人教A版数学必修一第一学期高一数学期末考试试题卷

合集下载

高中数学人教A版必修第一册全册测试卷(含答案)

高中数学人教A版必修第一册全册测试卷(含答案)

……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。

人教A版数学必修一试题.docx

人教A版数学必修一试题.docx

高中数学学习材料马鸣风萧萧*整理制作2007学年第一学期期末四校联考试卷高中一年级 数学试卷本试卷分第I 卷和第II 卷两部分,共150分。

考试时间120分钟。

第I 卷(选择题 共50分)注意事项:1、 答卷前,考生务必将自己的姓名、考号等信息填写在答题纸上。

2、 答案必须填写在答题纸的相应位置上,答案写在试题卷上无效。

一、选择题 (每题5分,共50分)1、下列各组对象中不能成集合的是( )(A ),高一(1)班的全体男生 (B ) ,该校学生家长全体 (C ),李明的所有家人, (D ), 王明的好朋友2、如图,I 是全集,集合A 、B 是集合I 的两个子集,则阴影部分所表示的集合是( )IBA(A )()I A C B (B )()I C A B (C )()()I I C A C B (D ))(B A C I3、82log 9log 3的值为( )(A )23 (B )32(C )2 (D )3 4、 设集合{}02M x x =≤≤,{}02N y y =≤≤,给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( )21x yO2xyO221xyO22Oyx12(A ) (B ) (C ) (D ) 5 方程330x x --=的实数解落在的区间是( )(A )[1,0]- (B )[0,1] (C )[1,2] (D )[2,3]6、 当10<<a 时,在同一坐标系中,函数xay -=与x ya log =的图象是( )(A) (B) (C) (D)7、 已知函数()y f x =在R 上为奇函数,且当0x ≥时,2()2f x x x =-,则当0x <时,()f x 的解析式是( )(A )()(2)f x x x =-+ (B )()(2)f x x x =- (C )()(2)f x x x =-- (D )()(2)f x x x =+8、 方程22230xx +-=的实数根的个数是( )(A )0 (B )1 (C )2 (D )无数9、 设1>a ,则a 2.0log 、a 2.0、2.0a 的大小关系是( )(A )2.02.0log 2.0a a a << (B )2.02.02.0log a a a << (C )aa a 2.0log 2.02.0<< (D )a a a 2.02.0log 2.0<<10.某地的中国移动“神州行”卡与中国联通130网的收费标准如下表:网络 月租费 本地话费 长途话费甲:联通130网12元每分钟0.36元 每6秒钟0.06元 乙:移动“神州行”卡 无每分钟0.6元每6秒钟0.07元(注:本地话费以分钟为单位计费,长途话费以6秒钟为单位计费)若某人每月拨打本地电话时间是长途电话时间的5倍,且每月通话时间(分钟)的范围在区间(60,70)内,则选择较为省钱的网络为 ( )A.甲B.乙C.甲乙均一样D.分情况确定第Ⅱ部分 非选择题 (共100分)二、填空题:本大题共4小题,每小题5分,共20分.(11) 已知21(0)()2(0)x x f x x x ⎧+≤=⎨->⎩,若()26f a =,则a = ;(12) 若集合{}2,12,4aa A --=,{}9,1,5a a B --=,且{}9=B A ,则a 的值是________;(13) 函数211327x y -=-的定义域是 ; 14.函数f (x ) =|2|log 3a x +的图象的对称轴方程为x =2,则常数a = .三、解答题:本大题共6小题,共 80 分. (15) (本小题满分12分)已知:集合2{|32}A x y x x ==--,集合2{|23[03]}B y y x x x ==-+∈,,, 求AB .(16) (本小题满分12分)已知函数2()log 1x f x x=- . (Ⅰ)求函数的定义域;(Ⅱ)根据函数单调性的定义,证明函数)(x f 是增函数.(17) (本小题满分12分)已知函数xx f 2)(=. (Ⅰ)判断函数)(x f 的奇偶性;(Ⅱ)把)(x f 的图像经过怎样的变换,能得到函数22)(+=x x g 的图像;(Ⅲ)在直角坐标系下作出函数)(x g 的图像.18.(本小题12分)经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散。

人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)

人教A版高一数学必修第一册全册复习训练题卷含答案解析(48)

