华师大版七年级数学下册第1课时 等式的基本性质.docx

合集下载

华师大版七年级数学下册电子课本课件【全册】

华师大版七年级数学下册电子课本课件【全册】
华师大版七年级数学下册电子课 本课件【全册】目录
0002页 0034页 0064页 0077页 0115页 0144页 0158页 0176页 0214页 0248页 0275页 0328页 0348页 0377页 0428页 0508页 0510页
第6章 一元一次方程 6.2 解一元一次方程 2 解一元一次方程 6.3 实践与探索 7.1 二元一次方程组和它的解 *7.3 三元一次方程组及其解法 阅读材料 鸡兔同笼 8.1 认识不等式 1 不等式的解集 3 解一元一次不等式 阅读材料 等于与不等号的由来 第9章 多边形 1 认识三角形 3 三角形的三边关系 9.3 用正多边形铺设地面 2 用多钟正多边形 第10章 轴对称、平移与旋转
第6章 一元一次方程
华师大版七年级数学下册电子课本 课件【全册】

6.1 从实际问题到方程
华师大版七年级数学下册电子课本 课件【全册】
6.2 解一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
1 等式的性质与方程的简单变 形
华师大版七年级数学下册电子课本 课件【全册】
2 解一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
阅读材料 丢番图的墓志铭与方 程
华师大版七年级数学下册电子课本 课件【全册】

2019新华师大版数学七年级下册课件:等式的基本性质

2019新华师大版数学七年级下册课件:等式的基本性质
6.2 解一元一次方程
6.2.1 等式的性质与方程的 简单变形课堂
华师·七年级下册·数学
知识点❶ 等式的基本性质1 1.等式两边都加上减(或去都______数__)同一个____整_式___或同 一个________,所得结果仍是等式;用b字+母c 表示:如果a b-c=b,那么a+c=________,a-c=________.
边”“同一个”. 2.在运用等式性质2时要注意左、右两边除以的数不能为 0,特别是将等式两边同时除以一个含有字母的式子时,
会忽略式子的值为0而出现错误.
2.(1)如果m-2=n-2,n那么m=________,其依据是
1 等式的基本性质_____2___,将等式的两边都加上
_2 _______;
1
(2)由等式减4x去=3x+2可得x=________,是依据等式的基 本性3x质________,将等式两边都________.
3.下列等式的变形:①由a=b得a+1=b+1;②由m+
2a=n+2a得m=n;③由x=y得x+y=2y;④由3x=x+4
得2x=A 4;⑤由11x-2=10x得x=2.其中正确的有( )
A.5个
B.4个
C.3个
D.2个
知识点❷ 等式的基本性质2 D
y
3
1/3
4
4
1/4
2 2
D
B
C B
D C
b-4
-2b
0
35
a≠0 a≠1
x的值为0
加上2y
6 2x
4
1
5
(1)因为2x2-3=5,所以2x2=8,所以x2= 4,所以x2+3=7,即x2+3的值为7 (2)因为2m+3与-5互为相反数,所以2m+3 =5,所以2m=2,所以m=1,所以m-2=- 1,即m-2的值为-1

