利用二次函数的性质确定函数最大值和最小值
二次函数的最值与极值总结

二次函数的最值与极值总结二次函数是高中数学中常见的一类函数,具有形如y=ax^2+bx+c的一般式。
在研究二次函数的性质时,最值与极值是非常重要的概念。
本文将对二次函数的最值与极值进行总结和讨论。
一、最值的概念在数学中,最值指的是函数在定义域内取得的最大值或最小值。
对于二次函数来说,最值的存在与二次项的系数a的正负有关。
1. 当a>0时,二次函数的抛物线开口向上,函数的最小值存在。
这个最小值即为函数的最小值。
2. 当a<0时,二次函数的抛物线开口向下,函数的最大值存在。
这个最大值即为函数的最大值。
二、最值的求解方法1. 最值的求解方法一:利用函数的对称性二次函数关于x轴对称,对称轴方程为x = -b/(2a)。
所以,函数的最值点的横坐标一定在对称轴上。
当对称轴上有x值时,带入函数表达式即可求得对应的y值,确定最值点。
2. 最值的求解方法二:利用二次函数的顶点公式二次函数的顶点公式为x = -b/(2a),y = f(x)。
通过求得的顶点坐标,就可以确定最值点的坐标。
根据二次函数的性质,当a>0时,对应的顶点为最小值点;当a<0时,对应的顶点为最大值点。
三、极值的概念在数学中,极值是指函数在一定范围内取得的最大值或最小值。
对于二次函数来说,极值的存在与一阶导数的符号有关。
1. 当一阶导数大于0时,函数递增,没有极小值。
2. 当一阶导数小于0时,函数递减,没有极大值。
3. 当一阶导数等于0时,函数可能存在极值或拐点。
此时,需要通过二阶导数或其他方法来进一步判断。
四、极值的求解方法1. 极值的求解方法一:利用导数法对二次函数进行求导,得到一阶导数f'(x)。
将一阶导数f'(x)等于0解方程,求得x的值。
然后,将求得的x值代入原函数f(x)中,求得对应的y值,确定极值点。
2. 极值的求解方法二:利用二阶导数法对二次函数进行求导,得到一阶导数f'(x)和二阶导数f''(x)。
二次函数的最大值与最小值

二次函数的最大值与最小值在数学的世界中,函数是关系,它都是把输入值映射到另一个值的方法。
其中,二次函数是最重要的一类函数之一,广泛应用于数学、物理、统计学、经济学和其他领域。
本文将主要讨论二次函数的最大值与最小值问题。
首先,让我们来了解一下什么是二次函数。
二次函数是一类函数的简称,也就是满足如下形式的函数:y = ax + bx + c其中a、b、c为常数。
最重要的是,当a不等于0时,它是一个平方函数,如果a等于0,它就变成一个一次函数。
若a>0,函数图像开口向上;若a<0,函数图像开口向下。
接下来,让我们来讨论二次函数的最大值与最小值问题。
无论是最大值还是最小值,它们都是依靠函数的极值点来求得的。
通常,要找到极值点,首先需要求出函数的导数,然后将求出来的导数等于零,极值点就在d/dx=0的位置。
在二次函数y=ax+bx+c中,它的导数为:dy/dx = 2ax + b设dy/dx=0,可解得:2ax+b=0=>x = -b/2a将x的值代入二次函数中,可得:y = f(-b/2a)这里的y即为二次函数的极值点,也就是最大值或最小值,具体取决于二次函数的系数a的正负值,若a>0,极值点即为最小值;若a<0,极值点即为最大值。
有了极值点,我们就可以求得二次函数的最大值与最小值,比如有这样一个二次函数:y = 6x + 8x + 10它的导数为:dy/dx = 12x + 8将其等于零,可求出极值点的位置:=>12x + 8 = 0=>x = -8/12即极值点的位置为x = -2/3。
将x = -2/3代入原函数中,可求得极值:y = 6(-2/3) + 8(-2/3) + 10=>y = 10 - 8/3=>y = 10 - 2.66667=>y = 7.33333故二次函数y = 6x + 8x + 10的极小值y = 7.33333。
如何利用二次函数求解最值问题

数学篇数苑纵横与二次函数有关的最值问题是中考数学中的一个重难点,常与几何图形、三角函数、实际问题等相结合,考查同学们的空间想象能力和逻辑推理能力.不少同学面对这类最值问题时觉得难以下手,但只要我们认真阅读题目,理解问题的实质,构建出二次函数,再运用二次函数的有关性质即可使问题顺利得解.一、求解实际生活中的最值问题在实际生活中,我们总是追求利益最大或者是成本最低,从数学角度看,就是在特定条件下求目标函数的最大值或者最小值.运用二次函数求解实际生活中的最值问题,关键在于如何构建正确的二次函数模型.解题时应把握以下两点:其一,认真审题,提炼出有用信息;其二,根据题干描述以及自身生活经验,通过合理的抽象确定常量与变量间的函数关系,建立函数模型,然后结合模型和实际情况求得最大值或最小值.