人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a =1.70.3,b =0.31.7,c =log 0.31.7,则 a ,b ,c 的大小关系为 ( ) A . a <b <c B . c <b <a C . c <a <b D . b <a <c2. 已知 m ∈R ,“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3. 已知 sin (α+β)=14,sin (α−β)=13,则 tanα:tanβ= ( )A . −17B . 17C . −7D . 74. 根据统计,一名工人组装第 x 件某产品所用的时间(单位:分钟)为 f (x )=√x x <A√Ax ≥A (A ,c为常数),已知工人组装第 4 件产品用时 30 min ,组装第 A 件产品用时 15 min ,那么 c 和 A 的值分别是 ( ) A . 75,25 B . 75,16 C . 60,25 D . 60,165. 已知函数 f (x )={ln (x +1)+m,x ≥0ax −b +1,x <0(m <−1),对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t ,若关于 x 的方程 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,则 a 的取值范围是 ( ) A . (−4,−2) B . (−1,0)C . (−2,−1)D . (−4,−1)∪(−1,0)6. 已知 a >0 且 a ≠1,下列说法中正确的是 ( ) ①若 M =N ,则 log a M =log a N ; ②若 log a M =log a N ,则 M =N ; ③若 log a M 2=log a N 2,则 M =N ; ④若 M =N ,则 log a M 2=log a N 2. A .①③B .②④C .②D .①②③④7.定义在(−1,1]上的函数f(x)满足f(x)+1=1f(x+1),当x∈[0,1]时,f(x)=x,若函数g(x)=∣∣f(x)−12∣∣−mx−m+1在(−1,1]内恰有3个零点,则实数m的取值范围是( )A.(32,+∞)B.(32,258)C.(32,2516)D.(23,34)8.实数α,β为方程x2−2mx+m+6=0的两根,则(α−1)2+(β−1)2的最小值为( )A.8B.14C.−14D.−2549.若a>b>0,c<d<0,则一定有( )A.ac −bd>0B.ac−bd<0C.ad>bcD.ad<bc10.一个半径为R的扇形,它的周长是4R,则这个扇形所含弓形的面积为( )A.12R2B.12R2Ssin1cos1C.12(1−sin1cos1)R2D.(1−sin1cos1)R2二、填空题(共10题)11.已知△ABC中,sin(A+B)=45,cosB=−23,则sinB=,cosA=.12.函数y=lg(x2+2x−a)的定义域为R,则实数a的取值范围是.13.已知函数y=f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内零点的个数的最小值是个.14.一个驾驶员喝了少量酒后,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少.为了保障交通安全,规定驾驶员血液中的酒精含量不得超过0.09mg/mL,那么这个驾驶员至少要经过小时才能开车.(精确到1小时,参考数据lg2≈0.30,lg3≈0.48)15.将函数y=√4+6x−x2−2(x∈[0,6])的图象绕坐标原点逆时针方向旋转角θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则tanα的最大值为.16.设集合A为含有三个元素的集合,集合B={z∣z=x+y,x,y∈A,x≠y},若B={log 26,log 210,log 215},则集合 A = .17. 已知 p:∣x −4∣>6,q:x 2−2x +1−a 2>0(a >0),若 p 是 q 的充分不必要条件,则实数 a的取值范围为 .18. 已知 α 为第二象限角,sinα+cosα=12,则 cos2α= .19. 定义在 R 上的函数 f (x ) 满足 f (x +2)=f (x )−2,当 x ∈(0,2] 时,f (x )={x 2−x −6,x ∈(0,1]−2x−1−5,x ∈(1,2],若 x ∈(−6,−4] 时,关于 x 的方程 af (x )−a 2+2=0(a >0) 有解,则实数 a 的取值范围是 .20. 已知函数 f (x )={x +2x −3,x ≥1lg (x 2+1),x <1,则 f(f (−3))= ,f (x ) 的最小值是 .三、解答题(共10题)21. 已知一扇形的周长为 40 cm ,当它的半径和圆心角取何值时,能使扇形的面积最大,最大面积是多少?22. 已知实数 a ,b 是常数,函数 f (x )=(√1+x +√1−x +a)(√1−x 2+b).(1) 求函数 f (x ) 的定义域,判断函数的奇偶性,并说明理由;(2) 若 a =−3,b =1,设 t =√1+x +√1−x ,记 t 的取值组成的集合为 D ,则函数 f (x )的值域与函数 g (t )=12(t 3−3t 2)(t ∈D ) 的值域相同.试解决下列问题:(i )求集合 D ;(ii )研究函数 g (t )=12(t 3−3t 2) 在定义域 D 上是否具有单调性?若有,请用函数单调性定义加以证明:若没有,请说明理由.并利用你的研究结果进一步求出函数 f (x ) 的最小值.23. 对于定义域为 R 的函数 g (x ),若存在正常数 T ,使得 cosg (x ) 是以 T 为周期的函数,则称g (x ) 为余弦周期函数,且称 T 为其余弦周期.已知 f (x ) 是以 T 为余弦周期的余弦周期函数,其值域为 R .设 f (x ) 单调递增,f (0)=0,f (T )=4π. (1) 验证 g (x )=x +sin x3 是以 6π 为周期的余弦周期函数;(2) 设 a <b ,证明对任意 c ∈[f (a ),f (b )],存在 x 0∈[a,b ],使得 f (x 0)=c ;(3) 证明:“u 0 为方程 cosf (x )=1 在 [0,T ] 上的解,”的充要条件是“u 0+T 为方程 cosf (x )=1 在区间 [T,2T ] 上的解”,并证明对任意 x ∈[0,T ],都有 f (x +T )=f (x )+f (T ).24. 已知函数 f (x )=(sinx +cosx )2+2cos 2x −1.(1) 求 f (x ) 的最小正周期;(2) 求 f (x ) 在 [0,π2] 上的单调区间.25. 已知函数 f (x )=a +b x (b >0,b ≠1) 的图象过点 (1,4) 和点 (2,16).(1) 求 f (x ) 的表达式; (2) 解不等式 f (x )>(12)3−x2;(3) 当 x ∈(−3,4] 时,求函数 g (x )=log 2f (x )+x 2−6 的值域.26. 已知函数 f (x ) 的定义域为 D ,若对任意的 x 1∈D ,都存在 x 2∈D ,满足 f (x 1)=1f (x 2),则称函数 f (x ) 为“L 函数”.(1) 判断函数 f (x )=sinx +32,x ∈R 是否为“L 函数”,并说明理由;(2) 已知“L 函数”f (x ) 是定义在 [a,b ] 上的严格增函数,且 f (a )>0,f (b )>0,求证:f (a )⋅f (b )=1.27. 记函数 f (x ) 的定义域为 D ,如果存在实数 a ,b 使得 f (a −x )+f (a +x )=b 对任意满足a −x ∈D 且 a +x ∈D 的 x 恒成立,则称 f (x ) 为 Ψ 函数. (1) 设函数 f (x )=1x −1,试判断 f (x ) 是否为 Ψ 函数,并说明理由; (2) 设函数 g (x )=12x +t ,其中常数 t ≠0,证明 g (x ) 是 Ψ 函数;(3) 若 ℎ(x ) 是定义在 R 上的 Ψ 函数,且函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称,试判断 ℎ(x ) 是否为周期函数?并证明你的结论.28. 已知函数 f (x ) 和 g (x ) 的图象关于原点对称,且 f (x )=x 2+2x .(1) 求函数 g (x ) 的解析式;(2) 若 ℎ(x )=g (x )−λf (x )+1 在区间 [−1,1] 上是增函数,求实数 λ 的取值范围.29. 解答题.(1) 已知 cosα=17,cos (α+β)=−1114,α,β 都是锐角,求 cosβ 的值;(2) 已知 π2<β<α<34π,cos (α−β)=1213,sin (α+β)=−35,sin2α.30.用五点法作出下列函数在[−2π,0]上的图象.(1) y=1−sinx;(2) y=sin(π+x)−1.答案一、选择题(共10题) 1. 【答案】B【知识点】指数函数及其性质、对数函数及其性质2. 【答案】B【解析】若函数 y =f (x )=2x +m −1 有零点,则 f (0)=1+m −1=m <1, 当 m ≤0 时,函数 y =log m x 在 (0,+∞) 上为减函数不成立,即充分性不成立,若 y =log m x 在 (0,+∞) 上为减函数,则 0<m <1,此时函数 y =2x +m −1 有零点成立,即必要性成立,故“函数 y =2x +m −1 有零点”是“函数 y =log m x 在 (0,+∞) 上为减函数”的必要不充分条件. 【知识点】指数函数及其性质、充分条件与必要条件、对数函数及其性质3. 【答案】C【解析】 sin (α+β)=sinαcosβ+cosαsinβ=14,sin (α−β)=sinαcosβ−cosαsinβ=13, 所以 sinαcosβ=724,cosαsinβ=−124,所以 tanα:tanβ=sinαcosβcosαsinβ=−7. 【知识点】两角和与差的正切4. 【答案】D【知识点】函数的模型及其实际应用5. 【答案】A【解析】由题意可知 f (x ) 在 [0,+∞) 上单调递增,值域为 [m,+∞),因为对于任意 s ∈R ,且 s ≠0,均存在唯一实数 t ,使得 f (s )=f (t ),且 s ≠t , 所以 f (x ) 在 (−∞,0) 上是减函数,值域为 (m,+∞), 所以 a <0,且 −b +1=m ,即 b =1−m . 因为 ∣f (x )∣=f (m2) 有 4 个不相等的实数根,所以 0<f (m2)<−m ,又 m <−1,所以 0<am 2<−m ,即 0<(a2+1)m <−m ,所以 −4<a <−2,所以则 a 的取值范围是 (−4,−2).【知识点】对数函数及其性质、函数的零点分布6. 【答案】C【解析】对于①,当 M =N ≤0 时,log a M ,log a N 都没有意义,故不成立; 对于②,log a M =log a N ,则必有 M >0,N >0,M =N ,故成立;对于③,当 M ,N 互为相反数且不为 0 时,也有 log a M 2=log a N 2,但此时 M ≠N ,故不成立; 对于④,当 M =N =0 时,log a M 2,log a N 2 都没有意义,故不成立. 综上,只有②正确. 【知识点】对数的概念与运算7. 【答案】C【解析】当 x ∈(−1,0) 时,x +1∈(0,1),f (x )=1f (x+1)−1=1x+1−1,若函数 g (x )=∣∣f (x )−12∣∣−mx −m +1 在 (−1,1] 内恰有 3 个零点,即方程 ∣∣f (x )−12∣∣−mx −m +1=0 在 (−1,1] 内恰有 3 个根,也就是函数 y =∣∣f (x )−12∣∣ 与 y =mx +m −1 的图象有三个不同交点,作出函数图象如图:由图可知,过点 (−1,−1) 与点 (−13,0) 的直线的斜率为 32;设过点 (−1,1),且与曲线 y =1x+1−1−12=−3x−12(x+1) 相切的切点为 (x 0,y 0), 则 yʹ∣x=x 0=−1(x 0+1)2=y 0−1x0−(−1), 又因为 y 0=−3x 0−12(x 0+1),解得 {x 0=−15,y 0=−14,则切点为 (−15,−14).所以切线的斜率为 k =1+14−1−(−15)=−2516,由对称性可知,过点 (−1,−1) 与曲线 ∣∣f (x )−12∣∣ 在 (−1,0) 上相切的切线的斜率为 2516.所以使函数 y =∣∣f (x )−12∣∣与 y =mx +m −1 的图象有三个不同交点的 m 的取值范围为(32,2516).【知识点】函数的零点分布、利用导数求函数的切线方程8. 【答案】A【解析】因为 Δ=(2m )2−4(m +6)≥0, 所以 m 2−m −6≥0, 所以 m ≥3 或 m ≤−2.而(α−1)2+(β−1)2=α2+β2−2(α+β)+2=(α+β)2−2αβ−2(α+β)+2=(2m )2−2(m +6)−2(2m )+2=4m 2−6m −10=4(m −34)2−494,因为 m ≥3,或 m ≤−2,所以当 m =3 时,(α−1)2+(β−1)2 的最小值为 8,故选A . 【知识点】函数的最大(小)值9. 【答案】D【解析】因为 c <d <0,所以 0<−d <−c , 又 0<b <a ,所以 −bd <−ac ,即 bd >ac , 又因为 cd >0,所以 bdcd >accd ,即 bc >ad . 【知识点】不等式的性质10. 【答案】D【解析】 l =4R −2R =2R ,α=lR =2R R=2,可得:S 扇形=12lR =12×2R ×R =R 2,可得:S 三角形=12×2Rsin1×Rcos1=sin1⋅cos1⋅R 2,可得:S弓形=S扇形−S三角形=R2−sin1⋅cos1⋅R2 =(1−sin1cos1)R2.【知识点】弧度制二、填空题(共10题)11. 