(新课标)华东师大版七年级数学下册《等式的性质》同步练习题

(新课标)华东师大版七年级数学下册《等式的性质》同步练习题

2017-2018学年(新课标)华东师大版七年级下册第1课时 等式的基本性质1.由等式3a -5=2a +6得到a =11的变形是( )A .等式两边都除以3B .等式两边都加上5C .等式两边都加上(2a -5)D .等式两边都减去(2a -5)2.下列等式变形不正确的是( )A .若4x =5x +2,则x =2B .若6x =5x -2,则x =-2C. 若3x =x +4,则2x =4D .若x -3=5,则x =83.若m +2n =p +2n ,则m =____,依据是__________________,它是将等式的两边都________.4.把方程12x =1变形为x =2,其依据是( )A.等式的基本性质1 B.等式的基本性质2 C.乘法的交换律D.加法的结合律5.下列运用等式的性质对等式进行变形,正确的是( )A.由-x4=0,得x=4 B.由-12x=-14,得x=12C.由-2x=6,得x=3 D.由3x=2,得x=3 26.下列变形正确的是( )A.若ac=bc,则a=b B.若2x=3,则x=2 3C.若x=2,则x2=2x D.若2x=-2x,则2=-2 7.从等式ac=bc变形得到a=b,则c必须满足条件________.8.下列根据等式的性质变形正确的是( )A.由-13x=23y,得x=2y B.由3x-2=2x+2,得x=4C.由2x-3=3x,得x=3 D.由3x-5=7,得3x=7-5 9.下列判断错误的是( )A.若a=3,则a-3=0B.若a=b,则ac=bc C.若2x=3y,则2x+y=4yD.若3x=5y,则x3=y510.已知a=b,则下列等式不成立的是( )A.a+1=b+1 B.a5+4=b5+4C.-4a-1=-1-4b D.1-2a=2b-1 11.根据等式的性质,下列变形正确的是( ) A.若x=y,则x-5=y+5B.若a=b,则ac-1=bc-1C.若ac=bc,则2a=2bD.若x=y,则xa2=ya212.已知等式3a=2b+5,则下列等式中不一定成立的是( ) A.3a-5=2b B.3a+1=2b+6C.3ac=2bc+5 D.a=23b+5313.下列说法正确的是( )A .在等式ab =ac 的两边同时除以a ,可得b =cB .在等式a =b 的两边同时除以c 2+1,可得a c 2+1=b c 2+1 C .在等式b a =c a的两边同时除以a ,可得b =c D .在等式x -2=6的两边同时加2,可得x =614.已知x =y ≠-12,且xy ≠0.下列各式:①x -3=y -3;②5x =y 5;③x 2y +1=y 2x +1;④2x +2y =0.其中一定正确的有( ) A .1个 B .2个 C .3个 D .4个15.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明是根据等式的哪一条性质变形得到的.(1)如果-x 10=y 5,那么x =_______,根据___________________; (2)如果23x =4-13x ,那么x =____,根据______________________. 16.在横线上填上适当的数或式子:(1)如果a +3=b -1,那么a +4=_____;(2)如果14x =3,那么x =________. 17.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量.如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与____个砝码C 的质量18.观察下列变形:∵x =1, ①∴3x -2x =3-2, ②∴3x -3=2x -2, ③∴3(x -1)=2(x -1), ④∴3=2. ⑤(1)由②到③这一步是怎样变形的?(2)发生错误的变形是哪一步?其原因是什么?19.利用等式的性质求值.(1)已知x2-x-6=0,求3x2-3x的值;(2)已知x-2=3-y,求x+y的值;(3)已知2x2-3=5,求x2+3的值.20.已知2x+3y=3x+2y+1,试比较x和y的大小.21.能不能由(a+3)x=b-1得到x=b-1a+3,为什么?反之,能不能由x=b-1a+3得到(a+3)x=b-1?。

