食品化学与分析期末考题(整理后)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品化学
第二章水
1.简述食品中结合水和自由水的性质区别?
食品中结合水和自由水的性质区别主要在于以下几个方面:
⑴食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得很多,随着食品
中非水成分的不同,结合水的量也不同,要想将结合水从食品中除去,需要的能量比自由水高得多,且如果强行将结合水从食品中除去,食品的风味、质构等性质也将发生不可逆的改变;
⑵结合水的冰点比自由水低得多,这也是植物的种子及微生物孢子由于几乎不含自
由水,可在较低温度生存的原因之一;而多汁的果蔬,由于自由水较多,冰点相对较高,且易结冰破坏其组织;
⑶结合水不能作为溶质的溶剂;
⑷自由水能被微生物所利用,结合水则不能,所以自由水较多的食品容易腐败。
自由水和结合水的特点。
答:结合水的特点:-40℃下不以上不能结冰;不能做溶剂;不能被微生物利用。
自由水的特点:-40℃下不以上能结冰;能做溶剂;能被微生物利用;可以增加也可以减少
答:(1)结合水的量与食品中有机大分子的极性基因的数量有比较固定的关系。
(2)结合水的蒸气压比自由水低得多,所以在一定温度下自由水能从食品中分离出来,
且结合水的沸点高于一般水,而冰点却低于一般水。
(3)自由水能为微生物利用,结合水则不能。
2.简述水分活性与食品稳定性的关系。
答:水分活性与食品稳定性有着密切的关系。AW越高,食品越不稳定,反之,AW越低,食品越稳定。这是因为食品中的化学反应和酶促反应是引起食品品质变化的重要原因,降低AW值可以抑制这些反应的进行,从而提高食品的稳定性。食品的质量和安全与微生物密切相关,而食品中微生物的存活及繁殖生长与食品水分活度密切相关。??
⑴大多数化学反应都必须在水溶液中才能进行。⑵很多化学反应是属于离子反应。⑶很多化学反应和生物化学反应都必须有水分子参加才能进行。⑷许多以酶为催化剂的酶促反应,水有时除了具有底物作用外,还能作为输送介质,并且通过水化促使酶和底物活化。
3. 论述水分活度与食品稳定性之间的联系。
水分活度比水分含量能更好的反映食品的稳定性,具体说来,主要表现在以下几点:
⑴食品中αW与微生物生长的关系:αW对微生物生长有着密切的联系,细菌生长需
要的αW较高,而霉菌需要的αW较低,当αW低于0.5后,所有的微生物几乎不能生长。
⑵食品中αW与化学及酶促反应关系:αW与化学及酶促反应之间的关系较为复杂,
主要由于食品中水分通过多种途径参与其反应:①水分不仅参与其反应,而且由于伴随水分的移动促使各反应的进行;②通过与极性基团及离子基团的水合作用影响它们的反应;③通过与生物大分子的水合作用和溶胀作用,使其暴露出新的作用位点;④高含量的水由于稀释作用可减慢反应。
⑶食品中αW与脂质氧化反应的关系:食品水分对脂质氧化既有促进作用,又有抑制
作用。当食品中水分处在单分子层水(αW=0.35左右)时,可抑制氧化作用。当食品中
αW>0.35时,水分对脂质氧化起促进作用。
⑷食品中αW与美拉德褐变的关系:食品中αW与美拉德褐变的关系表现出一种钟形曲线形状,当食品中αW=0.3~0.7时,多数食品会发生美拉德褐变反应,随着αW增大,有利于反应物和产物的移动,美拉德褐变增大至最高点,但αW继续增大,反应物被稀释,美拉德褐变下降。
4.吸湿等温线(MSI):在一定温度条件下用来联系食品的含水量(用每单位干物质的含水量表示)与其水分活度的图。三区域干区低水分区高水分区
5.水分活度——一个食品样品中水蒸气分压P与同一温度下纯水的饱和蒸气压P0之比。Aw=P/P0
6. 疏水水合作用
向水中加入疏水性物质,如烃、脂肪酸等,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,处于这种状态的水与纯水结构相似,甚至比纯水的结构更为有序,使得熵下降,此过程被称为疏水水合作用。
7. 疏水相互作用
如果在水体系中存在多个分离的疏水性基团,那么疏水基团之间相互聚集,从而使它们与水的接触面积减小,此过程被称为疏水相互作用。
8. 水分吸着等温线
在恒温条件下,食品的含水量(用每单位干物质质量中水的质量表示)与αW的关系曲线。
9. 解吸等温线
对于高水分食品,通过测定脱水过程中水分含量与αW的关系而得到的吸着等温线,称为解吸等温线。
10.回吸等温线
对于低水分食品,通过向干燥的样品中逐渐加水来测定加水过程中水分含量与αW 的关系而得到的吸着等温线,称为回吸等温线。
11. 滞化水
是指被组织中的显微结构和亚显微结构及膜所阻留的水,由于这部分水不能自由流动,所以称为滞化水或不移动水。
12. 滞后现象
MSI的制作有两种方法,即采用回吸或解吸的方法绘制的MSI,同一食品按这两种方法制作的MSI图形并不一致,不互相重叠,这种现象称为滞后现象。
13. 单分子层水
在MSI区间Ⅰ的高水分末端(区间Ⅰ和区间Ⅱ的分界线,αW=0.2~0.3)位置的这部分水,通常是在干物质可接近的强极性基团周围形成1个单分子层所需水的近似量,称为食品的“单分子层水(BET)”。
14. 离子水合作用
在水中添加可解离的溶质,会使纯水通过氢键键合形成的四面体排列的正常结构遭到破坏,对于不具有氢键受体和给体的简单无机离子,它们与水的相互作用仅仅是离子-偶极的极性结合。这种作用通常被称为离子水合作用。
15.MSI在食品工业上的意义
MSI即水分吸着等温线,其含义为在恒温条件下,食品的含水量(每单位干物质质量中水的质量表示)与αW的关系曲线。它在食品工业上的意义在于:
⑴在浓缩和干燥过程中样品脱水的难易程度与αW有关;