【答案】√53;6+4√515【知识点】两角和与差的余弦12. 【答案】a<−1【知识点】函数的定义域的概念与求法、对数函数及其性质13. 【答案】7【知识点】函数的零点分布、函数的周期性14. 【答案】5【解析】设经过n小时后才能开车,由题意得0.3(1−0.25)n≤0.09,所以(34)n≤0.3,所以nlg34≤lg310<0,所以n≥lg3−1lg3−2lg2=0.48−10.48−0.6=133,解得n≥133,故至少经过5小时才能开车.故答案为:5.【知识点】函数模型的综合应用15. 【答案】23【解析】将函数变形为方程,可得(x−3)2+(y+2)2=13,x∈[0,6],y≥0,其图象如图所示.过点O作该图象所在圆M的切线OA,将该函数的图象绕原点逆时针旋转时,其最大的旋转角为∠AOy,此时曲线C都是一个函数的图象,因为k OA=−1k OM =32,所以tan∠AOy=23.【知识点】函数的相关概念16. 【答案】 {1,log 23,log 25}【解析】设 A ={a,b,c }(a <b <c ),则 {a +b =log 26,b +c =log 215,c +a =log 210,所以 a +b +c =log 230,所以 a =1,b =log 23,c =log 25, 所以 A ={1,log 23,log 25}. 【知识点】元素和集合的关系17. 【答案】 0<a ≤3【知识点】充分条件与必要条件18. 【答案】 −√74【解析】因为 sinα+cosα=12,所以 1+2sinαcosα=14,所以 2sinαcosα=−34,则 (cosα−sinα)2=1−2sinαcosα=74. 又因为 α 为第二象限角,所以 cosα<0,sinα>0, 则 cosα−sinα=−√72,所以cos2α=cos 2α−sin 2α=(cosα+sinα)(cosα+sinα)=12×(−√72)=−√74. 【知识点】二倍角公式19. 【答案】 1≤a ≤√2【解析】因为函数 f (x ) 满足 f (x +2)=f (x )−2,所以若 x ∈(−6,−4] 时,则 x +2∈(−4,−2],x +4∈(−2,0], 若 x +6∈(0,2],即若 x ∈(−6,−5] 时, 则 x +2∈(−4,−3],x +4∈(−2,−1], 若 x +6∈(0,1],则f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6+(x +6)2−(x +6)−6=x 2+11x +30,若 x ∈(−5,−4] 时,则 x +2∈(−3,−2],x +4∈(−1,0], 若 x +6∈(1,2],则 f (x )=2+f (x +2)=4+f (x +4)=6+f (x +6)=6−2x+6−1−5=1−2x+5,由 af (x )−a 2+2=0(a >0) 得 af (x )=a 2−2(a >0), 即 f (x )=a −2a (a >0).作出函数 f (x ) 在 x ∈(−6,−4] 的图象如图. 在函数的值域为 −1≤f (x )≤0, 由 −1≤a −2a≤0,得 {a −2a ≥−1,a −2a ≤0,即 {a 2+a −2≥0,a 2−2≤0, 即 {a ≥1 或 a ≤−2,−√2≤a ≤√2,因为 a >0,所以 1≤a ≤√2.【知识点】函数的零点分布20. 【答案】 0 ; 2√2−3【解析】因为 f (−3)=lg [(−3)2+1]=lg10=1,所以 f(f (−3))=f (1)=1+2−3=0.当x ≥1 时,x +2x −3≥2√x ⋅2x −3=2√2−3,当且仅当 x =2x ,即 x =√2 时等号成立,此时 f (x )min =2√2−3<0;当 x <1 时,lg (x 2+1)≥lg (02+1)=0,此时 f (x )min =0.所以f(x)的最小值为2√2−3.【知识点】函数的最大(小)值、分段函数三、解答题(共10题)21. 【答案】设扇形的圆心角为θ(0<θ<2π),半径为r,弧长为l,面积为S,则l+2r=40,所以l=40−2r.S=12lr=12(40−2r)r=20r−r2=−(r−10)2+100.所以当r=10cm时,扇形的面积最大,最大值为100cm2,此时θ=lr =40−2×1010=2.【知识点】弧度制22. 【答案】(1) 因为实数a,b是常数,函数f(x)=(√1+x+√1−x+a)(√1−x2+b),所以由{1+x≥0,1−x≥0,1−x2≥0.解得−1≤x≤1.所以函数的定义域是[−1,1].对于任意x∈[−1,1],有−x∈[−1,1],且f(−x)=(√1+(−x)+√1−(−x)+a)(√1−(−x)2+b)=(√1−x+√1+x+a)(√1−x2+b)=f(x),即f(−x)=f(x)对x∈[−1,1]都成立.(又f(x)不恒为零)所以,函数f(x)是偶函数.(该函数是偶函数不是奇函数也可以)(2) 因为a=−3,b=1,所以f(x)=(√1+x+√1−x−3)(√1−x2+1).设t=√1+x+√1−x(−1≤x≤1),则t2=2+2√1−x2.所以0≤√1−x2≤1,2≤t2≤4(t≥0),即√2≤t≤2.所以D=[√2,2].于是,g(t)=12(t3−3t2)的定义域为D=[√2,2].对于任意的t1,t2∈D,且t1<t2,有g(t1)−g(t2)=12[t13−3t12−(t23−3t22)]=12[(t1−t2)(t12+t1t2+t22)−3(t1−t2)(t1+t2)]=12(t1−t2)[(t12−2t1)+(t22−2t2)+(12t1t2−t1)+(12t1t2−t2)]=12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)].又t1>0,t2>0,t1−t2<0,且t1−2≤0,t2−2≤0(这里二者的等号不能同时成立),所以12(t1−t2)[t1(t1−2)+t2(t2−2)+12t1(t2−2)+12t2(t1−2)]>0,即g(t1)−g(t2)>0,g(t1)>g(t2).所以函数g(t)在D上是减函数.所以(g(t))min =g(2)=12×(23−3×22)=−2.又因为函数f(x)的值域与函数g(t)=12(t3−3t2)的值域相同,所以函数f(x)的最小值为−2.【知识点】函数的值域的概念与求法、函数的奇偶性23. 【答案】(1) g(x)=x+sin x3,所以cosg(x+6π)=cos(x+6π+sin x+6π3)=cos(x+sin x3)=cosg(x),所以g(x)是以6π为周期的余弦周期函数.(2) 因为f(x)的值域为R;所以存在x0,使f(x0)=c;又c∈[f(a),f(b)],所以f(a)≤f(x0)≤f(b),而f(x)为增函数;所以a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3) 若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;所以cosf(u0)=1,且0≤u0≤T;所以u0为方程cosf(x)=1在[0,T]上的解;所以“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,所以显然成立;②当x=T时,cosf(2T)=cosf(T)=1;所以f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,所以k1>2;(1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;所以f(T)<f(x0+T)<f(2T);所以4π<2k2π<6π;所以2<k2<3,无解;(2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;(3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),⋯,f(x n),(x1<x2<⋯<x n);则f(x1+T),f(x2+T),⋯,f(x n+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,⋯,f(x n)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;所以f(x i+T)=f(x i)+4π=f(x i)+f(T);所以综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【知识点】Asin(ωx+ψ)形式函数的性质、二倍角公式24. 【答案】(1) 由已知得,f(x)=sin2x+cos2x+1=√2sin(2x+π4)+1.函数的最小正周期T=2π2=π.(2) 由2kπ−π2≤2x+π4≤2kπ+π2(k∈Z)得,kπ−3π8≤x≤kπ+π8(k∈Z),又x∈[0,π2],所以x∈[0,π8],所以f(x)的单调递增区间为[0,π8],由2kπ+π2−≤2x+π4≤2kπ+3π2(k∈Z)得,kπ+π8≤x≤kπ+5π8(k∈Z),又x∈[0,π2],所以x∈[π8,π2 ],所以f(x)的单调递减区间为[π8,π2 ].【知识点】Asin(ωx+ψ)形式函数的性质25. 【答案】(1) 由题意知 {4=a +b,16=a +b 2,解得 {a =0,b =4 或 {a =7,b =−3(舍去), 所以 f (x )=4x . (2) f (x )>(12)3−x2,所以 4x>(12)3−x2,所以 22x >2x 2−3, 所以 2x >x 2−3, 解得 −1<x <3,所以不等式的解集为 (−1,3). (3) 因为g (x )=log 2f (x )+x 2−6=log 24x +x 2−6=2x +x 2−6=(x +1)2−7,因为 x ∈(−3,4],所以当 x =−1 时,g (x )min =−7, 当 x =4 时,g (x )max =18,所以函数 g (x )=log 2f (x )+x 2−6 的值域为 [−7,18].【知识点】函数的解析式的概念与求法、指数函数及其性质、函数的值域的概念与求法26. 【答案】(1) 不是; (2) 反证法,略.【知识点】Asin(ωx+ψ)形式函数的性质27. 【答案】(1) f (x ) 的定义域为 {x∣ x ≠0}.设 f (x )=1x −1 是为 Ψ 函数,则存在实数 a ,b ,使得 f (a −x )+f (a +x )=b 对任意满足 a −x ∈D 且 a +x ∈D 的 x 恒成立, 即 1a−x +1a+x −2=b ,所以 (b +2)(a 2−x 2)=2a 恒成立,所以 a =0,b =−2. 所以存在 a =0,b =−2,使得 f (a −x )+f (a +x )=b 对任意 x ≠±a 恒成立. 所以 f (x )=1x −1 是 Ψ 函数.(2) 若 g (a +x )+g (a −x )=12a−x +t +12a+x +t =b 恒成立, 则 2a+x +2a−x +2t =b (2a+x +t )(2a−x +t ) 恒成立, 即 (1−bt )(2a+x +2a−x )=b (22a +t 2)−2t 恒成立,所以 1−bt =0,b (22a +t 2)−2t =0,又 t ≠0,所以 b =1t ,a =log 2∣t∣. 所以存在实数 a ,b 使得 g (x ) 是 Ψ 函数.(3) 因为函数 ℎ(x ) 的图象关于直线 x =m (m 为常数)对称, 所以 ℎ(m −x )=ℎ(m +x ),所以当 m ≠a 时, ℎ(x +2m −2a )=ℎ[m +(x +m −2a )]=ℎ[m −(x +m −2a )]=ℎ(2a −x )=ℎ(a +(a −x )),又 ℎ(a +x )+ℎ(a −x )=b ,所以 ℎ(a +(a −x ))=b −ℎ[a −(a −x )]=b −ℎ(x ),所以 ℎ(x +2m −2a )=b −ℎ(x ),ℎ(x )=b −ℎ(x +2m −2a )=ℎ(x +2m −2a +2m −2a )=ℎ(x +4m −4a ).所以 ℎ(x ) 为周期函数,周期为 4m −4a .若 m =a ,则 ℎ(a −x )=ℎ(a +x ),且 ℎ(a −x )=b −ℎ(a +x ), 所以 ℎ(a +x )=b2,显然 ℎ(x ) 是周期函数. 综上,ℎ(x ) 是周期函数.【知识点】函数的对称性、函数的周期性、幂函数及其性质、指数函数及其性质28. 【答案】(1) g (x )=−x 2+2x ,(2) ℎ(x )=−(1+λ)x 2+2(1−λ)x +1,当 λ=−1 时,ℎ(x )=4x +1 在 [−1,1] 上显然为增函数,当 λ≠−1 时,可得 {1+λ>0,1−λ1+λ≥1, 或 {1+λ>0,1−λ1+λ≤−1,⇒−1<λ≤0 或 λ<−1,综上所述,所求 λ 的取值范围是 λ=−1 或 −1<λ≤0 或 λ<−1,即 λ≤0.【知识点】函数的解析式的概念与求法、函数的单调性29. 【答案】(1) 由题知,sinα=4√37,sin (α+β)=5√314,所以,cosβ=cos (α+β−α)=cos (α+β)cosα+sin (α+β)sinα=12. (2) 因为 0<α−β<π4,cos (α−β)=1213,所以 sin (α−β)=513,因为 π<α+β<3π2,sin (α+β)=−35,所以 cos (α+β)=−45,所以 sin2α=sin [(α−β)+(α+β)]=sin (α−β)cos (α+β)+cos (α−β)sin (α+β)=−5665. 【知识点】两角和与差的正弦、两角和与差的余弦30. 【答案】(1) 找出关键的五个点,列表如下: x −2π−3π2−π−π2y =sinx 010−10y =1−sinx10121描点作图,如图所示.(2) 由于 y =sin (x +π)−1=−sinx −1,找出关键的五个点,列表如下: x −2π−3π2−π−π20y =sinx 010−10y =−sinx −1−1−2−10−1描点作图,如图所示. 【知识点】正弦函数的图象。