新华东师大版七年级数学下册《6章 一元一次方程 6.2 解一元一次方程 等式的性质与方程的简单变形》教案_1

新华东师大版七年级数学下册《6章 一元一次方程  6.2 解一元一次方程  等式的性质与方程的简单变形》教案_1

1.等式的性质与方程的简单变形第1课时由等式的性质到方程简单变形归纳导入复习导入类比导入悬念激趣同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.图6-2-1小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的质量.最常见的方法是用天平测量一个物体的质量.现在认识一下天平,然后回答下列问题:问题1:天平有什么作用呢?它代表什么意义呢?问题2:要让天平平衡应该满足什么条件?问题3:如果天平在平衡的条件下,左盘放着重(3x+4)克的物体,右盘放着重4x克的物体,你知道怎样列式吗?问题4:已知方程4x=3x+4,你能求出x吗?[说明与建议] 说明:通过对天平的认识让学生感受等式可以类比天平,利用天平称物的图示可以形象直观地展现等式的性质,还可以直观地展现方程的求解过程,从而激发学生的求知欲.建议:充分发挥学生的主动性,注重训练学生的合作交流意识,通过解决问题,回顾以前知识,提醒学生注意与新知识的对比.上节课我们将几个实际问题转化成了数学模型即方程,只列出了方程,并没有求出方程的解.其实,在小学我们利用逆运算能够去求形如ax+b=c的方程的解,比如:5x+4=9.对于这样的方程:23x=13,比较复杂,怎么解呢?要想求出这些复杂的一元一次方程的解,我们必须研究等式的性质,才可以解决这个问题.[说明与建议] 说明:学生感受到自己原先具有的知识已不能够解决目前的问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.建议:可让学生去解一下这个复杂的方程,让他们亲身体会此方程的复杂,然后小组讨论,是否能够找到解决办法.——教材第6页例1、例2 例1 解下列方程: (1)x -5=7;(2)4x =3x -4. 例2 解下列方程: (1)-5x =2;(2)32x =13.【模型建立】利用等式的基本性质解方程就是通过对方程进行简单变形,使含未知数的项在一边,不含未知数的项在另一边,合并同类项后,两边同时除以未知数的系数即可.【变式变形】1.如果5a 3b 5与a 3b 6m -7是同类项,那么m 的值为( B )A .-4B .2C .-2D .42.当x =___3___时,代数式3x -7的值是2. 3.当k =__-12__时,方程5x -k =3x +8的解是-2. 4.解方程:(1)2-3x =5.[答案:x =-1] (2)-2x =6+3x.[答案:x =-65](3)-35x +2=-4.[答案:x =10] (4)-14x +1=-2x +4.[答案:x =127][命题角度1] 等式的基本性质的应用此种题型考查学生对等式的基本性质的理解,应用等式的基本性质对方程进行简单变形. 例 把方程12x =1变形为x =2,其依据是__等式的性质2__.[命题角度2] 移项的识别移项的依据是方程的变形规则1,这一变形过程不改变方程的解.注意:(1)移项的时候一定要变号;(2)移项不等于移动,在等号一边利用加法交换律移动的项不能改变符号;(3)移项不改变方程中项的数目,不要漏写任一项.例 解方程6x +1=-4,移项正确的是( D ) A .6x =4-1 B .-6x =-4-1 C .6x =1+4 D .6x =-4-1[命题角度3] 利用等式的基本性质解方程利用等式的基本性质可以把一个等式进行变形,变成ax =b 的形式,然后两边同时除以a 即可.例 [湖州中考] 方程2x -1=0的解是x =__12__.[命题角度4] 与其他知识综合此类型试题检测学生的审题能力,并能根据题意准确列出式子,利用一元一次方程的解法求出有关字母的值.例 x 为何值时,代数式2x -3与-3x +7的值互为相反数?[答案:x =4] [命题角度5] 解决实际应用题列方程解决实际问题是本章的重点及难点,此类型考题注重考查学生的综合分析能力及解决问题的能力,要求学生能够读懂题意,找准等量关系,正确列出方程并求解.图6-2-2例 [金华中考] 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图6-2-2方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可做多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?