需要注意的是,实际问题中二次函数的最大值或最小值不一定在图象的顶点处取得,若顶点的横坐标不在自变量的取值范围内,则要借助函数的增减性来求最大值或最小值.例1某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?解:(1)设每件商品的售价上涨x 元(x 为正整数),则每件商品的利润为:(60-50+x )元,总销量为:(200-10x )件,商品利润为:y =(60-50+x )(200-10x ),=(10+x )(200-10x ),=-10x 2+100x +2000.∵原售价为每件60元,每件售价不能高于72元,∴0<x ≤12且x 为正整数;(2)y =-10x 2+100x +2000,=-10(x 2-10x )+2000,=-10(x -5)2+2250.故当x =5时,最大月利润y =2250元.这时售价为60+5=65(元).点评:此题主要考查了二次函数的应用及二次函数的最值问题.根据每天的利润=一件的利润×销售量,建立函数关系式.借助二次函数解答实际问题是解题关键.例2李大爷利用坡前空地种植了一片优质草莓.根据市场调查,在草莓上市销售的30天中,其销售价格m (元/公斤)与第x 天之间满足m =ìíî3x +15(1≤x ≤15),-x +75(15<x ≤30).(x 为正整数),销售量n (公斤)与第x 天之间的函数关系如图1所示:图1如果李大爷的草莓在上市销售期间每天如何利用二次函数求解最值问题山西临沂周立恒23数学篇数苑纵横的维护费用为80元.(1)求日销售量n 与第x 天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y 与第x 天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润y 的最大值及相应的x .解:(1)当1≤x ≤10时,设n =kx +b ,由图可知ìíî12=k +b ,30=10k +b ,解得ìíîk =2,b =10,∴n =2x +10同理得,当10<x ≤30时,n =-1.4x +44,∴销售量n 与第x 天之间的函数关系式:n =ìíî2x +10(x ≤x ≤10),-1.4x +44(10<x ≤30),(2)∵y =mn -80,∴y =ìíîïï(2x +10)(3x +15)-80(x ≤x ≤10),(-1.4x +44)(3x +15)-80(10<x <15),(-1.4x +44)(-x +75)-80(15≤x ≤30),整理得,y =ìíîïï6x 2+60x +70,(1≤x ≤10),-4.2x 2+111x +580,(10<x <15),1.4x 2-149x +3220,(15≤x ≤30),(3)当1≤x ≤10时,∵y =6x 2+60x +70的对称轴x =-b 2a=602×6=-5,∴此时,在对称轴的右侧y 随x 的增大而增大,∴当x =10时,y 取最大值,则y 10=1270当10<x <15时,∵y =-4.2x 2+111x +580的对称轴是直线x =111-4.2×2=1118.4≈13.2<13.5,∴当x =13时,y 取得最大值,此时y 13=1313.2;当15≤x ≤30时,∵y =1.4x 2-149x +3220的对称轴为直线x =1492.8>30,∴此时,在对称轴的左侧y 随x 的增大而减小∴x =15时,y 取最大值,y 的最大值是y 15=1300,综上,草莓销售第13天时,日销售利润y 最大,最大值是1313.2元.点评:本题在确定函数最大值时,由于此函数是分段函数,所以要分三种情况讨论.第二种情况中顶点的横坐标在自变量取值范围内,可以利用顶点坐标公式来确定函数的最大值;而第一种情况和第三种情况中顶点的横坐标都不在自变量取值范围内,因此必须利用函数的增减性来确定函数的最大值.分别求出三种情况中的最大值后,还要通过比较确定日销售利润的最大值.二、求解几何图形中的最值问题解答几何图形中的最值问题一般根据已知条件设置相关参数,构建对应的函数模型,再借助函数的性质进行解答.构建二次函数求解几何图形中的最值问题时,要全面观察几何图形的结构特征,挖掘出相应的内在性质,综合运用所学的知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等,寻求等量关系构造出二次函数,结合二次函数性质计算出最终结果.同时,为保证求解最值问题的正确性,应明确自变量的取值范围.例3如图2,梯形ABCD 中,BC ∥AD ,AB =BC =CD =6,∠D =60°,E 、F 分别为BC 、CD 上两个动点(不与端点重合),且∠AEF =120°,设BE =x ,CF =y .