人教A版高一数学必修第一册全册复习测试题卷含答案解析(35)

人教A版高一数学必修第一册全册复习测试题卷含答案解析(35)

人教A 版高一数学必修第一册全册复习测试题卷6(共30题)一、选择题(共10题)1. 设集合 A ={x∣ x >1},B ={x∣ 0≤x <3},则 A ∩B = ( ) A . {x∣ 0≤x <3} B . {x∣ 1≤x <3} C . {x∣ 1<x <3}D . {x∣ x ≥0}2. 已知 0<a <1,则方程 a ∣x∣=∣log a x ∣ 的实根个数为 ( ) A . 2 B . 3 C . 4 D .与 a 的值有关3. 已知函数 f (x )=ln(√4x 2+1+2x),则 ( ) A . f (log 314)<f (1)<f (ln 12) B . f (ln 12)<f (log 134)<f (1)C . f (1)<f (ln2)<f (log 34)D . f (ln 12)<f (1)<f (log 34)4. 在 [0,2π] 内,不等式 sinx <−√32的解集是 ( )A . (0,π)B . (π3,4π3) C . (4π3,5π3) D . (5π3,2π)5. ∀x,y,z ∈(0,+∞),4x 2+y 2+1xy ≥−z 2+2z +m ,则 m 的取值范围为 ( ) A . (−∞,2√2−1]B . (−∞,3]C . (−∞,2]D . (−∞,4√2−1]6. 已知 f (x ) 是定义域为 R 的奇函数,且在 (0,+∞) 内的零点有 1003 个,则 f (x ) 的零点的个数为 ( ) A . 1003 B . 1004C . 2006D . 20077. 已知 α 是第二象限角,且 cosα=−35,则 cos (π4−α) 的值是 ( ) A . √210B . −√210C .7√210D . −7√2108. 下列函数是幂函数的是 ( )A . y =2xB . y =2x −1C . y =(x +1)2D . y =√x 239. 已知函数 f(x)={−x 2+2x +1,x <22x−2,x ≥2,且存在不同的实数 x 1,x 2,x 3,使得 f(x 1)=f(x 2)=f(x 3),则 x 1⋅x 2⋅x 3 的取值范围是 ( ) A . (0,3) B . (1,2) C . (0,2) D . (1,3)10. 函数 y =(mx 2+4x +m +2)−14的定义域是全体实数,则实数 m 的取值范围是 ( ) A . (√5−1,2) B . (√5−1,+∞)C . (−2,2)D . (−1−√5,−1+√5)二、填空题(共10题)11. 某公司一年购买某种货物 400 吨,每次都购买 x 吨,运费为 4 万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则 x = 吨.12. 函数 y =x 2+2x −1,当 x = 时有最 值为 . 13. 计算 cot45∘+cot30∘1−cot45∘cot30∘= .14. 已知函数 f (x )=∣∣∣log 2∣∣x −2x ∣∣∣∣∣−a (a >0),其所有的零点依次记为 x 1,x 2,⋯,x i (i ∈N ∗),则 x 1⋅x 2⋯x i = .15. 已知 cos (α+π4)=13,则 sin2α= .16. 求值:sin10∘−√3cos10∘cos40∘= .17. 用二分法求图象连续不断的函数 f (x ) 在区间 [1,5] 上的近似解,验证 f (1)⋅f (5)<0,给定精度 ɛ=0.01,取区间 (1,5) 的中点 x 1=1+52=3,计算得 f (1)⋅f (x 1)<0,f (x 1)⋅f (5)>0,则此时零点 x 0∈ .(填区间)18. 已知 f (x )={sinπx,x <0f (x −1)−1,x >0,则 f (−116)+f (116) 的值为 .19. 设函数 f (x )=cos (ωx −π6)(ω>0).若 f (x )≤f (π4) 对任意的实数 x 都成立,则 ω 的最小值为 .20. 已知 a >0,函数 f (x )={x 2+2ax +a,x ≤0−x 2+2ax −2a,x >0.若关于 x 的方程 f (x )=ax 恰有 2 个互异的实数解,则 a 的取值范围是 .三、解答题(共10题)21. 某公司要在一条笔直的道路边安装路灯,要求灯柱 AB 与地面垂直,灯杆 BC 与灯柱 AB 所在的平面与道路走向垂,路灯 C 采用锥形灯罩,射出的光线与平面 ABC 的部分截面如图中阴影部分所示.已知 ∠ABC =23π,∠ACD =π3,路宽 AD =24 米.设 ∠BAC =θ(π12≤θ≤π6).(1) 求灯柱 AB 的高 ℎ(用 θ 表示);(2) 此公司应该如何设置 θ 的值才能使制造路灯灯柱 AB 与灯杆 BC 所用材料的总长度最小?最小值为多少?(结果精确到 0.01 米)22. 请回答:(1) 若 f(√x +1)=x +2√x ,试求函数 f (x ) 的解析式;(2) 若 f (x ) 为二次函数,且 f (0)=3,f (x +2)−f (x )=4x +2,试求函数 f (x ) 的解析式.23. 如图所示,ABCD 是边长为 60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 A ,B ,C ,D 四个点重合于图中的点 P ,正好形成一个正四棱柱形状的包装盒,E ,F 在 AB 上是被切去的等腰直角三角形斜边的两个端点,设 AE =FB =x cm .(1) 若广告商要求包装盒侧面积 S (cm 2)最大,试问 x 应取何值?(2) 若广告商要求包装盒容积 V (cm 3) 最大,试问 x 应取何值?并求出此时包装盒的高与底面边长的比值.24. 以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在 6 元基础上按月份随正弦曲线波动的,已知 3 月份出厂价格最高为 8 元,7 月份出厂价格最低为 4 元,而该商品在商店的销售价格是在 8 元基础上按月随正弦曲线波动的,并已知 5 月份销售价最高为 10 元,9 月份销售价最低为 6 元,假设某商店每月购进这种商品 m 件,且当月售完,请估计哪个月盈利最大?并说明理由.25. 已知函数 f (x )=x 2−mx +m ,m,x ∈R .(1) 若关于 x 的不等式 f (x )>0 的解集为 R ,求 m 的取值范围;(2) 若实数 x 1,x 2 数满足 x 1<x 2,且 f (x 1)≠f (x 2),证明:方程 f (x )=12[f (x 1)+f (x 2)] 至少有一个实根 x 0∈(x 1,x 2);(3) 设 F (x )=f (x )+1−m −m 2,且 ∣F (x )∣ 在 [0,1] 上单调递增,求实数 m 的取值范围.26. 已知 f (x )=log a x ,g (x )=2log a (2x +t −2)(a >0,a ≠1,t ∈R ).(1) 若 f (1)=g (2),求 t 的值;(2) 当 t =4,x ∈[1,2],且 F (x )=g (x )−f (x ) 有最小值 2 时,求 a 的值; (3) 当 0<a <1,x ∈[1,2] 时,有 f (x )≥g (x ) 恒成立,求实数 t 的取值范围.27. 设函数 f (x )=3x ,g (x )=√2−x ,求:(1) f (1)+g (1); (2) f (2)+g (2); (3) f (x )+g (x ).28. “学习曲线”可以用来描述学习某一任务的速度,假设函数 t =f (N ),f (N )=−144lg (1−N90),其中 t 表示达到某一英文打字水平(字/分)所需的学习时间(时),N 表示每分钟打出的字数(字/分).(1) 计算要达到 20 字分、 40 字/分水平所需的学习时间.(精确到“时”) (2) 判断函数 t =f (N ) 的单调性,并说明理由.29. 设 x ∈R ,解方程 √10+x 4+√7−x 4=3.30. 设函数 f (x )={2x −a,x <14(x −a )(x −2a ),x ≥1.(1) 若 a =1,求 f (x ) 的最小值;(2) 若 f (x ) 恰有 2 个零点,求实数 a 的取值范围.答案一、选择题(共10题)1. 【答案】C【知识点】交、并、补集运算2. 【答案】A【解析】设y1=a∣x∣,y2=∣log a x∣,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a∣x∣=∣log a x∣有两个根.【知识点】函数零点的概念与意义3. 【答案】D【解析】函数的定义域为R,且f(−x)+f(x)=ln(√4x2+1−2x)+ln(√4x2+1+2x)=ln(√4x2+1−2x)(√4x2+1+2x)=ln(4x2+1−4x2)=ln1=0,得f(−x)=−f(x),即f(x)是奇函数,且f(x)在R上是增函数,因为ln12<1<log34,所以f(ln12)<f(1)<f(log34).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性4. 【答案】C【解析】画出y=sinx,x∈[0,2π]的草图如下:因为sinπ3=√32,所以sin(x+π3)=−√32,sin(2π−π3)=−√32.即在[0,2π]内,满足sinx=−√32的值为x=4π3或x=5π3,可知不等式sinx<−√32的解集是(4π3,5π3).故选C .【知识点】三角方程与不等式5. 【答案】B【解析】因为 x,y ∈(0,+∞),所以 4x 2+y 2+1xy ≥2√4x 2y 2+1xy =4xy +1xy ≥2√4=4(当且仅当 {4x 2=y 2,4xy =1xy时等号成立),又 (−z 2+2z +m )max =m +1, 所以 m +1≤4,即 m ≤3.故选B . 【知识点】均值不等式的应用6. 【答案】D【解析】根据奇函数的图象关于原点对称可得 f (x ) 在 (−∞,0) 内的零点有 1003 个,又 f (0)=0,故选D . 【知识点】函数的零点分布7. 【答案】A【知识点】两角和与差的余弦8. 【答案】D【解析】由幂函数的概念可知D 正确. 【知识点】幂函数及其性质9. 【答案】A【解析】 f(x)={−x 2+2x +1,x <22x−2,x ≥2的图象如图所示:设 x 1<x 2<x 3,又当 x ∈[2,+∞] 时,f(x)=2x−2 是增函数,当 x =3 时,f(x)=2,设f(x 1)=f(x 2)=f(x 3)=t ,1<t <2,即有 −x 12+2x 1+1=−x 22+2x 2+1=2x 3−2=t ,故x 1x 2x 3=(1−√2−t)(1+√2−t)(2+log 2t)=(t −1)(2+log 2t),设 g(t)=(t −1)(2+log 2t),1<t <2,可得 gʹ(t)=2+log 2t +t−1tln2>0,即 g(t) 在 (1,2) 上单调递增,又 g(1)=0,g(2)=3,可得 g(t) 的范围是 (0,3). 【知识点】函数的零点分布10. 【答案】B【解析】函数 y =(mx 2+4x +m +2)−14=√1mx 2+4x+m+24,因此,要使函数 y =(mx 2+4x +m +2)−14 的定义域为全体实数,需满足 mx 2+4x +m +2>0 对一切实数都成立,即 {m >0,42−4m (m +2)<0, 解得 m >√5−1.故选:B .【知识点】恒成立问题、函数的定义域的概念与求法二、填空题(共10题) 11. 【答案】 20【解析】每次都购买 x 吨,则需要购买400x次.因为运费为 4 万元/次,一年的总存储费用为 4x 万元, 所以一年的总运费与总存储费用之和为 4×400x+4x 万元.因为4×400x +4x≥160,当且仅当4x=4×400x时取等号,所以x=20吨时,一年的总运费与总存储费用之和最小.【知识点】均值不等式的实际应用问题12. 【答案】−1;小;−2【知识点】函数的最大(小)值13. 【答案】−2−√3【知识点】两角和与差的正切14. 【答案】16【解析】函数f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a(a>0)的零点,即f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a=0,所以∣∣∣log2∣∣x−2x∣∣∣∣∣=a.去绝对值可得log2∣∣x−2x ∣∣=a或log2∣∣x−2x∣∣=−a,即2a=∣∣x−2x ∣∣或2−a=∣∣x−2x∣∣.去绝对值可得2a=x−2x 或−2a=x−2x,2−a=x−2x或−2−a=x−2x.当2a=x−2x,两边同时乘以x,化简可得x2−2a⋅x−2=0,设方程的根为x1,x2,由韦达定理可得x1⋅x2=−2;当−2a=x−2x,两边同时乘以x,化简可得x2+2a⋅x−2=0,设方程的根为x3,x4,由韦达定理可得x3⋅x4=−2;当2−a=x−2x,两边同时乘以x,化简可得x2−2−a⋅x−2=0,设方程的根为x5,x6,由韦达定理可得x5⋅x6=−2;当−2−a=x−2x,两边同时乘以x,化简可得x2+2−a⋅x−2=0,设方程的根为x7,x8,由韦达定理可得x7⋅x8=−2.综上可得所有零点的乘积为x1⋅x2⋅x3⋅x4⋅x5⋅x6⋅x7⋅x8=(−2)4=16.【知识点】对数函数及其性质、函数的零点分布15. 【答案】79【解析】因为cos(α+π4)=13,所以cos(α+π4)=√22cosα−√22sinα=13=√22(cosα−sinα)=13,所以cosα−sinα=√23,因为{cosα−sinα=√23,cos2α+sin2α=1⇒(cosα−sinα)2=cos2α+sin2α−2sinαcosα=1−2sinαcosα=29,所以sin2α=2sinα⋅cosα=1−29=79.【知识点】二倍角公式16. 【答案】−2【解析】sin10∘−√3cos10∘cos40∘=2(12sin10∘−√32cos10∘)cos40∘=2sin(10∘−60∘)cos40∘=−2sin50∘cos40∘=−2.【知识点】两角和与差的正弦17. 【答案】(1,3)【解析】由f(1)⋅f(5)<0,f(1)⋅f(x1)<0及f(x1)⋅f(5)>0可知f(1)与f(x1)异号,f(x1)与f(5)同号,则x0∈(1,x1)即x0∈(1,3).【知识点】零点的存在性定理18. 【答案】−2【知识点】诱导公式19. 【答案】23【解析】结合余弦函数的图象得π4ω−π6=2kπ,k∈Z,解得ω=8k+23,k∈Z,又因为ω>0,所以当k=0时,ω取得最小值,最小值为23.【知识点】Asin(ωx+ψ)形式函数的性质20. 【答案】(4,8)【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 在△ACD中,∠CDA=θ+π6,由ADsin∠ACD =ACsin∠CDA,得AC=AD⋅sin∠CDAsin∠ACD=16√3sin(θ+π6);在△ABC中,∠ACB=π3−θ,由ABsin∠ACB =ACsin∠ABC,得ℎ=AC⋅sin∠ACBsin∠ABC=32sin(θ+π6)sin(π3−θ)(π12≤θ≤π6).(2) △ABC中,由BCsin∠BAC =ACsin∠ABC,得BC=AC⋅sin∠BACsin∠ABC=32sin(θ+π6)sinθ,所以AB+BC=32sin(θ+π6)sin(π3−θ)+32sin(θ+π6)sinθ=16sin2θ+8√3,因为π12≤θ≤π6,所以π6≤2θ≤π3,所以当θ=π12时,AB+BC取得最小值8+8√3≈21.86.故制造路灯灯柱AB与灯杆BC所用材料的总长度最小,最小值约为21.86米.【知识点】三角函数模型的应用22. 【答案】(1) 令t=√x+1,则t≥1,x=(t−1)2,所以f(t)=(t−1)2+2(t−1)=t2−1,所以f(x)=x2−1,x∈[1,+∞).(2) 设f(x)=ax2+bx+c(a≠0),所以f(x+2)=a(x+2)2+b(x+2)+c,所以f(x+2)−f(x)=4ax+4a+2b=4x+2,所以{4a=4,4a+2b=2⇒{a=1,b=−1.又f(0)=3⇒c=3,所以f(x)=x2−x+3.【知识点】函数的解析式的概念与求法23. 【答案】(1) 设包装盒的高为ℎcm,底面边长为a cm,由已知得a=√2x,ℎ=√2=√2(30−x),0<x<30,S=4aℎ=8x(30−x)=−8(x−15)2+1800,所以当x=15时,S取得最大值.(2) 由题意,可得V=a2ℎ=2√2(−x2+30x2),则Vʹ=6√2x(20−x),由Vʹ=0得x=0(舍去)或x=20,当x∈(0,20)时,Vʹ>0,V在(0,20)上单调递增;当x∈(20,30)时,Vʹ<0,V在(20,30)上单调递减,所以当x=20时,V取得极大值,也是最大值,此时ℎa =12,即当x=20时,包装盒的容积最大,此时包装盒的高与底面边长的比值为12.【知识点】函数模型的综合应用、利用导数处理生活中的优化问题24. 【答案】设月份为x,由条件可得:出厂价格函数为:y1=2sin(π4x−π4)+6,销售价格函数为:y2=2sin(π4x−3π4)+8,则每期的利润函数为:y=m(y2−y1)=m[2sin(π4x−3π4)+8−2sin(π4x−π4)−6]=m(2−2√2sinπ4x),所以,当x=6时,y max=(2+2√2)m,即6月份盈利最大.【知识点】三角函数模型的应用25. 【答案】(1) 因为f(x)>0的解集为R,所以Δ=m2−4m<0,解得0<m<4.(2) 证明:令g(x)=f(x)−12[f(x1)+f(x2)],易知g(x)在其定义域内连续,且g(x1)⋅g(x2)={f(x1)−12[f(x1)+f(x2)]}⋅{f(x2)−12[f(x1)+f(x2)]}=−14[f(x1)−f(x2)]2<0,则g(x)=f(x)−12[f(x1)+f(x2)]在(x1,x2)上有零点,即方程f(x)=12[f(x1)+f(x2)]至少有一个实根x0∈(x1,x2).(3) F(x)=f(x)+1−m−m2=x2−mx+1−m2,Δ=m2−4(1−m2)=5m2−4,函数F(x)的对称轴为直线x=m2,①当 Δ=0 时,5m 2−4=0,即 m =±2√55, 若 m =2√55,则对称轴为 x =√55∈[0,1],则在 [0,1] 上不单调递增,不满足条件;若 m =−2√55,则对称轴为 x =−√55<0,则在 [0,1] 上单调递增,满足条件; ②当 Δ<0 时,−2√55<m <2√55,此时 F (x )>0 恒成立,若 ∣F (x )∣ 在 [0,1] 上单调递增,则 x =m 2≤0,即 m ≤0,此时 −2√55<m ≤0;③当 Δ>0 时,m <−2√55或 m >2√55,对称轴为 x =m2,当 m <−2√55时,对称轴为 x =m 2<0,要使 ∣F (x )∣ 在 [0,1] 上单调递增,则只需要 F (0)≥0 即可,此时 F (0)=1−m 2≥0,得 −1≤m ≤1, 此时 −1≤m <−2√55;当 m >2√55时,对称轴为 x =m 2>0,则要使 ∣F (x )∣ 在 [0,1] 上单调递增,此时 F (0)=1−m 2≤0,且对称轴 m 2≥1,所以 m ≥2.此时 m ≥2; 综上,−1≤m ≤0 或 m ≥2.【知识点】二次函数的性质与图像、函数的单调性26. 【答案】(1) 因为 f (1)=g (2), 所以 0=2log a (2+t ), 所以 t +2=1,即 t =−1. (2) 因为 t =4,F (x )=g (x )−f (x )=2log a (2x +2)−log a x =log a4(x+1)2x=log a 4(x +1x +2).又因为 y =x +1x 在 x ∈[1,2] 单调递增, 所以当 a >1 时,F (x ) 在 x ∈[1,2] 也单调递增, 所以 F (x )min =log a 16=2,解得 a =4,当 0<a <1 时,F (x ) 在 x ∈[1,2] 也单调递减, 所以 F (x )min =log a 18=2, 解得 a =√18=3√2(舍去), 所以 a =4.(3) f (x )≥g (x ),即 log a x ≥2log a (2x +t −2), 所以 log a x ≥log a (2x +t −2)2, 因为 0<a <1,x ∈[1,2], 所以 x ≤(2x +t −2)2, 所以 √x ≤2x +t −2, 所以 √x −2x +2≤t ,所以 √x −2x +2≤t ,依题意有 (√x −2x +2)max ≤t , 而函数 y =√x −2x +2=−2(√x −14)2+178,因为 x ∈[1,2],√x ∈[1,√2],y max =1, 所以 t ≥1.【知识点】函数的最大(小)值、对数函数及其性质27. 【答案】(1) f (1)+g (1)=4. (2) f (2)+g (2)=6.(3) 因为 f (x ) 的定义域是 R ,g (x ) 的定义域是 (−∞,2],交集是 (−∞,2], 所以 f (x )+g (x )=3x +√2−x ,定义域是 (−∞,2]. 【知识点】函数的相关概念28. 【答案】(1) t =f (20)≈16(时),t =f (40)≈37(时);所以,要达到这两个水平分别需要学习 16 小时和 37 小时.(2) 任取 0≤N 1<N 2<90,f (N 1)−f (N 2)=144lg 90−N290−N 1,因为 0≤90−N 2<90−N 1,所以 f (N 1)−f (N 2)=144lg 90−N290−N 1<0,即 f (N 1)<f (N 2),函数 t =f (N ) 在定义域内递增.【知识点】函数模型的综合应用29. 【答案】设 {√10+x 4=u,√7−x 4=v,则 {u +v =3,u 4+v 4=17,解得 {u =2,v =1或 {u =1,v =2, 即 x =−9 或 x =6.【知识点】幂的概念与运算30. 【答案】(1) 当 a =1 时,f (x )={2x −1,x <14(x −1)(x −2),x ≥1.当 x <1 时,f (x )∈(−1,1),无最小值; 当 x ≥1 时,f (x )=4(x −32)2−1,所以函数 f (x ) 在 [1,32] 上单调递减,在 (32,+∞) 上单调递增.所以 f (x ) 的最小值为 f (32)=−1. 综上,当 x =32 时,f (x ) 取得最小值 −1. (2) 当 x <1 时,f (x )∈(−a,2−a ).①若 g (x )=2x −a 在 x <1 时与 x 轴有一个交点则 {a >0,g (1)=2−a >0,所以 0<a <2.ℎ(x )=4(x −a )(x −2a ) 与 x 轴有一个交点. 所以 2a ≥1 且 a <1, 所以 12≤a <1.②若 g (x ) 与 x 轴无交点,则 ℎ(x ) 在 x ≥1 时与 x 轴有两个交点,当 g (1)=2−a ≤0 时 a ≥2,ℎ(x )=4(x −a )(x −2a ) 与 x 轴有两交点且两交点均在 [1,+∞) 内.由上可知 12≤a <1 和 a ≥2.【知识点】函数的零点分布、函数的最大(小)值。

