 Hz 。 (b)、3 5000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。 (c)、7 3000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。 2.3 (a) 1258000 1f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。 2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。因此,5个周期为5π/2000 = π/400 sec 。对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。所以采样频率为f S = 4(4000/π) = 16000/π Hz 。因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。 2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。因此,5个周期为5/1250 sec 。对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。这意味着在模拟信号的五个周期内只有8个点被采样。事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。 2.6 2.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 频率/kHz

电力系统中多通道同步采样ADC(AD7606)与浮点DSP(ADSP-21479)通信的设计与实现

电力系统中多通道同步采样ADC(AD7606)与浮点 DSP(ADSP-21479)通信的设计与实现 内容 1.简介31.1 AD7606 简介31.2 ADSP-21479 简介4 2.AD7606 和ADSP- 21479 配置与连接5 3.时序分析6 4.测试结果和结论74.1 测试结果74.2 结论10 5.DSP 参考代码10 6.参考文献12 1.简介1.1 AD7606 简介AD7606 是16 位,8 通道同步采样模数数据采集系统。AD7606 完全满足电力系统的要求,具有灵活的数字滤波器、 2.5V 基准电 压源、基准电压缓冲以及高速串行和并行接口。它采用5V 单电源供电,可以 处理±10V 和±5V 真双极性输入信号、同时所有通道均能以高 达200kSPS 的吞吐率采样。图1 AD7606 的内部原理框图。图2 AD7606 的管脚图。AVcc 模拟电源,4.75V~5.25V Vdrive 逻辑部分电源Vdd 模拟输入部 分正电压Vss 模拟输入部分负电压DGND 数字地AGND 模拟地 1.2 ADSP-21479 简介ADSP-21479 是SIMD (单指令多数据)SHARC 家族中的一员,它基于65nm 的最新工艺,具有低成本,低功耗的的特点,是一 颗集成有大容量片上SRAM 和ROM 的32/40 位浮点DSP。ADSP-21479 是性 能出色,266MHZ/1596MFLOP: 266 MHz/1596FLOPS SIMD SHARC 内核,支持32-bit 浮点、40-bit 浮点以及16/32-bit 定点数据类型支持多达5 Mb 片内SRAM 支持16 位宽SDR、SDRAM 存储器接口数字应用接口DAI,支持多达8 个的高速同步串 口(SPORT)及SPI 串口 2 个精确时钟发生器20 线数字I/O 端口 3 个定时器、UART、I2C 兼容接口ROM/JTAG 安全模式供应196 引脚CSP_BGA 封装与100 引脚LQFP 封装产品,适合于工业客户的要求供应商业级、工业级温度与