(1)求y 与x 的函数关系式;(2)x 取何值时,y 有最大值,最大值是多少?24数学篇数苑纵横图2解:(1)∵AB =BC =CD =6,BE =x ,CF =y ,∴EC =6-x ,∵BC ∥AD ,∴∠C +∠D =180°,又∠D =60°,∴∠C =120°,∴∠CEF +∠CFE =60°,又∠AEF =120°,∴∠CEF +∠AEB =60°,∴∠CFE =∠AEB ,又梯形ABCD 中,BC ∥AD ,AB =CD ,∴∠B =∠C ,∴△ABE ∽△ECF ,∴AB EC =BE CF,即66-x =x y,∴y =-16x 2+x ;(2)函数y =-16x 2+x =-16(x -3)2+32为开口向下的抛物线,由0<x <6可知,当x =3时,y 有最大值,y 的最大值为32.点评:本题的思路为通过已知条件得出相似三角形,由相似三角形的比例式,进而列出y 与x 的函数关系式,最后根据二次函数求最值的方法求出y 的最大值及此时x 的值.同学们在求二次函数最值时一定要注意自变量x 的范围.例4如图3,在△ABC 中,AB =10,AC =25,∠ACB =45°,D 为AB 边上一动点(不与点B 重合),以CD 为边长作正方形CDEF ,连接BE ,则△BDE 面积的最大值等于.图3图4解:如图4,过点E 作EM ⊥BA 于M ,过点C 作CN ⊥BA 交BA 的延长线于N ,过点A 作AH ⊥BC 于H .在Rt△ACH 中,∵∠AHC =90°,∠ACH =45°,AC =25,∴AH =CH =AC ⋅cos 45°=10,在Rt△ABH 中,∵∠AHB =90°,AB =10,AH =10,∴BH =AB 2-AH 2=102-(10)2=310,∴BC =BH +CH =410,∵S △ACB =12⋅BC ⋅AH =12⋅AB ⋅CN ,∴CN =4,在Rt△ACN 中,AN =AC 2-CN 2=(25)2-42=2,∴BN =BA +AN =12,设BD =x ,则DN =12-x ,∵四边形EFCD 是正方形,∴DE =DC ,∠EDC =∠EMD =∠DNC =90°,∴∠EDM +∠ADC =90°,∠ADC +∠DCN =90°,∴∠EDM =∠DCN ,∴△EMD ≌△DNC (AAS),∴EM =DN =12-x ,∴S △DBE =12⋅BD ⋅EM =12⋅x ⋅(12-x )=12x 2+6x =-12(x -6)2+18,∵-12<0,∴当x =6时,△BDE 的面积最大,最大值为18.故答案为18.点评:本题是一道几何函数题,考查了正方形的性质,解直角三角形等知识.求解时应从几何图形入手,充分利用几何图形的性质构造出函数关系,如本题以三角形的面积公式构建二次函数,再利用二次函数的性质解题.25。
二次函数的最值与极值问题

二次函数的最值与极值问题二次函数是数学中常见的一种函数类型,在很多实际问题中都可以用二次函数来描述。
在解决二次函数的最值与极值问题时,可以运用一些方法和技巧来求解。
本文将介绍一些常见的解题思路和方法。
一、二次函数的最值问题二次函数的最值指的是函数在定义域内的最大值或最小值。
当求解二次函数的最值时,可以利用二次函数的顶点和开口方向进行判断。
1. 定理1:对于开口向上的二次函数 f(x) = ax^2 + bx + c,其中 a > 0,顶点的 y 值是函数的最小值。
使用该定理时,可以先求得二次函数的顶点,再将顶点的坐标代入原函数,得到最小值。
2. 定理2:对于开口向下的二次函数 f(x) = ax^2 + bx + c,其中 a < 0,顶点的 y 值是函数的最大值。
同样地,使用该定理时,先求得二次函数的顶点,再将顶点的坐标代入原函数,得到最大值。
需要注意的是,二次函数的最大值或最小值可能在定义域内的某个点上出现,因此除了顶点外还需要考虑其他可能的极值点。
二、二次函数的极值问题二次函数的极值指的是函数在定义域内的局部最大值或最小值。
当求解二次函数的极值时,可以利用二次函数的导数和零点来寻找。
1. 求解极值的一般步骤如下:a) 求二次函数的导函数;b) 解二次函数的导函数为零的方程,得到零点;c) 将零点带入原函数,求得对应的函数值,得到极值。
2. 一个特殊情况是在二次函数的定义域 [a, b] 上求极值时,可以先求出导数,然后导数大于零的部分即是函数的递增区间,导数小于零的部分即是函数的递减区间。
接着,再对边界点和零点进行比较,得到极值。
三、综合练习与例题为了更好地理解二次函数的最值与极值问题,我们来进行一些练习和解题。
【练习题一】已知二次函数 f(x) = -2x^2 + 4x + 1,1. 求二次函数的顶点及对应的最值;2. 求二次函数的极值。