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)

人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。

期末复习综合测试题(1)-【新教材】人教A版(2019)高中数学必修第一册

期末复习综合测试题(1)-【新教材】人教A版(2019)高中数学必修第一册

模块一测试题一一.选择题(共10小题)1.设集合2{|10}A x x =-=,则( ) A .A ∅∈B .1A ∈C .{1}A -∈D .{1-,1}A ∈2.命题“[1x ∀∈,2],220x a -”为真命题的一个充分不必要条件是( ) A .1a <B .2aC .3aD .4a3.若命题“[1x ∀∈,4]时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4-,3]-B .(,4)-∞-C .[4-,)+∞D .[4-,0]4.已知函数22()4(0)f x x ax a a =-+>的两个零点分别为1x ,2x ,则1212ax x x x ++的最小值为( ) A .8B .6C .4D .25.已知动点(,)a b 的轨迹为直线:124x yl +=在第一象限内的部分,则ab 的最大值为( ) A .1 B .2 C.D .46.设函数()f x 的图象与2x a y +=的图象关于直线y x =-对称,若2020m n +=,(2)(2)2m n f f -+-=,则(a = ) A .1011 B .1009C .1009-D .1011-7.已知(2πθ∈-,0),且3cos2cos()02πθθ++=,则sin()(4πθ+= ) ABCD8.已知函数()sin()cos()(06f x x x πωϕωϕω=++++>,0)3πϕ-<<,若点11(12π,0)为函数()f x 的对称中心,直线6x π=为函数()f x 的对称轴,并且函数()f x 在区间4(3π,3)2π上单调,则(2)(f ωϕ= )A .1-B .3C .12 D .12-二.多选题(共4小题)9.设集合{|4}x M y y e ==-+,{|[(2)(3)]}N x y lg x x ==+-,则下列关系正确的是( )A .R RM N ⊆B .N M ⊆C .M N =∅D .RN M ⊆10.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得AC a =,BC b =,过点C 作CD AB ⊥交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD CD 直接证明的不等式为( )A (0,0)2a baba b +>> B 2(0,0)ababa b a b>>+C .222(0,0)a bab a b +>>D .22(0,0)22a b a b a b ++>> 11.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x 时,2()2f x x x =+,则可作为方程()(1)f x f x =-实根的有( )A 13-- B .12C 13-+D 33+ 12.给出下列四个结论,其中正确的结论是( ) A .sin()sin παα+=-成立的条件是角α是锐角B .若1cos()()3n n Z πα-=∈,则1cos 3α=C .若()2Z πα≠∈,则1tan()2tan παα-+=D .若sin cos 1αα+=,则sin cos 1n n αα+= 三.填空题(共4小题)13.对于正数a ,a a a 可以用有理数指数幂的形式表示为 .14.若函数12|1|log (1),1021,0x x x y x m---<⎧⎪=⎨⎪-⎩的值域为[1-,1],则实数m 的取值范围为 .15.已知22log log 16sincos1212a b ππ+=⋅,则a b +的最小值为 .16.用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ,则a 的最大值为 .四.解答题(共8小题)17.某居民小区欲在一块空地上建一面积为21200m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:)m ,问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?18.已知a ,(0,)b ∈+∞,且24a 2b =.(Ⅰ)求21a b+的最小值; (Ⅱ)若存在a ,(0,)b ∈+∞,使得不等式21|1|3x a b-++成立,求实数x 的取值范围.19.已知函数212log (1)&0()log (1)&0x x f x x x +⎧⎪=⎨-<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>;(3)若关于x 的方程23[()]()04f x af x a +-+-=有两个不相等的正根,求实数a 取值范围.20.已知函数()sin (cos )f x x x x =+. (1)求()3f π的值及函数()f x 的单调增区间;(2)若[12x π∀∈,]2π,不等式()2m f x m <<+恒成立,求实数m 的取值集合.21.已知函数()sin()(0f x A x B A ωϕ=++>,0ω>,||)2πϕ<在一个周期内的最高点和最低点分别为(2,1),(8,3)-. (1)求函数()f x 的表达式;(2)求函数()f x 在区间[0,6]的最大值和最小值;(3)将()y f x =图象上的点的横坐标变为原来的6tπ倍(0)t >,纵坐标不变,再向上平移1个单位得到()y g x =的图象.若函数()y g x =在[0,]π内恰有4个零点,求t 的取值范围.22.已知函数()4cos sin()1()6f x x x x R π=-+∈,将函数()y f x =的图象向左平移6π个单位,得到函数()y g x =的图象.(1)求()3f π的值;(2)求函数()y g x =的解析式;(3)若0()2x f =0()g x .模块一测试题一参考答案与试题解析一.选择题(共10小题)1.设集合2{|10}A x x =-=,则( ) A .A ∅∈B .1A ∈C .{1}A -∈D .{1-,1}A ∈【分析】根据题意,用列举法表示集合A ,据此判断各选项,即可得答案. 【解答】解:根据题意,2{|10}{1A x x =-==-,1}, 对于A ,A ∅⊆,A 错误, 对于B ,1A ∈,B 正确, 对于C ,{1}A -⊆,C 错误, 对于D ,{1-,1}A =,D 错误, 故选:B .【点评】本题考查元素与集合的关系,涉及集合的表示方法,属于基础题. 2.命题“[1x ∀∈,2],220x a -”为真命题的一个充分不必要条件是( ) A .1a <B .2aC .3aD .4a【分析】求出函数恒成立的充要条件,根据集合的包含关系判断即可. 【解答】解:若[1x ∀∈,2],220x a -恒成立,则2(2)2min a x =,故命题“[1x ∀∈,2],220x a -”为真命题的充要条件是2a , 而(-∞,1)(⊆-∞,2],故命题“[1x ∀∈,2],220x a -”为真命题的一个充分不必要条件是1a <, 故选:A .【点评】本题考查了充分必要条件,考查集合的包含关系以及函数恒成立问题,是一道基础题.3.若命题“[1x ∀∈,4]时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4-,3]-B .(,4)-∞-C .[4-,)+∞D .[4-,0]【分析】根据全称命题是假命题,得到命题的否定是真命题,利用参数分离法进行求解即可. 【解答】解:若命题“[1x ∀∈,4]时,240x x m --≠”是假命题,则命题“[1x ∃∈,4]时,240x x m --=”是真命题 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x - 则40m -, 故选:D .【点评】本题主要考查命题真假的应用,利用全称命题的否定是特称命题转化为特称命题是解决本题的关键.难度中等.4.已知函数22()4(0)f x x ax a a =-+>的两个零点分别为1x ,2x ,则1212ax x x x ++的最小值为( )A .8B .6C .4D .2【分析】由韦达定理求出124x x a +=,212x x a =,再根据基本不等式的性质求出代数式的最小值即可.【解答】解:由题意得:124x x a +=,212x x a =,故1212114244a x x a a x x a a ++=+⋅=, 当且仅当12a =时“=”成立, 故选:C .【点评】本题考查了二次函数的性质,考查基本不等式的性质,是一道基础题. 5.已知动点(,)a b 的轨迹为直线:124x yl +=在第一象限内的部分,则ab 的最大值为( ) A .1 B .2 C .D .4【分析】直接利用基本不等式的应用求出结果. 【解答】解:动点(,)a b 的轨迹为直线:124x yl +=在第一象限内的部分, 所以124a b+=, 由基本不等式122424a b a b=+,解得2ab , 当且仅当1242a b ==时,等号成立,故ab 的最大值为2. 故选:B .【点评】本题考查的知识要点:基本不等号式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.设函数()f x 的图象与2x a y +=的图象关于直线y x =-对称,若2020m n +=,(2)(2)2m n f f -+-=,则(a = ) A .1011B .1009C .1009-D .1011-【分析】在函数()y f x =的图象上取点(,)x y ,则关于直线y x =-对称点为(,)y x --,代入2x a y +=,结合题目条件可得答案.【解答】解:因为函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,令(2)m f p -=,(2)n f q -=,则2p q +=;故(p -,2)m ,(q -,2)n 在2x a y +=的图象上,所以22m p a -+=,22n q a -+=,即m p an q a =-+⎧⎨=-+⎩,两式相加得()2m n p q a +=-++, 所以2202022022a m n p q =+++=+=, 解得1011a =, 故选:A .【点评】本题考查图象的对称性,考查学生分析解决问题的能力,属于中档题. 7.已知(2πθ∈-,0),且3cos2cos()02πθθ++=,则sin()(4πθ+= )A B C D 【分析】由已知结合二倍角公式可先求sin θ,进而可求cos θ,然后结合两角和的正弦公式可求.【解答】解:因为(2πθ∈-,0),且3cos2cos()02πθθ++=,所以cos2sin 0θθ+=, 即22sin sin 10θθ-++=,解得,sin 1θ=(舍)或1sin 2θ=-,所以cos θ=则sin()cos )4πθθθ+=+=故选:A .【点评】本题主要考查了诱导公式,同角平方关系,和差角公式在三角求值中的应用,属于基础题.8.已知函数()sin()cos()(06f x x x πωϕωϕω=++++>,0)3πϕ-<<,若点11(12π,0)为函数()f x 的对称中心,直线6x π=为函数()f x 的对称轴,并且函数()f x 在区间4(3π,3)2π上单调,则(2)(f ωϕ= )A .1- BC .12 D .12-【分析】利用两角和差和辅助角公式化简函数函数()sin()cos()sin()63f x x x x ππωϕωϕωϕ=++++=++,再利用三角函数的单调性、周期性和对称性可得2(21)3ω=+,N ∈.66l ππϕωπ=-+,I Z ∈.又因为03πϕ-<<,且06ω<.解得解得:26ωπϕ=⎧⎪⎨=-⎪⎩,即4(33ππϕ++,3)(3236πππωϕπ++=-,3)6ππ+符合单调性条件,所以函数()sin(2)6f x x π=+,即可得21(2)()32f f πωϕ=-=.【解答】解:函数()sin()cos()sin()63f x x x x ππωϕωϕωϕ=++++=++,并且函数()f x 在区间4(3π,3)2π上单调,因此62T ππω=,所以06ω<. 又因为点11(12π,0)为函数()f x 的对称中心,直线6x π=为函数()f x 的对称轴,因此113126442T Tπππ-==+,N ∈, 所以2321T ππω==+, 解得2(21)3ω=+,N ∈.将6x π=代入函数()f x 时函数有最值,即632m πππωϕπ++=+,m Z ∈,即66m ππϕωπ=-+,m Z ∈.又因为03πϕ-<<,且06ω<.解得:26ωπϕ=⎧⎪⎨=-⎪⎩,即4(33ππϕ++,3)(3236πππωϕπ++=-,3)6ππ+符合单调性条件, 所以函数()sin(2)6f x x π=+,则21(2)()32f f πωϕ=-=,故选:C .【点评】本题考查三角函数的图象与性质、三角恒等变换、二倍角公式,考查推理论证能力和运算求解能力,考查逻辑推理、直观想象、数学运算核心素养. 二.多选题(共4小题)9.设集合{|4}x M y y e ==-+,{|[(2)(3)]}N x y lg x x ==+-,则下列关系正确的是( )A .R RM N ⊆B .N M ⊆C .M N =∅D .RN M ⊆【分析】由指数函数的性质求出函数的值域即集合A ,由对数函数的性质即真数大于0,解一元二次不等式得到集合B ,判断两个集合的关系,结合选项可得正确答案. 【解答】解:集合{|4}{|4}(,4)x M y y e y y ==-+=<=-∞,集合{|[(2)(3)]}{|(2)(3)0}{|(2)(3)0}(2N x y lg x x x x x x x x ==+-=+->=+-<=-,3),N M ∴⊆,即RM RN C C ⊆,故选:AB .【点评】本题考查了集合间的关系,以及指数函数和对数函数的性质,属于基础题. 10.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得AC a =,BC b =,过点C 作CD AB ⊥交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD CD 直接证明的不等式为( )A .(0,0)2a baba b +>> B .2(0,0)ababa b a b>>+C .222(0,0)a bab a b +>>D .22(0,0)22a b a b a b ++>> 【分析】由题意得,1()2OD a b =+,然后结合射影定理可得,2CD AC BC ab =⋅=,从而可判断.【解答】解:因为AC a =,BC b =, 所以1()2OD a b =+,由题意得,90ADB ∠=︒,由射影定理可得,2CD AC BC ab =⋅=,由OD CD ,得1()2a b ab +,当且仅当a b =时取等号,A 正确,B ,C ,D 不正确.故选:BCD .【点评】本题主要考查了直角三角形的射影定理,属于基础题.11.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x 时,2()2f x x x =+,则可作为方程()(1)f x f x =-实根的有( )AB .12CD【分析】由已知求得函数解析式,得到(1)f x -,进一步写出分段函数()()(1)g x f x f x =--,求解方程()0g x =得答案. 