温度采集系统原理

1.现有16路温度信号,16路压力信号,48路流量信号和10路物位信号,用单片机构成一个数据采集系统。

答:系统的原理框图如上图所示,图中的T1表示第一路温度信号,同理,P16表示第16路压力信号,F48表示第48路流量信号,H10表示第10路物位信号。 (1)由于温度信号的温度范围是0~100度,系统要求的精度为0.5%,所以对于温度信号采用8位的A/D即可满足要求(100/255=0.4度)。系统使用的是ADC0809,由于ADC0809内部含有多路开关,所以系统设计时,在外部没有添加多路开关,16路温度信号运用两片ADC0809,正好能采集16路温度信号。 (2)16路压力信号的精度要求是精确到0.1%,8位的AD已不能满足要求,假如所测的最大压力为1个大气压, 如果用8位AD,则其分辨率为100000/255=392,而使用16位AD其分辨率为100000/65535=1.5,所以选 用16路AD较为精确。系统使用的是AD7701(相关资料请见本次作业第二题),AD7701内部不含多路开关,所以要外接多路开关,系统中使用的多路开关是CD4067B,CD4067B是16通道双向多路模拟开关,它具有两种电源输入端,VDD和VSS,可以在-0.5~18V之间进行选择。 (3)48路流量信号的精度要求是精确到0.1%,同压力信号一样,8位AD不能满足精度要求,故采用16位AD,系统中采用的还是AD7701。由于流量信号对采集的速度要求不是很高,所以采用多通道共用放大器,采样保持器和AD转换器。48路流量信号可以用3片CD4067B进行切换,由多路开关轮流采集流量信号,经放大器,采样保持器和AD转换进入单片机。 (4)10物位信号的精度要求同温度信号,其精度要求是精确到0.5%,所以采用8位的AD7574, 与ADC0809不同的是其内部不含多路开关,10信号如使用两片多路开关,则增加了系统的复杂度,所以采用一片CD4067B 即可。AD7574采用CMOS工艺,单片行,含有内部时钟振荡器,+5V供电,芯片内部设有比较器和控制逻辑,以及功耗低,转换速度快的逐次逼近型A/D转换器。 2.选一串行的16位ADC。 答:所选的AD7701可变串行接口、16位模/数转换器,以下是相关资料。 AD7701是美国AD公司推出的16位电荷平衡式A/D转换器它具有分辨率高、线性度好、功耗低等特点,并且由于该芯片采用了采样技术和线性兼容CMOS工艺集成技术,且片内含有自校准控制电路,可以有效地消除内部电路、外部电路的失调误差和增益误差G,AD7701具有灵活的串行输出模式,其转换结果通过串行接口输出,数据输出速率达4kbps。串行接口有异步方式、内时钟同步方式和外时钟同步方式三种::异步方式可以直接与通用异步接收/发送器(UART)接口;内时钟同步方式可将串行转换结果经移位寄存器转换为并行输出;外时钟同步方式可以连接与单片机接口。所以它具有精度高、成本低、工作温度范围宽、抗干扰能力强等特点。因此适用于遥控检测、过程 (1)主要性能: .AD7701芯片内含有自校准电路 .片内有可编程低通滤波器; .拐点频率;0.1Hz一10HZ .可变串行接口:分辨率16位; .线性误差:0.0015%: ·功耗低。正常状态:40mW;睡眠状态:10uW。 (2)芯片引肿图和引脚说明: AD770I的核心部分是二阶调制器和6阶高斯低通数字滤波器 构成的16位ADC,另外有校准控制器、校准SRAM、时钟发 生器和串行接口电路。AD7701芯片的引脚名称和说明如下。 MODE:串行接口方式选择。AD7701 方式。 当MODE接十5v时,串行接口工作在内时钟同步方式。AD7701可以通过外部移位寄存器将串行数据转换为并行数据输出。 当引脚MODE接DGND时,AD7701串行接口工作于外时钟同步方式。在这种方式下,AD7701能直接与具有同步串行接口的单片机连接,也可以利用普通I/O端口,通过软件编程产生SCLK时钟以读取AD770I的转换数据。 当引脚MODE接一5V时,AD7701串行接口工作于异步方式。在这种工作方式下, AD7701可以直接与通用异步接收发送器(UART)相连接,适用于AD7701与单片机(或微控制器)之间的距离比较远的应

多通道AD采样同步设计

64 | 电子制作 2019年02-03月 变,也可进行试验过程中所需电压、电流等物理量的测量。在数据测量过程中,如果采集通道数量较多,采集速度要求较高时,如何保证多个测量点的测量数据保持同步性是如今数据采集系统设计中需要解决的问题。保持多块采集板卡之间的同步性,可以使用时钟同步线,或者以太网同步时间戳等方式完成。基于单块采集板卡多通道之间的同步设计问题是本文的研究内容。 在具体介绍本文的设计之前需要解释两个问题:①为了保证单块板卡多通道同步问题,采集板卡的硬件设计显然不 能使用单一AD 芯片加多通道切换方式,因为通道切换产生 的时间间隔就已经使得各通道之间不能保持同步;②多个AD 芯片寄存器的同步读写可以使用FPGA 作为很好的解决方案,但是考虑到FPGA 使用门槛较高,并且在完成数据采集系统其他功能,例如:CAN 总线通讯、以太网通讯、触摸屏显示等方面不是那么的方便快捷。所以本文采用飞思卡尔的i.MX6Q 处理器加多路AD7734作为硬件结构,在此基础 上完成多通道的同步采集设计。 作为转换芯片,每一个AD7734芯片有四路采样输入通道可供切换,可以满足每一个测量通道三路不同种类模拟信号的采集。具体AD 转换电路见图1。 AD7734数模转换芯片共有4个模拟输入口AIN0~ AIN3,可以通过操作相应寄存器进行四个通道的切换采样。最高可接受10V 单极或双极电压输入,并具有超量程或欠 量程检测功能。与主控芯片连接的通讯口共6个管脚功能如表1所示。 表1 AD7734 IO管脚定义 管脚功能 SCLK 寄存器操作时钟DOUT 寄存器读取管脚DIN 寄存器写入管脚C _____ S 片选 R ________D Y 数模转换完成标志位管脚 R ____________ E S E T 复位管脚为了能够保证采集模块中8个AD 转换芯片的同步操作, 硬件设计示意图如图2所示(图中只示意性的画了4个AD 芯片)。 图1?AD 转换电路图