【解答】1. 对于二次函数 f(x) = -2x^2 + 4x + 1,a = -2 < 0,可以判断开口向下,顶点的 y 值是最大值。
青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》说课稿

青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》说课稿一. 教材分析青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》这一节,是在学生已经掌握了二次函数的图像和性质的基础上进行教学的。
教材通过实例引出二次函数的最值问题,让学生理解二次函数在实际生活中的应用,提高学生学习数学的兴趣。
教材从生活实际出发,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不能将所学知识与实际问题相结合,对于二次函数在实际生活中的应用还不够明确。
因此,在教学过程中,我将以实例引导学生,让学生理解二次函数在实际生活中的应用。
三. 说教学目标1.知识与技能目标:使学生理解二次函数的最值问题,掌握利用二次函数的性质确定函数最大值和最小值的方法。
2.过程与方法目标:通过实例分析,培养学生解决实际问题的能力,提高学生的数学应用意识。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:二次函数的最值问题,利用二次函数的性质确定函数最大值和最小值的方法。
2.教学难点:如何将实际问题转化为二次函数问题,利用二次函数的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,培养学生的动手能力和合作精神。
2.教学手段:利用多媒体课件辅助教学,直观展示二次函数的图像和性质,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对二次函数最值的思考,激发学生的学习兴趣。
2.讲解新课:讲解二次函数的最值问题,引导学生掌握利用二次函数的性质确定函数最大值和最小值的方法。
3.案例分析:分析几个实例,让学生理解二次函数在实际生活中的应用,培养学生解决实际问题的能力。
二次函数的最值与最值问题的应用

二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。
其中最值与最值问题是二次函数的重要内容之一。
本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。
一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的图像为抛物线,开口方向取决于a的正负性。
在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。
1. 首先,二次函数的开口方向由系数a的正负性决定。
当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。
2. 其次,二次函数的顶点即为函数的最值点。
顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。
3. 再次,二次函数的对称轴与顶点的横坐标相同。
对称轴的方程为x = h。
二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。
在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。
1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。
通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。
例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。
因此,原二次函数的最小值为-1。
2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。
例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。
二次函数求最大值和最小值的公式

二次函数求最大值和最小值的公式一次函数一般可以表示为y=ax+b,在图像上可以表示为一条直线,而二次函数则是数学中的一个更抽象的概念,它更常见的模式是y=ax^2+bx+c,它表示的是一条弧线,而这个弧线的最大值和最小值,就称作“二次函数求最大值和最小值的公式”,今天我们就来讲讲这个求最大值和最小值的公式。