【解答】解:()()0f x f x -+=,()f x ∴为定义在R 上的奇函数,当0x 时,2()2f x x x =+,设0x >,则0x -<,得2()2()f x x x f x -=-=-,即2()2f x x x =-+.222,0()2,0x x x f x x x x ⎧+∴=⎨-+>⎩,则221,1(1)2,1x x f x x x x ⎧-+<-=⎨-+⎩,令22263,1()()(1)21,01221,0x x x g x f x f x x x x x x ⎧-+-⎪=--=-<<⎨⎪+-⎩,当()0g x =时,解得x =或12x =或x =. 故选:ABD .【点评】本题考查函数的奇偶性的应用,考查函数与方程思想,考查逻辑思维能力与运算求解能力,是中档题.12.给出下列四个结论,其中正确的结论是( )A .sin()sin παα+=-成立的条件是角α是锐角B .若1cos()()3n n Z πα-=∈,则1cos 3α=C .若()2Z πα≠∈,则1tan()2tan παα-+=D .若sin cos 1αα+=,则sin cos 1n n αα+=【分析】由诱导公式二即可判断A ;分类讨论,利用诱导公式即可判断B ;利用同角三角函数基本关系式即可判断C ;将已知等式两边平方,可得sin 0α=,或cos 0α=,分类讨论即可判断D .【解答】解:由诱导公式二,可得R α∈时,sin()sin παα+=-,故A 错误; 当2n =,Z ∈时,cos()cos()cos n πααα-=-=,此时1cos 3α=, 当21n =+,Z ∈时,cos()cos[(21)]cos()cos n παπαπαα-=+-=-=-,此时1cos 3α=-,故B 错误;若2πα≠,Z ∈,则sin()cos 12tan()2sin tan cos()2παπααπααα++===--+,故C 正确;将sin cos 1αα+=,两边平方,可得sin cos 0αα=,所以sin 0α=,或cos 0α=, 若sin 0α=,则cos 1α=,此时22sin cos 1αα+=;若cos 0α=,则sin 1α=,此时22sin cos 1αα+=,故sin cos 1n n αα+=,故D 正确. 故选:CD .【点评】本题主要考查了诱导公式,同角三角函数基本关系式的应用,考查了函数思想和分类讨论思想,属于中档题. 三.填空题(共4小题)13.对于正数a可以用有理数指数幂的形式表示为 78a .【分析】根据指数幂的运算法则即可求出.【解答】解:原式7111311317182222224242(())(())()()a a a a a a a a a =⋅==⋅==.故答案为:78a .【点评】本题考查了指数幂的运算法则,属于基础题.14.若函数12|1|log (1),1021,0x x x y x m---<⎧⎪=⎨⎪-⎩的值域为[1-,1],则实数m 的取值范围为 [1,2] .【分析】可求出10x -<时,10y -<,然后根据原函数的值域为[1-,1]可得出0x m 时,0|1|1x -,01y ,这样即可求出m 的范围.【解答】解:10x -<时,112x <-,121(1)0log x --<,且原函数的值域为[1-,1],0x m ∴时,0|1|1x -,即02x , 12m ∴,m ∴的取值范围为:[1,2].故答案为:[1,2].【点评】本题考查了对数函数和指数函数的单调性,函数值域的定义及求法,考查了计算能力,属于中档题.15.已知22log log 16sincos1212a b ππ+=⋅,则a b +的最小值为 8 .【分析】由已知结合对数的运算性质及二倍角公式进行化简可求ab ,然后结合基本不等式即可求解.【解答】解:因为22log log 16sincos8sin412126a b πππ+=⋅==,所以2log 4ab =, 故16ab =,则28a b ab +=,当且仅当4a b ==时取等号,a b +的最小值8. 故答案为:8.【点评】本题主要考查了对数的运算性质,二倍角公式及基本不等式,属于基础题. 16.用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ,则a 的最大值为98π. . 【分析】分a 在不同区间进行讨论,得出符合条件的a 取值范围,即可求得a 的最大值.【解答】解:当[0a ∈,]2π时,2[0a ∈,]π,[0,]sin a M a =,[,2]1a a M =,由[0,][,2]2a a a M M ,得sin 2a,此时不成立;当[2a π∈,]π时,2[a π∈,2]π,[0,]1a M =,[,2]sin a a M a =,由[0,][,2]2a a a M M ,得12sin a ,即2sin a ,所以34a ππ;当[a π∈,3]2π时,2[2a π∈,3]π,[0,]1a M =,[,2]sin 2a a M a =或1, 由[0,][,2]2a a a M M ,得12sin 2a ,即2sin 2a且222a ππ+,解得98a ππ; 当3[2a π∈,)+∞时,2[3a π∈,)+∞,[0,]1a M =,[,2]1a a M =,不合题意. 综上,a 得最大值为98π. 故答案为:98π. 【点评】本题主要考查三角函数的最值的求法,考查分类讨论的数学思想,考查计算能力,属于中档题.四.解答题(共8小题)17.某居民小区欲在一块空地上建一面积为21200m的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m,东西的人行通道宽4m,如图所示(图中单位:)m,问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?【分析】设矩形车场南北侧边长为xm,则其东西侧边长为1200mx,人行道占地面积为12007200(6)(8)1200848S x xx x=++-=++,然后结合基本不等式即可求解.【解答】解:设矩形车场南北侧边长为xm,则其东西侧边长为1200mx,人行道占地面积为120072007200(6)(8)1200848284896S x x xx x x=++-=++⋅=,当且仅当72008xx=,即30()x m=时取等号,296()minS m=,此时120040()mx=,所以矩形停车场的南北侧边长为30m,则其东西侧边长为40m,才能使人行通道占地面积最小,最小面积是2528m.【点评】本题主要考查了基本不等式在实际问题中的应用,体现了转化思想的应用.18.已知a,(0,)b∈+∞,且24a2b=.(Ⅰ)求21a b+的最小值;(Ⅱ)若存在a,(0,)b∈+∞,使得不等式21|1|3xa b-++成立,求实数x的取值范围.【分析】()I由已知结合指数的运算性质可得,21a b+=,然后结合2121()(2)a ba b a b+=++,展开后利用基本不等式可求,()II 存在a ,(0,)b ∈+∞,使得21|1|3x a b-++成立,则结合()I 得|1|34x -+成立,解不等式可求.【解答】解:因为a ,(0,)b ∈+∞,且24a 222b a b +==, 所以21a b +=,212144()()(2)4428b a b I a b a b a b a b a +=++=+++=, 当且仅当4b a a b =且21a b +=,即14b =,12a =时取等号,故21a b+的最小值8, ()II 由21()I a b+的最小值4,又存在a ,(0,)b ∈+∞,使得21|1|3x a b-++成立, 所以|1|34x -+>, 所以|1|1x ->, 解得,2x >或0x <, 故x 的范围{|2x x >或0}x <.【点评】本题主要考查了利用基本不等式求解最值及不等式的存在性问题与最值的相互转化关系的应用,属于中档题.19.已知函数212log (1)&0()log (1)&0x x f x x x +⎧⎪=⎨-<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>;(3)若关于x 的方程23[()]()04f x af x a +-+-=有两个不相等的正根,求实数a 取值范围.【分析】(1)利用函数奇偶性的定义判断函数的奇偶性;(2)证明函数2log (1)y x =+在[0,)+∞上是严格增函数,结合函数的奇偶性可得12(1)y log x =-在(,0)-∞上也是严格增函数,从而()y f x =在R 上是严格增函数,由120x x +>,即可证明12()()0f x f x +>;(3)由(1)知,()y f x =是R 上的奇函数,故原方程可化为23[()]()04f x af x a -+-=,把原方程有两个不等正根转化为关于a 的不等式组求解. 【解答】解:(1)2(0)log (10)0f =+=.当0x >时,0x -<,有122()[1()](1)()f x log x log x f x -=--=-+=-,即()()f x f x -=-.当0x <时,0x ->,有212()[1()](1)()f x log x log x f x -=+-=--=-,即()()f x f x -=-.综上,函数()f x 是R 上的奇函数;证明:(2)函数2log y x =是(0,)+∞上的严格增函数,函数1u x =+在R 上也是严格增函数,故函数2log (1)y x =+在[0,)+∞上是严格增函数. 由(1)知,函数()y f x =在R 上为奇函数,由奇函数的单调性可知,12(1)y log x =-在(,0)-∞上也是严格增函数,从而()y f x =在R 上是严格增函数. 由120x x +>,得12x x >-,122()()()f x f x f x ∴>-=-,即12()()0f x f x +>;解:(3)由(1)知,()y f x =是R 上的奇函数,故原方程可化为23[()]()04f x af x a -+-=. 令()f x t =,则当0x >时,()0t f x =>,于是,原方程有两个不等正根等价于: 关于t 的方程23()04t at a -+-=有两个不等的正根.即234()04034a a a a ⎧=-->⎪⎪>⎨⎪⎪->⎩⇔1,3034a a a a ⎧⎪⎪>⎨⎪⎪>⎩或⇔314a <<或3a >. 因此,实数a 的取值范围是3(4,1)(3⋃,)+∞.【点评】本题考查函数奇偶性的判定及应用,考查函数的单调性,考查函数零点与方程根的关系,考查化归与转化思想,是中档题.20.已知函数()sin (cos )f x x x x =+. (1)求()3f π的值及函数()f x 的单调增区间;(2)若[12x π∀∈,]2π,不等式()2m f x m <<+恒成立,求实数m 的取值集合.【分析】(1)利用三角函数恒等变换的应用化简函数解析式,代入计算可求()3f π的值,结合正弦函数的单调性列出不等式解出单调区间;(2)求出()f x 在[12π,]2π上的值域,根据题意列出不等式组即可解出m 的范围.【解答】解:(1)211cos2()sin (cos )sin cos sin 2sin(2)223x f x x x x x x x x x π-====-,()sin(2)sin 3333f ππππ∴=⨯-==, 令222232x πππππ-+-+,解得51212xππππ-++,Z ∈.()f x ∴的单调递增区间是[12ππ-+,5]12ππ+,Z ∈. (2)[12x π∈,]2π,可得2[36x ππ-∈-,2]3π,∴当232x ππ-=时,()f x 取得最大值1,当236x ππ-=-时,()f x 取得最小值12-. ()2m f x m <<+恒成立,∴1221m m ⎧<-⎪⎨⎪+>⎩,解得112m -<<-.∴实数m 的取值范围是1(2-,1)-.【点评】本题考查了三角函数的恒等变换,三角函数的单调性,三角函数的值域,考查了转化思想和函数思想,属于中档题.21.已知函数()sin()(0f x A x B A ωϕ=++>,0ω>,||)2πϕ<在一个周期内的最高点和最低点分别为(2,1),(8,3)-. (1)求函数()f x 的表达式;(2)求函数()f x 在区间[0,6]的最大值和最小值;(3)将()y f x =图象上的点的横坐标变为原来的6tπ倍(0)t >,纵坐标不变,再向上平移1个单位得到()y g x =的图象.若函数()y g x =在[0,]π内恰有4个零点,求t 的取值范围. 【分析】(1)由最值求出A 、B ,由周期求ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)由题意利用正弦函数的定义域和值域,得出结论.(3)利用函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的解析式,再利用正弦函数的性值,求得t 的取值范围.【解答】解:(1)由题意可得,1A B +=,3A B -+=-,故2A =,1B =-.12822πω⋅=-,6πω∴=.根据五点法作图,262ππϕ⨯+=,6πϕ∴=,()2sin()166f x x ππ=+-. (2)[0x ∈,6],∴7[]6666x ππππ+∈, 故当662x πππ+=时,()f x 取得最大值为211-=;当7666x πππ+=时,()f x 取得最小值为12()122⨯--=-. (3)将()y f x =图象上的点的横坐标变为原来的6t π倍(0)t >,纵坐标不变, 可得62sin()12sin()1666t y x tx ππππ=⨯+-=+-的图象; 再向上平移1个单位得到()2sin()6y g x tx π==+的图象. 当[0x ∈,]π,[66tx ππ+∈,]6t ππ+, 若函数()y g x =在[0,]π内恰有4个零点,则456t ππππ+<, 求得232966t <. 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象和性质,属于中档题.22.已知函数()4cos sin()1()6f x x x x R π=-+∈,将函数()y f x =的图象向左平移6π个单位,得到函数()y g x =的图象.(1)求()3f π的值; (2)求函数()yg x =的解析式;(3)若0()2x f =0()g x . 【分析】(1)由题意利用三角恒等变换化简()f x 的解析式,可得()3f π的值.(2)由题意利用函数sin()y A x ωϕ=+的图象变换规律,得出结论.(3)由题意求得0sin()6x π-的值,再利用诱导公式、二倍角公式,求得0()g x 的值. 【解答】解:(1)函数2()4cos sin()1cos 2cos 12cos22sin(2)66f x x x x x x x x x ππ=-+=-+=-=-, 故()2sin 232f ππ==. (2)将函数()2sin(2)6y f x x π==- 的图象向左平移6π个单位, 得到函数()2sin(2)6y g x x π==+的图象,(3)若00()2sin()26x f x π==-,则0sin()6x π-= 000()2sin(2)2cos(2)2cos(63g x x x ππ∴=+=-=2002)2[12sin ()]36x x ππ-=⨯-- 32[12]14=-⨯=-. 【点评】本题主要考查三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,属于中档题.。