多通道动态信号采集系统技术参数

多通道动态信号采集系统技术参数 一、设备名称:多通道动态信号采集系统 二、技术参数 *2. 1、通道数:≥32通道;要求系统具备无线采集功能,能远程控制系统的采集开始、结束以及设置参数等; 2. 2、采样频率(所有传感器同步采集):≥100KS/S; *2.3、采集模块:单个采集模块16通道,±75V模拟量输入,16位A/D,通过前端信号调理模块可同时支持应变,ICP类型传感器; 2.4、最高测量精度:0.1%F.S; *2. 5、信号带宽:≥25KHz; 2.6、主机技术要求:供电:10…55VDC,标准内存:256MB,1G内部存储卡,通信接口:TCP/IP,串口,带10个数字I/O和8个脉冲计数输入 *2.7、系统工作温度范围:-20°c~ +65°c * 2.8、系统振动冲击指标:振动20g,冲击60g 2.9、桥盒模块尺寸:不大于32*77*20mm(W*D*H); 2.10、桥盒工作温度范围:-20°c~ +65°c 2.11、通讯接口:以太网; *2. 12、加速度传感器:可充电锂电池,嵌入式数据记录器最大记录不小于800万条数据事件,IP67防护等级,量程8g,三轴向。 (打*项为必须满足项) 三、采集及分析软件。 3.1 带有可扩展的传感器数据库,内置的TEDS 编辑器,可以读写TEDS 数据。软件拥有图形界面,在线计算无需编程,测试数据可以以多种格式保存,例如BIN, RPCIII, MAT, ASCII 或XLS ,并可以再任何时间分析. 3.2 可以让用户采用.NET API (C++, C#, https://www.360docs.net/doc/0015081291.html,) 使LabVIEWTM等软件。 3.3 web 服务器集成到每个模块中,测试数据可视化,通过浏览器进行浏览,无需安装其他软件. 四、售后服务及其他。 4.1 最好在武汉本地有技术支持中心;

单片机多通道数据采集系统

单片机多通道数据采集系统

目录 1.功能描述 (3) 2 方案设计 (3) 2.1 系统分析 (3) 2.2 器件选择 (4) 2.2.1 微处理器 (4) 2.2.2 显示器 (4) 2.2.3 按键 (4) 2.2.4 闹铃 (4) 3、硬件电路设计 (5) 3.1 最小系统设计 (5) 3.2 显示电路设计 (6) 3.3 按键电路设计 (7) 3.4 声音报警电路设计 (6) 3.5多通道数据采集电路设计 (8) 4、软件设计 (9) 4.1 操作功能设计 (9) 4.2程序编制思想 (9) 4.3 主程序 (10) 5 程序调试 (17) 6 技术小结 (18) 7多通道数据采集系统的使用说明 (19) 8心得体会 (20) 9参考文献 (21) 附录1:电路原理图 (22) 附录2:程序参考清单 (23)

设计报告 1.功能描述 利用单片机控制A/D转换器实现多通道数据采集系统。具有如下功能: 1.基本功能 (1)采集的数据为0-5V电压信号; (2)通过按键选择任意通道的数据显示或轮流显示; (3)可以设定报警上下限。 2.扩展功能 自行扩展功能,如音乐铃声,通讯功能等。 2 方案设计 2.1 系统分析 根据系统功能要求,可将系统组成结构分成五大部分:单片机控制中心、按键接口、多通道数据采集、数码管显示和报警播放音乐,如下图为系统的组成结构图。其中,单片机控制中心是核心。MCU根据按键输入,可切换不同的模式或设置不同的参数,从而实现多通道数据的采集。报警播放音乐可设置最高或最低温度报警值。 图2.1 系统总体结构图

2.2 器件选择 2.2.1 微处理器 市场上微处理器种类很多。这里,选取微处理器从多方面考:成本低、性能高、能够满足功能要求等等。 这里,选取STC89C52芯片。因为其功能与普通51芯片相同,其价格非常低廉、程序空间大、资源较丰富、在线下载非常方便。同时,使用该芯片,编程上亦可采用所熟悉的KEIL软件,使课程设计非常简单。 2.2.2 显示器 常见的显示器件LED数码管和LCD液晶器件。 LED数码管能够显示数字和部分字符,价格便宜,硬件电路、软件编程均非常简单,而且使用动态扫描技术可节省大量硬件成本。 LCD液晶显示器件,显示字迹清晰、能够显示数字、字符,本实验主要是用于显示所采集的电压与温度的显示。 系统显示主要还是数字,根据这两种显示器件的特性,选取LED数码管器件。由于系统要求显示所采集的通道数据,采用四位数码管显示即可。 2.2.3 按键 按键是用来变换显示模式以及设置传送上位机信息等功能的。这里采用普通按键即可,选用原则:以最少的按键,实现尽可能多的功能。所以这里,设置两个按键:模式键、传送键。 2.2.4 闹铃 选用最常见,亦最常用的声音提示方式——蜂鸣器,用于报警音乐定时播放。

相关文档
最新文档