首先,我们来看看如何求解二次函数的最大值和最小值的公式。
对于给定的二次函数 y=ax^2+bx+c,求其最大值和最小值的公式是f(x)=ax^2+bx+c,其中 a,b,c常数。
根据高等数学规律,二次函数的最大值或最小值的取值是在其函数的一阶导数为零的位置上,也就是求解一元二次方程 ax^2+bx+c=0,这就是求解二次函数最大值和最小值的公式。
其次,我们来讲讲求解二次函数最大值和最小值的具体步骤,它可以总结为三个步骤:(1)计算函数的一阶导数:由二次函数得到它的一阶导数f(x)=2ax+b,并将它代入原函数,求出原函数的最大值或最小值。
(2)求出一元二次方程的解:根据一元二次方程的求解公式,将 f(x)=2ax+b入一元二次方程 ax^2+bx+c=0,计算出一元二次方程的解。
(3)用解代入原函数:将解代入原函数,即 f(x)=ax^2+bx+c,计算出的就是原函数的最大值或最小值。
总结一下,求解二次函数求最大值和最小值的公式,需要计算函数的一阶导数,将求得的一元二次方程解代入原函数,即可得出原函数的最大值或最小值。
在学习求解二次函数求最大值和最小值的公式时,需要注意的是,在计算最大值和最小值的时候,要根据题目要求,判断函数是求最大值还是求最小值,这样才能得出准确的答案。
总之,二次函数求最大值和最小值的公式是一个比较重要的数学概念,理解和掌握了它,就可以帮助我们更加准确地解决数学中的问题了。
二次函数的最值与最值点

二次函数的最值与最值点二次函数是指具有形式为f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0.在数学中,我们常常关注二次函数的最值与最值点,它们对于函数图像的形状与性质具有重要意义。
一、二次函数的最值最值是指函数在定义域内所能取得的最大值或最小值。
对于二次函数而言,其最值与函数的开口方向有关。
1. 当二次函数的抛物线开口向上时,函数的最值为最小值。
在这种情况下,最小值点是抛物线的顶点,也是二次函数的最值点。
2. 当二次函数的抛物线开口向下时,函数的最值为最大值。
同样地,最大值点也是抛物线的顶点,它也是二次函数的最值点。
二、如何求二次函数的最值要求二次函数的最值与最值点,需要进行一些计算与分析。
1. 首先,可以通过计算二次函数的导数,找出导数为零的点。
导数为零的点对应的x坐标就是二次函数的最值点的横坐标,也就是x值。
2. 其次,通过将x值代入二次函数中,可以求得相应的y值,即最值点的纵坐标。
这个y值就是二次函数的最值,它可以是最大值或最小值。
三、举例说明假设有二次函数f(x) = -3x² + 6x + 2,我们来求解它的最值与最值点。
1. 首先,计算导数f'(x) = -6x + 6,并令其为零,解得x = 1。
这说明x = 1是二次函数的最值点的横坐标。
2. 将x = 1代入原函数f(x)中,得到f(1) = -3(1)² + 6(1) + 2 = 5。
因此,最值点的纵坐标为y = 5,即最值为最小值。
综上所述,对于给定的二次函数,我们可以通过计算导数来求解最值点的横坐标,并通过代入求得相应的纵坐标,从而得到最值与最值点的具体数值。
最值与最值点对于理解二次函数的图像特征和函数性质具有重要作用,它们帮助我们分析和预测函数在不同区间内的变化趋势,为实际问题的求解提供了依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数中的最值问题练习课考点一:
1、二次函数的最小值为______________
2、二次函数的最大值是______________
3、已知K x w 3,写出下列函数y的最小值和最大值:
考点二:
如图,抛物线- -与x轴交于点A、B,与y轴交于点C.
(1 )点A B、C的坐标分别为_____________________________________ ;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标.
考点三:
1如图,直线与抛物线(a丰0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC丄x轴于点D,交抛物线于点 C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段
若不存在,请说明理由;
2、如图,在平面直角坐标系中,抛物线交y轴于点A,交x轴于点
B(-5 , 0)和点C(1 , 0),过点A作AD// x轴交抛物线于点 D.
(1)求此抛物线的表达式;
(2)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ ABP的面积
最大,求出此时点P的坐标和厶ABP的最大面积.。