人教A版高一数学必修第一册全册复习训练题卷含答案解析(24)

人教A版高一数学必修第一册全册复习训练题卷含答案解析(24)

人教A 版高一数学必修第一册全册复习训练题卷(共22题)一、选择题(共10题)1. 已知全集 U ={1,2,3,4},集合 A ={2,3},集合 B ={1,3},则 A ∩(∁U B )= ( ) A . {3} B . {2} C . {2,3} D . {2,3,4}2. 已知函数 f (x )={x 2+4x,−3≤x ≤02x −3,x >0,若方程 f (x )+∣x −2∣−kx =0 有且只有三个不相等的实数集,则实数 k 的取值范围是 A . [−23,3−2√2) B . [−23,3+2√2) C . (−∞,−23]D . [−23,16]3. 已知函数 f (x )=√x +1+k ,若存在区间 [a,b ],使得函数 f (x ) 在区间 [a,b ] 上的值域为 [a +1,b +1],则实数 k 的取值范围为 ( ) A . (−1,+∞) B . (−1,0] C . (−14,+∞)D . (−14,0]4. 若 x >0,y >0,且 1x+4y =1,则 x +y 的最小值是 ( )A . 3B . 6C . 9D . 125. 若函数 f (x )=(1+√3tanx)cosx ,则 f (π12)= ( ) A .√6−√22B . −√3C . 1D . √26. 设正实数 x ,y 满足 x >12,y >1,不等式4x 2y−1+y 22x−1≥m 恒成立,则 m 的最大值为 ( )A . 2√2B . 4√2C . 8D . 167. 函数 y =12+sinx+cosx的最大值是 ( )A .√22−1 B . −√22−1 C . 1−√22D . 1+√228. 已知函数 f (x )={∣log 5(1−x )∣,x <1−(x −2)2+2,x ≥1,则方程 f (x +1x −2)=a (a ∈R ) 的实数根个数不可能为 ( ) A . 5 个 B . 6 个 C . 7 个 D . 8 个9. 将函数 y =sin (2x +π5) 的图象向右平移 π10 个单位长度,所得图象对应的函数 ( ) A .在区间 [3π4,5π4] 上单调递增 B .在区间 [3π4,π] 上单调递减C .在区间 [5π4,3π2] 上单调递增 D .在区间 [3π2,2π] 上单调递减10. 已知函数 f (x )={1−12∣1−x ∣,x ≤212f (x −2),2<x ≤6,则方程 xf (x )−1=0 的解得个数是 ( )A . 5B . 6C . 7D . 8二、填空题(共6题)11. 若函数 f (x )=sin (ωx +π6)(ω>0) 满足 f (0)=f (π3),且函数在 [0,π2] 上有且只有一个零点,则 f (x ) 的最小正周期为 .12. 已知函数 f (x )=√x −a ,若存在实数 x 0 满足 f [f (x 0)]=x 0,则实数 a 的取值范围是 .13. 已知 x,y ∈(0,+∞),x +2y =1,可以利用不等式 ax +1x ≥2√a 和 2ay +4y ≥4√2a (a >0) 求得 1x+4y 的最小值,则其中正数 a 的值是 .14. 设集合 A ={x∣ x >2},B ={x∣ x ≤a },若 A ∪B =R ,则 a 的取值范围是 .15. 已知 sinα+cosβ=1,cosα+sinβ=0,则 sin (α+β)= .16. 已知函数 f (x )=2[sinx ]+3[cosx ],x ∈[0,2π],其中 [x ] 表示不超过 x 的最大整数.例如:[1]=1,[0.5]=0,[−0.5]=−1. (1)f (2π3)= .(2)若 f (x )>x +a 对任意 x ∈[0,2π] 都成立,则实数 a 的取值范围是 .三、解答题(共6题)17. 设函数 f (x )=x 2+b ∣x −2∣+1(b ∈R ).(1) 当数列{f(n)}为单调递增数列时,求b的范围;(2) 当函数f(x)在区间[0,2]上有零点时,求b的范围;(3) 设f(x)在区间[0,2]上的最小值为g(b),求函数g(b)的表达式.,π].18.已知函数f(x)=√3sin2x+sinxcosx,x∈[π2(1) 求函数f(x)的零点;(2) 求函数f(x)的单调递减区间.19.(1) 若a∈R,解关于x的不等式:(x+a−2)(x+2a2−4a)≥0.(2) 若−1≤a≤2时,不等式(x+a−2)(x+2a2−4a)≥0恒成立,求x的取值范围.20.已知函数f(x)=m−2是R上的奇函数.2x+1(1) 求m的值;(2) 先判断f(x)的单调性,再证明.21.如图,一边靠学校院墙,其他三边用40m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x m,面积为S m2.求S与x之间的函数关系式,并求当S=200m2时x的值.22.已知函数f(x)=x∣x−m∣,x∈R,且f(3)=0.(1) 求实数m的值;(2) 作出函数f(x)的图象并直接写出f(x)单调递减区间.(3) 若不等式f(x)≥ax在[4,6]上都成立,求a的取值范围.答案一、选择题(共10题) 1. 【答案】B【知识点】交、并、补集运算2. 【答案】A【知识点】函数零点的概念与意义3. 【答案】D【知识点】函数的值域的概念与求法4. 【答案】C【解析】因为 x >0,y >0, 1x+4y =1,x +y =(x +y )(1x +1y )=1+4+y x +4x y=5+y x+4x y.由 x >0,y >0, yx +4x y≥2√y x ⋅4x y=4.当 y =2x =6 时等号成. 所以 x +y ≥5+4=9. 所以 x +y 的最小值为 9. 故选C .【知识点】均值不等式的应用5. 【答案】D【解析】因为f (x )=(1+√3⋅sinxcosx )cosx =cosx +√3sinx =2(12cosx +√32sinx)=2sin (x +π6),所以 f (π12)=2sin (π12+π6)=2sin π4=√2.【知识点】辅助角公式6. 【答案】C【解析】设y−1=b,则y=b+1,令2x−1=a,则x=12(a+1),因为x>12,y>1,所以a>0,b>0.所以4x2 y−1+y22x−1=(a+1)2b +(b+1)2a≥√ab =√ab=2(√ab +√ab√ab≥2(2√√ab√ab √ab √ab)=2×(2+2)=8.(当且仅当a=b=1即x=1,y=2时取等号).所以4x 2y−1+y22x−1的最小值为8,即m的最大值为8.【知识点】恒成立问题、均值不等式的应用7. 【答案】D【解析】y=12+sinx+cosx=2+√2sin(x+π4)≤2−√2=2+√22.【知识点】Asin(ωx+ψ)形式函数的性质8. 【答案】A【解析】作出f(x)的图象,如图所示.1∘当a>2时,x+1x −2≤−24或2425<x+1x−2<2,此时对应x的个数为4;2∘当a=2时,x+1x −2=−24或x+1x−2=2425或x+1x−2=2,此时对应x的个数为6;3∘当1<a<2时,−24<x+1x −2<−4或45<x+1x−2<2425或1<x+1x−2<2或2<x+1x−2<3,此时对应x的个数为8;4∘当a=1时,x+1x −2=−4或x+1x−2=45或x+1x−2=1或x+1x−2=3,此时对应x的个数为7;5∘当0<a<1时,−4<x+1x −2<0或0<x+1x−2<45或3<x+1x−2<2+√2,此时对应x的个数为4;6∘当a=0时,x+1x −2=0或x+1x−2=2+√2,此时对应x的个数为3;7∘当a<0时,x+1x−2>2+√2,此时对应x的个数为2.综上可知,实数根个数不可能为5个.故选A.【知识点】函数的零点分布9. 【答案】A【解析】将函数y=sin(2x+π5)的图象向右平移π10个单位长度后,得到函数y=sin2x的图象,函数y=sin2x的单调递增区间为[kπ−π4,kπ+π4],k∈Z,单调递减区间为[kπ+π4,kπ+3π4],k∈Z,故其在区间[3π4,5π4]上单调递增.【知识点】Asin(ωx+ψ)形式函数的性质、三角函数的图象变换10. 【答案】C【解析】方程xf(x)−1=0的解得个数,等价于函数y=f(x)与y=1x的图象交点的个数在同一坐标系作出y=f(x)与y=1x的图象,由图象可知,函数得零点个数为7.【知识点】函数的零点分布二、填空题(共6题)11. 【答案】π【解析】因为f(0)=f(π3),所以x=π6是f(x)图象的一条对称轴,所以f(π6)=±1,所以π6×ω+π6=π2+kπ,k∈Z,所以ω=6k+2,k∈Z,所以T=π3k+1(k∈Z).又f(x)在[0,π2]上有且只有一个零点,所以π6<T4≤π2−π6,所以2π3<T≤4π3,所以2π3<π3k+1≤4π3(T>0),所以−112≤k<16,又因为k∈Z,所以k=0,所以T=π.【知识点】Asin(ωx+ψ)形式函数的性质12. 【答案】a≤14【知识点】函数的零点分布13. 【答案】9+4√2【解析】ax+1x +2ay+4y=a(x+2y)+1x+4y=a+1x+4y.由基本不等式得ax+1x≥2√a,当且仅当ax=1x (x>0,a>0),即x=√a时,等号成立.由基本不等式得2ay+4y≥4√2a,当且仅当2ay=4y (y>0,a>0),即y=√2√a时,等号成立.由题意得,两个等号同时成立. 此时,x +2y =√a√2√a=√2√a=1,则 √a =1+2√2,所以 a =(1+2√2)2=9+4√2. 【知识点】均值不等式的应用14. 【答案】 a ≥2【知识点】交、并、补集运算15. 【答案】 −12【解析】由 {sinα+cosβ=1,cosα+sinβ=0⇒{sinα=1−cosβ,cosα=−sinβ⇒(1−cosβ)2+(−sinβ)2=1⇒1−2cosβ+cos 2β+sin 2β=1⇒cosβ=12. 从而 sin (α+β)=sinαcosβ+cosαsinβ=(1−cosβ)⋅cosβ+(−sinβ)sinβ=cosβ−cos 2β−sin 2β=cosβ−1=12−1=−12.【知识点】两角和与差的正弦16. 【答案】 43; (−∞,32−2π]【解析】(1)f (2π3)=2[sin 23π]+3[cos2π3],因为 sin2π3=√32, 所以 [sin 2π3]=[√32]=0, 因为 cos2π3=−12,所以 [cos2π3]=[−12]=−1,所以 f (2π3)=20+3−1=1+13=43.(2)① x =0 或 x =2π 时,sinx =0,cosx =1, 即 [sinx ]=0,[cosx ]=1,所以f(x)=20+31=4,若x=0,则a<4;若x=2π,则4>2π+a,即a<4−2π;② 0<x<π2时,sinx∈(0,1),cosx∈(0,1),即[sinx]=[cosx]=0,所以f(x)=20+30=2,因为f(x)>x+a恒成立,所以a<2−x,即a≤2−π2;③ x=π2时,sinx=1,cosx=0,即[sinx]=1,[cosx]=0,所以f(x)=21+30=3,因为f(x)>x+a恒成立,所以a<3−x即a<3−π2;④ π2<x≤π时,sinx∈[0,1),cosx∈[−1,0),即[sinx]=0,[cosx]=−1,所以f(x)=20+3−1=43,因为f(x)>x+a恒成立,所以a<43−x,即a<43−π;⑤ π<x<3π2时,sinx∈(−1,0),cosx∈(−1,0),即[sinx]=[cosx]=−1,所以f(x)=2−1+3−1=12+13=56,因为f(x)>x+a恒成立,所以a<56−x,即a≤56−3π2;⑥ 3π2≤x<2π时,sinx∈[−1,0),cosx∈[0,1),即[sinx]=−1,[cosx]=0,所以f(x)=2−1+30=12+1=32,因为f(x)>x+a恒成立,所以a<32−x,即a≤32−2π,因为 3−π2>2−π2,4−π>4−2π>32−2π,且 2−π2>3π2−2π, 所以 a ≤32−2π,即 a 的取值范围是 (−∞,32−2π].【知识点】指数函数及其性质三、解答题(共6题)17. 【答案】(1) f (x )=x 2+b ∣x −2∣+1={x 2+bx −2b +1,x ≥2x 2−bx +2b +1,x <2, 当数列 {f (n )} 为单调递增时,{b 2≤52,f (2)>f (1), 即 {b ≤5,5>2+b, 解得 b <3,故 b 的取值范围是 (−∞,3).(2) 当 x ∈[0,2] 时,f (x )=x 2−bx +2b +1,若函数 f (x ) 在区间 [0,2] 上有零点,则 f (0)⋅f (2)<0 或 { 0<b 2<2,Δ=b 2−4(2b +1)>0,f (0)>0,f (2)>0,所以 2b +1<0 或 {0<b <4,b 2−8b −4>0,2b +1>0,当 2b +1<0 时,b <−12; 当 {0<b <4,b 2−8b −4>0,2b +1>0时,不等式组无解,综上,b 的范围为 (−∞,−12).(3) 当 b ≤−4 时,−b 2≥2,b 2≤−2,则函数 f (x ) 在 (−∞,b 2) 递减,在 (b 2,2) 递增,在 (2,−b 2) 递减,在 (−b 2,+∞) 递增,因为 f (b 2)=−b 24+2b +1,f (−b 2)=−b 24−2b +1,f (b 2)<f (−b 2), 所以 f (x ) 的最小值为 −b 24+2b +1;当 −4<b <4 时,−2<−b 2<2,−2<b 2<2,则函数 f (x ) 在 (−∞,b 2) 递减,在 (b 2,2) 递增,在 (2,+∞) 递增,所以 f (x ) 的最小值为 f (b 2)=−b 24+2b +1; 当 b ≥4 时,−b 2≤−2,b 2≥2,则函数 f (x ) 在 (−∞,2) 递减,在 (2,+∞) 递增,所以 f (x ) 的最小值为 f (2)=5,综上所述,当 b <4 时,f (x ) 的最小值为 −b 24+2b +1; 当 b ≥4 时,f (x ) 的最小值为 5,故 g (b )={−b 24+2b +1,b <45,b ≥4.【知识点】函数的零点分布、函数的最大(小)值、绝对值不等式的求解18. 【答案】(1) f (x )=√3sin 2x +sinxcosx=√3⋅1−cos2x 2+12sin2x =12sin2x −√32cos2x +√32=sin (2x −π3)+√32. 由 f (x )=0,得 sin (2x −π3)+√32=0,得 sin (2x −π3)=−√32, 因为 x ∈[π2,π],所以 2x −π3∈[2π3,5π3],所以 2x −π3=4π3 或 2x −π3=5π3, 则 x =5π6或 x =π. (2) 由 π2+2kπ≤2x −π3≤3π2+2kπ,得 5π12+kπ≤x ≤11π12+kπ,k ∈Z .因为x∈[π2,π],所以函数f(x)的单调递减区间为[π2,11π12].【知识点】Asin(ωx+ψ)形式函数的性质19. 【答案】(1) 原不等式即:[x−(2−a)]×[x−(4a−2a2)]≥0,方程[x−(2−a)]×[x−(4a−2a2)]=0的二根为2−a,4a−2a2,令2−a<4a−2a2即2a2−5a+2<0,解得12<a<2,所以当12<a<2时,原不等式解集为{x∣ x≥4a−2a2或x≤2−a}.令2−a=4a−2a2即2a2−5a+2=0,解得a=12或a=2,所以当a=12或a=2时,原不等式解集为R.令2−a>4a−2a2即2a2−5a+2>0,解得a<12或a>2,所以当a<12或a>2时,原不等式解集为{x∣ x≥2−a或x≤4a−2a2}.(2) 因为−1≤a≤2,所以0≤2−a≤3,因为4a−2a2=−2(a−1)2+2,所以−6≤4a−2a2≤2,所以当−1≤a≤2时,2−a,4a−2a2二式的最小值为−6,最大值为3.所以欲使−1≤a≤2时,不等式[x−(2−a)]×[x−(4a−2a2)]≥0恒成立,应有x≤−6或x≥3.【知识点】恒成立问题、二次不等式的解法20. 【答案】(1) 据题意,得f(0)=0,则m=1.(2) f(x)在R上单调递增.证明如下:任取x1,x2∈R且x1<x2,f(x2)−f(x1)=−22x2+1+22x1+1=2(2x2−2x1)(2x2+1)(2x1+1).因为x2>x1,所以2x2>2x1,又(2x2+1)(2x1+1)>0,所以f(x2)−f(x1)>0⇒f(x2)>f(x1).故 f (x ) 在 R 上单调递增.【知识点】指数函数及其性质、函数的单调性、函数的奇偶性21. 【答案】 S =x (40−2x ),0<x <20,S =200 时,x =10.【知识点】函数模型的综合应用22. 【答案】(1) 因为 f (x )=x ∣x −m ∣,由 f (3)=0 得 4×∣3−m ∣=0,即 ∣3−m ∣=0,解得:m =3;故实数 m 的值为 3.(2) 由(1)得 f (x )=x ∣x −3∣,即 f (x )={x 2−3x,x ≥33x −x 2,x <3, 则函数的图象如图所示:单调递减区间为:(32,3). (3) 由题意得 x 2−3x ≥ax 在 [4,6] 上都成立,即 x −3≥a 在 [4,6] 上都成立,即 a ≤x −3 在 [4,6] 上都成立,当 4≤x ≤6 时,(x −3)min =1,所以 a ≤1.故实数 a 的取值范围为 (−∞,1].【知识点】函数的最大(小)值、分段函数、函数的单调性。