解:(1)4张餐桌:4×4+2=18(人);8张餐桌:4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90,解得x =22. 答:这样的餐桌需要22张.练习1 P5 1.回答下列问题:(1)由a =b 能不能得到a -2=b -2?为什么? (2)由m =n 能不能得到-m 3=-n3?为什么?(3)由2a =6b 能不能得到a =3b ?为什么? (4)由x 2=y3能不能得到3x =2y ?为什么?解:(1)能,根据等式的基本性质1,两边同时减去2. (2)能,根据等式的基本性质2,两边同时乘以-13.(3)能,根据等式的基本性质2,两边同时除以2. (4)能,根据等式的基本性质2,两边同时乘以6.2. 填空,使所得结果仍是等式,并说明是根据哪一条等式性质得到的: (1)如果x -2=5,那么x =5+________; (2)如果3x =10-2x ,那么3x +________=10; (3)如果2x =7,那么x =________; (4)如果x -12=3,那么x -1=________.解:(1)2,等式的基本性质1. (2)2x ,等式的基本性质1. (3)72,等式的基本性质2. (4)6,等式的基本性质2. 练习2 P71.下列方程的变形是否正确?为什么? (1)由3+x =5,得x =5+3; (2)由7x =-4,得x =-74;(3)由12y =0,得y =2;(4)由3=x -2,得x =-2-3.解:(1)错误,3由等号左边移项到等号右边没有改变符号. (2)错误,方程两边同时除以7,得x =-47.(3)错误,方程两边同时乘以2,得y =0.(4)错误,x 由等号右边移项到等号左边没有改变符号. 2.(口答)求下列方程的解: (1)x -6=6; (2)7x =6x -4; (3)-5x =60; (4)14y =12. 解:(1)x =12. (2)x =-4. (3)x =-12. (4)y =2. 练习3 P8 1.解下列方程: (1)3x +4=0; (2)7y +6=-6y ; (3)5x +2=7x +8; (4)3y -2=y +1+6y ; (5)25x -8=14-0.2x ; (6)1-12x =x +13.解:(1)移项,得3x =-4. 两边同时除以3,得x =-43.(2)移项,得7y +6y =-6. 合并同类项,得13y =-6. 两边同时除以13,得y =-613. (3)移项,得5x -7x =8-2. 合并同类项,得-2x =6. 两边同时除以(-2),得x =-3. (4)移项,得3y -y -6y =1+2. 合并同类项,得-4y =3. 两边同时除以(-4),得y =-34.(5)两边同时乘以20,得8x -160=5-4x . 移项,得8x +4x =5+160. 合并同类项,得12x =165.两边同时除以12,得x =554. (6)两边同时乘以6,得6-3x =6x +2. 移项,得-3x -6x =2-6. 合并同类项,得-9x =-4. 两边同时除以(-9),得x = 49.2.试解6.1节中问题1所列出的方程. 解:移项,得44x =328-64. 合并同类项,得44x =264. 两边同时除以44,得x = 6. 习题6.2.1 P9 1.解下列方程: (1)18=5-x ; (2)34x +2=3-14x ; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ; (5)x -1=5+2x ;(6)0.3x +1.2-2x =1.2-2.7x . 解:(1)移项,得x =5-18. 合并同类项,得x =-13. (2)移项,得34x +14x =3-2.合并同类项,得x =1.(3)移项,得3x +4x -6x =7-2. 合并同类项,得x =5.(4)移项,得10y -11y +2y =-5-5. 合并同类项,得y =-10. (5)移项,得x -2x =5+1. 合并同类项,得-x =6, 两边同时除以-1,得x =-6. (6)移项,得0.3x -2x +2.7x =1.2-1.2. 合并同类项,得x =0. 2.解下列方程: (1)2y +3=11-6y ; (2)2x -1=5x +7; (3)13x -1-2x =-1; (4)12x -3=5x +14. 解:(1)移项,得2y +6y =11-3. 合并同类项,得8y =8. 两边同时除以8,得y =1.(2)移项,得2x -5x =7+1. 合并同类项,得-3x =8. 两边同时除以-3,得x =-83.(3)移项,得13x -2x =-1+1.合并同类项,得-53x =0.两边同时除以-53,得x =0.(4)移项,得12x -5x =14+3.合并同类项,得-92x =134.两边同时除以-92,得x =-1318.3.已知A =3x +2,B =4-x ,解答下列问题: (1)当x 取何值时,A =B? (2)当x 取何值时,A 比B 大4?解:(1)根据题意,要求3x +2=4-x 的解. 解这个方程得x =12.所以当x =12时,A =B .(2)根据题意,要求3x +2-(4-x )=4的解. 解这个方程得x = 32.所以当x =32时,A 比B 大4.专题一 一元一次方程1. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1. 2. 某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).A .25%B .40%C .50%D .66.7% 3. 下面判断中正确的是 [ ]A .方程132=-x 与方程x x x =-)32(同解B .方程132=-x 与方程x x x =-)32(没有相同的解C .方程x x x =-)32(的解都是方程132=-x 的解D .方程132=-x 的解都是方程x x x =-)32(的解专题二 探究题4. 对于数x ,符号[x ]表示不大于x 的最大整数.例如[3.14]=3,[-7.59]=-8,则满足关系式[377x +]=4的x 的整数值有( )A .6个B .5个C .4个D .3个5. 现在弟弟的年龄恰是哥哥年龄的21,而九年前弟弟的年龄是哥哥年龄的51,则哥哥现在的年龄是___________岁.6.解方程:3x-1.10.4 -4x-0.20.3 =0.16-0.7x0.06状元笔记【知识要点】1.等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;(2)等式的两边都乘以(或都除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的变形规则:(1)方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程的两边都乘以(或都除以)同一个不等于0的数,方程的解不变.3.方程的变形类型:(1)移项:依据方程的变形规则1,将方程中的某些项改变符号后,从方程的一边移到另一边的变形;(2)将未知数的系数化为1:依据方程的变形规则2,将方程的两边都除以未知数的系数的变形.4.一元一次方程:只含有一个未知数,并且未知数的最高次数是的整式方程叫做一元一次方程.5.解一元一次方程的步骤: ①去分母 ②去括号 ③移项④合并同类项⑤化未知项的系数为1⑥检验方程的解一般不需答出,但要养成检验的习惯 6.列一元一次方程解应用题的步骤:①弄清题意,设未知数:求什么?用字母表示适当的未知数;②分析条件,找等量关系:找出已给出的数量及未知数之间的等量关系;③组织方程,列方程:对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程.④解所得的方程:求解所列出的一元一次方程,并检验所求的解是否原方程的解、是否符合实际意义.⑤写出答语.【温馨提示(针对易错)】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等都不是一元一次方程.2.解方程时要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【方法技巧】解方程的基本思想就是应用等式的基本性质进行转化,将方程化为“x =常数”的形式,最后的“常数”就是方程的解. 答案1.【答案】D2.【答案】C .【解析】设商品的进价为a 元,标价为b 元, 则80%b -a =20%a ,解得b =32 a ,原标价出售的利润率为b-aa ×100%=50%3.【答案】D【解析】方程132=-x 的解是2=x;方程x x x =-)32(的解是0=x 和2=x .因此,A .B .C .的判断都是错误的,只有D 判断正确. 4. 【答案】D 5. 【答案】12【解析】设弟弟年龄是x ,则哥哥年龄是2x ,则依题意有5(x -9)=(2x -9), ∴x = 12.6. 【答案】解:原方程变形为 30x-114 -40x-23 =16-70x6去分母,得3×(30x -11)-4×(40x -2)=2×(16-70x ) 去括号,得90x -33-160x +8=32-140x 移项, 得90x -160x +140x =32+33-8 合并, 得70x =57 系数化为1,得x =5770“方程的简单变形”学习点拨学习方程变形的依据及方程的两种简单变形,是为进一步学习解一元一次方程作铺垫。