高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

高中数学 期末检测试卷(B)精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

期末检测试卷(B)C .充要条件D .既不充分又不必要条件8.设f (x )为偶函数,且x ∈(0,1)时,f (x )=-x +2,则下列说法正确的是( )A .f (0.5)<f ⎝ ⎛⎭⎪⎫π6B .f ⎝⎛⎭⎪⎫sin π6>f (sin 0.5)C .f (sin 1)<f (cos 1)D .f (sin 2)>f (cos 2)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下面各式中,正确的是( )A .sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+32cos π4B .cos 5π12=22sin π3-cos π4cos π3C .cos ⎝ ⎛⎭⎪⎫-π12=cos π4cos π3+64D .cos π12=cos π3-cos π4 10.函数f (x )=log a |x -1|在(0,1)上是减函数,那么( ) A .f (x )在(1,+∞)上递增且无最大值 B .f (x )在(1,+∞)上递减且无最小值 C .f (x )在定义域内是偶函数 D .f (x )的图象关于直线x =1对称 11.下面选项正确的有( ) A .存在实数x ,使sin x +cos x =π3B .α,β是锐角△ABC 的内角,是sin α>cos β的充分不必要条件C .函数y =sin ⎝ ⎛⎭⎪⎫23x -7π2是偶函数D .函数y =sin 2x 的图象向右平移π4个单位,得到y =sin ⎝⎛⎭⎪⎫2x +π4的图象12.若函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象不可以是( )三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若扇形的面积为3π8、半径为1,则扇形的圆心角为________.14.设x >0,y >0,x +y =4,则1x +4y的最小值为________.15.定义在R 上的函数f (x )满足f (x )=3x -1(-3<x ≤0),f (x )=f (x +3),则f (2 019)=________.16.函数f (x )=⎩⎪⎨⎪⎧2x,x ≥0-x 2-2x +1,x <0,函数f (x )有________个零点,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值X 围是________.(本题第一空2分,第二空3分)四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数f (x )=6+x +ln(2-x )的定义域为A ,集合B ={x |2x>1}. (1)求A ∪B ;(2)若集合{x |a <x <a +1}是A ∩B 的子集,求a 的取值X 围.18.(12分)已知sin ⎝ ⎛⎭⎪⎫β-π4=15,cos (α+β)=-13,其中0<α<π2,0<β<π2. (1)求sin 2β的值; (2)求cos ⎝ ⎛⎭⎪⎫α+π4的值.19.(12分)已知f (x )=⎩⎪⎨⎪⎧2x+1,x ≤0,log 2x +1,x >0.(1)作出函数f (x )的图象,并写出单调区间;(2)若函数y =f (x )-m 有两个零点,某某数m 的取值X 围.期末检测试卷(B)1.解析:因为A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2xx -2>1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +2x -2>0={x |x <-2或x >2},B ={x |1<2x <8}={x |0<x <3},因此A ∩B ={x |2<x <3}.故选A.答案:A2.解析:要使f (x )有意义,则⎩⎪⎨⎪⎧x +3≥0,x +1≠0,解得x ≥-3,且x ≠-1,∴f (x )的定义域为{x |x ≥-3,且x ≠-1}. 答案:A3.解析:sin 140°cos 10°+cos 40°sin 350° =sin 40°cos 10°-cos 40°sin 10° =sin (40°-10°)=sin 30°=12.答案:C4.解析:∵f (2)=log 32-1<0,f (3)=log 33+27-9=19>0,∴f (2)·f (3)<0,∴函数在区间(2,3)上存在零点. 答案:C5.解析:若命题p 是假命题,则“不存在x 0∈R ,使得x 20+2ax 0+a +2≤0”成立, 即“∀x ∈R ,使得x 2+2ax +a +2>0”成立,所以Δ=(2a )2-4(a +2)=4(a 2-a -2)=4(a +1)(a -2)<0,解得-1<a <2, 所以实数a 的取值X 围是(-1,2),故选B. 答案:B6.解析:x =ln π>ln e=1,y =log 52<log 55=12,z =1e >14=12,且z <1,故y <z <x . 答案:C7.解析:因为函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象,所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ+π3, 因为g (x )为偶函数,所以φ+π3=π2+k π(k ∈Z ),即φ=π6+k π(k ∈Z ),因为φ=π6可以推导出函数g (x )为偶函数,而函数g (x )为偶函数不能推导出φ=π6,所以“φ=π6”是“g (x )为偶函数”的充分不必要条件.答案:A8.解析:x ∈(0,1)时,f (x )=-x +2,则f (x )在(0,1)上单调递减,A :0.5<π6,所以f (0.5)>f ⎝ ⎛⎭⎪⎫π6,A 错误;B :0.5<π6,∴0<sin 0.5<sin π6<1,∴f ⎝ ⎛⎭⎪⎫sin π6<f (sin 0.5),B 错误;C :∵0<cos 1<sin 1<1,∴f (sin 1)<f (cos 1),C 正确;D :-1<cos2<0,f (cos 2)=f (-cos 2),sin 2-(-cos 2)=sin 2+cos 2=2sin ⎝⎛⎭⎪⎫2+π4>0,所以1>sin2>(-cos 2)>0,所以f (sin 2)<f (-cos 2)=f (cos 2),D 错误.故选C.答案:C9.解析:∵sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=sin π4cos π3+32cos π4,∴A 正确;∵cos 5π12=-cos 7π12=-cos ⎝ ⎛⎭⎪⎫π3+π4=22sin π3-cos π4cos π3,∴B 正确;∵cos ⎝ ⎛⎭⎪⎫-π12=cos ⎝ ⎛⎭⎪⎫π4-π3=cos π4cos π3+64,∴C 正确;∵cos π12=cos ⎝ ⎛⎭⎪⎫π3-π4≠cos π3-cos π4,∴D 不正确.故选ABC.答案:ABC10.解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x |x ≠1}.设g (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x >1-x +1,x <1,则g (x )在(-∞,1)上为减函数,在(1,+∞)上为增函数,且g (x )的图象关于直线x =1对称,所以f (x )的图象关于直线x =1对称,D 正确;因为f (x )=log a |x -1|在(0,1)上是减函数,所以a >1,所以f (x )=log a |x -1|在(1,+∞)上递增且无最大值,A 正确,B 错误; 又f (-x )=log a |-x -1|=log a |x +1|≠f (x ),所以C 错误.故选AD. 答案:AD11.解析:A 选项:sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,则sin x +cos x ∈[-2, 2 ].又-2<π3<2,∴存在x ,使得sin x +cos x =π3,可知A 正确; B 选项:∵△ABC 为锐角三角形,∴α+β>π2,即α>π2-β∵β∈⎝ ⎛⎭⎪⎫0,π2,∴π2-β∈⎝ ⎛⎭⎪⎫0,π2,又α∈⎝ ⎛⎭⎪⎫0,π2且y =sin x 在⎝ ⎛⎭⎪⎫0,π2上单调递增∴sin α>sin ⎝ ⎛⎭⎪⎫π2-β=cos β,可知B 正确;C 选项:y =sin ⎝ ⎛⎭⎪⎫23x -7π2=cos 2x 3,则cos2-x 3=cos 2x 3,则y =sin ⎝ ⎛⎭⎪⎫23x -7π2为偶函数,可知C 正确;D 选项:y =sin 2x 向右平移π4个单位得:y =sin 2⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫2x -π2=-cos 2x ,可知D 错误.本题正确选项ABC.答案:ABC12.解析:函数y =log a (|x |-1)是偶函数,定义域为(-∞,-1)∪(1,+∞), 由函数f (x )=a x-a -x(a >0且a ≠1)在R 上为减函数, 得0<a <1.当x >1时,函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,结合各选项可知只有D 选项符合题意.故选ABC.答案:ABC13.解析:设扇形的圆心角为α,则∵扇形的面积为3π8,半径为1,∴3π8=12·α·12,∴α=3π4. 答案:3π414.解析:∵x +y =4,∴1x +4y =14⎝ ⎛⎭⎪⎫1x +4y (x +y )=14⎝ ⎛⎭⎪⎫5+y x +4x y ,又x >0,y >0,则y x+4xy≥2y x ·4x y =4⎝ ⎛⎭⎪⎫当且仅当y x =4x y ,即x =43,y =83时取等号, 则1x +4y ≥14×(5+4)=94. 答案:9415.解析:∵f (x )=f (x +3), ∴y =f (x )表示周期为3的函数, ∴f (2 019)=f (0)=3-1=13.答案:1316.解析:作出函数f (x )的图象如下图所示,由图象可知,函数f (x )有且仅有一个零点,要使函数y =f (x )-m 有三个不同的零点,则需函数y =f (x )与函数y =m 的图象有且仅有三个交点,则1<m <2.答案:1 (1,2)17.解析:(1)由⎩⎪⎨⎪⎧6+x ≥02-x >0得,-6≤x <2;由2x>1得,x >0;∴A =[-6,2),B =(0,+∞);∴A ∪B =[-6,+∞); (2)A ∩B =(0,2);∵集合{x |a <x <a +1}是A ∩B 的子集; ∴⎩⎪⎨⎪⎧a ≥0a +1≤2;解得0≤a ≤1;∴a 的取值X 围是[0,1].18.解析:(1)因为sin ⎝ ⎛⎭⎪⎫β-π4=22(sin β-cos β)=15,所以sin β-cos β=25, 所以(sin β-cos β)2=sin 2β+cos 2β-2sin βcos β=1-sin 2β=225,所以sin 2β=2325.(2)因为sin ⎝ ⎛⎭⎪⎫β-π4=15,cos(α+β)=-13, 其中0<α<π2,0<β<π2,所以cos ⎝ ⎛⎭⎪⎫β-π4=265,sin(α+β)=223, 所以cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=cos(α+β)cos ⎝⎛⎭⎪⎫β-π4+sin(α+β)sin ⎝⎛⎭⎪⎫β-π4=⎝ ⎛⎭⎪⎫-13×265+223×15=22-615.19.解析:(1)画出函数f (x )的图象,如图所示:由图象得f (x )在(-∞,0],(0,+∞)上单调递增. (2)若函数y =f (x )-m 有两个零点, 则f (x )和y =m 有2个交点,结合图象得1<m ≤2. 20.解析:(1)f (x )=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎪⎫2x +π6.所以f (x )的最小正周期为T =2π2=π.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值1;当2x +π6=7π6,即x =π2时,f (x )取得最小值-12.21.解析:(1)由题意可得处理污染项目投放资金为(100-x )百万元, 所以N (x )=0.2(100-x ),所以y =50x10+x +0.2(100-x ),x ∈[0,100].(2)由(1)可得,y =50x 10+x +0.2(100-x )=70-⎝ ⎛⎭⎪⎫50010+x +x 5=72-⎝⎛⎭⎪⎫50010+x +10+x 5≤72-20=52,当且仅当50010+x =10+x5,即x =40时等号成立.此时100-x =100-40=60.∴y 的最大值为52百万元,分别投资给植绿护绿项目、污染处理项目的资金为40百万元,60百万元.22.解析:(1)若y =f k (x )是偶函数,则f k (-x )=f k (x ),即2-x+(k -1)·2x =2x+(k -1)·2-x即2-x -2x =(k -1)·2-x -(k -1)·2x =(k -1)(2-x -2x),则k -1=1,即k =2; (2)∵f 0(x )+mf 1(x )≤4,即2x -2-x +m ·2x ≤4,即m 2x ≤4-2x +2-x, 则m ≤4-2x+2-x2x=4·2-x +(2-x )2-1,设t =2-x, ∵1≤x ≤2,∴14≤t ≤12.word- 11 - / 11 设4·2-x +(2-x )2-1=t 2+4t -1,则y =t 2+4t -1=(t +2)2-5, 则函数y =t 2+4t -1在区间⎣⎢⎡⎦⎥⎤14,12上为增函数, ∴当t =12时,函数取得最大值y max =14+2-1=54,∴m ≤54. 因此,实数m 的取值X 围是⎝⎛⎦⎥⎤-∞,54; (3)f 0(x )=2x -2-x ,f 2(x )=2x +2-x ,则f 2(2x )=22x +2-2x =(2x -2-x )2+2, 则g (x )=λf 0(x )-f 2(2x )+4=λ(2x -2-x )-(2x -2-x )2+2,设t =2x -2-x ,当x ≥1时,函数t =2x -2-x 为增函数,则t ≥2-12=32, 若y =g (x )在[1,+∞)有零点,即g (x )=λ(2x -2-x )-(2x -2-x )2+2=λt -t 2+2=0在t ≥32上有解,即λt =t 2-2,即λ=t -2t, ∵函数y =t -2t 在⎣⎢⎡⎭⎪⎫32,+∞上单调递增,则y min =32-2×23=16,即y ≥16.∴λ≥16,因此,实数λ的取值X 围是⎣⎢⎡⎭⎪⎫16,+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010/2011学年度第一学期高一数学期末考试试题卷(时间:120分钟满分150分)一、选择题(本大题共10道题,每小题5分,共50分)1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则(C U M)∩(C U N)=()A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,8} 2函数)23(log 21-=x y 的定义域是()A .[)+∞,1B .),32(+∞C .⎥⎦⎤⎢⎣⎡1,32D .(32,1) 3已知点P (ααcos ,tan )在第三象限,则角α在()A .第一象限B .第二象限C .第三象限D .第四象限4已知a r 与b r均为单位向量,它们的夹角为60︒,那么|3|a b -r r 等于() A 7 B 10C 13D .45.函数)sin(ϕω+=x A y 在一个周期内的图象如右图所示,此函数的解析式为() A .)322sin(2π+=x y B .)32sin(2π+=x yC .)32sin(2π-=x y D .)32sin(2π-=x y6.幂函数y =x -1及直线y =x ,y =1,x =1将平面直角坐标系 的第一象限分成八个“卦限”:①、②、③、④、⑤、⑥、⑦、⑧(如右图所示),那么幂函数y =x 21的图象经过的“卦限”是() A .④⑦ B .④⑧C .③⑧D .①⑤7.将函数sin()3y x π=-的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为() A .1sin()26y x π=- B .1sin()23y x π=-C .1sin 2y x =D .sin(2)6y x π=-8.下列各式中,值为12的是() A .0sin15cos15B .22cossin 1212ππ-C .6cos 2121π+D .020tan 22.51tan 22.5- 9.已知βα,为锐角,且cos α=101,cos β=51,则βα+的值是()A .π32B .π43C .4πD .3π 10.函数f (x )=x e x1-的零点所在的区间是()A .(0,21)B .(21,1)C .(1,23)D .(23,2)二、填空题(本大题共5道题,每小题5分,共25分)11.函数)(x f 为奇函数,且0,1)(>+=x x x f ,则当0<x 时,_____)(=x f12.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.13.若f (x )=⎩⎨⎧≥<+-)1(,log )1(,4)13(x x x a x a a是(-∞,+∞)上的减函数,则a 的取值范围是__14.设函数x y π21cos=的图象位于y 轴右侧所有的对称中心从左依次为ΛΛΛ,,,21n A A A ,则50A 的坐标是 。

15.下列6个命题中 (1)第一象限角是锐角 (2)角终边经过点(a,a)(a 0)时,sin +cos =2(3)若=y 21)sin(x ϖ的最小正周期为π4,则21=ϖ (4)若1)cos(-=+βα,则0sin )2sin(=++ββα (5)若∥,则有且只有一个实数λ,使λ=。

(6)若定义在R 上函数)(x f 满足)()1(x f x f -=+,则)(x f y =是周期函数 请写出正确命题的序号 。

三、解答题(共6大题,共75分答题应写出文字说明,证明过程或演算步骤。

)16.集合}015|{2=+-=px x x A 和}0|{2=--=b ax x x B ,若}5,3,2{=B A Y ,}3{=B A I ,分别求实数p 、a 、b 的值。

17.阅读与理解:给出公式:sin()sin cos cos sin αβαβαβ+=+;cos()cos cos sin sin αβαβαβ-=+; 我们可以根据公式将函数x x x g cos 3sin )(+=化为:)3sin(2)3sin cos 3cos (sin 2)cos 23sin 21(2)(πππ+=+=+=x x x x x x g(1)根据你的理解将函数()sin cos()6f x x x π=+-化为()sin()f x A x ωϕ=+的形式.(2)求出上题函数()f x 的最小正周期、对称中心. (3)求函数在区间]2,0[π上的最大值、最小值及相应的x 的值。

18设1(1,cos 2),(2,1),(4sin ,1),(sin ,1)2a b c d θθθ====r r r u r 其中(0,)4πθ∈.(1)求a b c d ⋅-⋅r r r u r的取值范围;(2)若()f x =()()2f a b f c d ⋅+⋅=+r r r u r ,求cos sin θθ-的值.19.函数2()||21f x ax x a =-+-(a 为实常数).(1)若1a =,求()f x 的单调区间;(2)若0a >,设()f x 在区间[1,2]的最小值为()g a ,求()g a 的表达式20.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/210kg )与上市时间t (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系,并说明选取该函数的理由。

b at Q +=,c t at Q +-=232,t b a Q ⋅=,t a Q b log ⋅=(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本。

21已知函数1()log 1amxf x x -=-(0,1,1)a a m >≠≠是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈-时,函数()f x 的值域是(1,)+∞,求实数a 与n 的值2010/2011学年度第一学期高一数学期末考试参考答案(时间:120分钟满分150分)一、选择题(本大题共10道题,每小题5分,共50分)二、填空题(本大题共5道题,每小题5分,共25分)11.1---x 12. -313.)31,71[14. (99,0)15. (4)(6)三、解答题(本大题共6道题,答题应写出文字说明,证明过程或演算步骤,共75分)16.(本小题满分10分)解:因为}3{=B A I ,所以A ∈3,从而可得p =8,所以A ={3,5}……4分 又由于B ∈3,且}5,3,2{=B A Y ,所以B ={2,3}…………….6分 所以方程02=--b ax x 的二根为2和3。

由韦达定理可得a =5,b =-6综上可知p =8,a =5,b =-6……………………………………..10分17.①())6f x x π=+…………………………………………………………4分② T=2π,……………………………………………………………………………6分 中心(,0),()6k k Z ππ-∈,………………………………………………………………8分③)(x f 的最大值为3,相应的x 值为3π………………………………………………10分 )(x f 的最小值为23,相应的x 的值为0…………………………………………12分18.(本小题满分12分)解:θ2cos 2+=⋅b a 1sin 22+=⋅θd c ……2分(1)θθθθθ2cos 2sin 212cos 1sin 22cos 222=-+=--+=⋅-⋅d c b a……4分∵)4,0(πθ∈∴)2,0(2cos 2∈θ即⋅-⋅的取值范围是(0,2)……6分(2)()cos |f a b θθ⋅====r r()sin |f c d θθ⋅===r u r …………………..10分2226)sin (cos 2)()(+=+=⋅+⋅θθf f 2123sin cos +=+θθθθθθcos sin 21231)sin (cos 2+=+=+232sin =θ因为)4,0(πθ∈所以32πθ=6πθ= 故2123sin cos -=-θθ………………………..12分 19、解:(1)1=a ⎪⎪⎩⎪⎪⎨⎧<++≥+-=⎪⎩⎪⎨⎧<++≥+-=+-=0,43)21(0,43)21(0,10,11||)(22222x x x x x x x x x x x x x f …2分∴)(x f 的单调增区间为(+∞,21),(-21,0) )(x f 的单调减区间为(-21,-∞),(21,0)…………………………6分(2)由于0>a ,当x ∈[1,2]时,1412)21(12)(22--+-=-+-=aa a x a a x ax x f101210<<a 即21>a 为增函数在]2,1[)(x f23)1()(-==a f a g202211≤≤a 即,2141时≤≤a 1412)21()(--==aa a f a g 30221>a 即410<<a 时上是减函数在]2,1[)(x f36)2()(-==a f a g综上可得⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤≤--<<-=21,232141,1412410,36)(a a a a a a a a g ……11分所以实数a 的取值范围是]1,21[-………………….13分20.(本小题满分14分)解:(1)由提供得数据知道,描述西红柿种植成本Q 与上市时间t 的变化关系得函数不可能是常熟函数,从而选取函数b at Q +=,tb a Q ⋅=,t a Q b log ⋅=时总有0≠a ,而此时上述三个函数均为单调函数,这与表格提供得数据不吻合,所以,选取二次函数c t at Q +-=232进行描述。

将表格所提供的三组数据分别代入c bt at Q ++=2得到22252320012+-=t t Q ……………………………7分 (2)由二次函数的知识可以知道,当150=t 天时,西红柿种植成本最低为100元/210kg ……………………………………………………………14分21解:(1)由已知条件得()()0f x f x -+=对定义域中的x 均成立.…………………………………………1分 ∴11log log 011aa mx mxx x +-+=--- 即11111mx mx x x +-⋅=--- ∴22211m x x -=-对定义域中的x 均成立. ∴21m =即1m =(舍去)或1m =-.…………………………………………4分(2)由(1)得1()log 1axf x x +=- 设11221111x x t x x x +-+===+---, ∴当121x x >>时,211212122()2211(1)(1)x x t t x x x x --=-=---- ∴12t t <.…………………………………………6分当1a >时,12log log a a t t <,即12()()f x f x <.∴当1a >时,()f x 在(1,)+∞上是减函数.…………………………………………8分同理当01a <<时,()f x 在(1,)+∞上是增函数.…………………………………10分 (3)Q 函数()f x 的定义域为(1,)(,1)+∞⋃-∞-,∴①21n a <-≤-,∴01a <<. ∴()f x 在(,2)n a -为增函数,要使值域为(1,)+∞,则1log 1121an n a +⎧=⎪-⎨⎪-=-⎩(无解) ②12n a ≤<-,∴3a >.∴()f x 在(,2)n a -为减函数,要使()f x 的值域为(1,)+∞,则11log 13a n a a =⎧⎪-⎨=⎪-⎩∴2a =+1n =.…………………………………………14分。

相关文档
最新文档