华东师大版七年级数学下册全册教案(共75页)

华东师大版七年级数学下册全册教案(共75页)

6.2 解一元一次方程
6.2.1 等式的性质与方程的简单变形
第 1 课时 等式的基本性质教学目标
知识与技能 1.掌握等式的基本性质. 2.会利用等式的基本性质解简单的一元一次方程. 重点难点
重点 等式的两个基本性质.
难点 利用等式的两个性质解一元一次方程. 教学过程 一、创设情境 明确目标 小明和王力在玩跷跷板,当他们位于跷跷板两端的时候,恰好处于平衡的位置.这时, 李强和小丽也来了,如果他们二人的体重相等,他们这时也分别坐在跷跷板的两端,这时候 跷跷板是否仍然平衡? 二、合作探究 达成目标 探究点一 等式的基本性质 活动一:观察下面的天平变化,你可以得出与等式有关的什么性质?
二、探究交流
1.某校初中一年级 328 名师生乘车外出春游,已有 2 辆校车可乘坐 64 人,还需租用 44 座的客车多少辆?
[问题 1]你有几种方法解答? 列方程解:设租 44 座客车 x 辆,有 44x+64=328.算术法解:(328-64)÷44. [问题 2]这个方程你能解吗?你是怎样解的? 依据是什么?
8,○-2=7,5×?=1,△÷2=3,43=(
6
) )
如果将这 5 张卡片中未知的数均用字母 x 表示,它们将如何表现呢?
3+x=8;x-2=7;5x=1;x÷2=3;43=x6
3.观察问题 1、2 中的式子有何共同特点? 4.教师点评:通过设未知数,列方程,将实际问题转化为数学中的方程问题来解决. 板书:从实际问题到方程
A.0 个 B.1 个 C.2 个 D.3 个 4.解方程 2x-4=1 时,先在方程的两边都________,得到________,然后在方程的两 边都________,得到 x=________. 5.利用等式的基本性质解方程.

数学华东师大版七年级下册等式的基本性质

数学华东师大版七年级下册等式的基本性质
【等式性质2】 如a果 b,那 a c么 bc
如a 果 bc0 ,那a 么 b
cc
注意 1、等式两边都要参加运算,并且是作同 一种运算。 2、等式两边加或减,乘或除以的数一定是 同一个数或同一个式子。 3、等式两边不能都除以0,即0不能作除 数或分母.
2
一、我会应用
1 、 ( 1)、1x如 0.5, 果那 21x 么 2×0.5.
B 、x 如 y 5 ,那 果 x y 么 5 0
C 、x 如 y5 果 ,那 1么 xy5
2
2
D 、x 如 y5 果 ,那x 么 y5
aa
4、判断下列说法是否成立,并说明理由
1、a 由 b,得ab ( ) (因为x可能等于0)
xx
2、x由 y,y3,得 x3( ) (等量代换)
左 a=b

你能发现什么规律?
bc
a

a=b

你能发现什么规律?
bc
a

a=b

你能发现什么规律?
b
a
左 a=b

你能发现什么规律?
b
a

a=b

a-c = b-c
你能发现什么规律?
b
a


a=b
你能发现什么规律?
bb
aa
左 a=b

2a = 2b
你能发现什么规律?
bbb
aaa
左 a=b
b

a

你能发现什么规律?
b

a

你能发现什么规律?
b
a


a=b

2020最新华师大版七年级数学下册电子课本课件【全册】

2020最新华师大版七年级数学下册电子课本课件【全册】

第6章 一元一次方程
2020最新华师大版七年级数学下册 电子课本课件【全册】
6.1 从实际问题到方程
2020最新华师大版七年级数学下册 电子课本课件【全册】
6.2 解一元一次方程
2020最新华师大版七年级数学下册 电子课本课件【全册】
2020最新华师大版七年级数学下册 电子课本课件【全册】
2020最新华师大版七年级数学下 册电子课本课件【全册】目录
0002页 0046页 0078页 0101页 0126页 0160页 0168页 0190页 0224页 0243页 0266页 0268页 பைடு நூலகம்301页 0329页 0365页 0401页 0428页
第6章 一元一次方程 6.2 解一元一次方程 2 解一元一次方程 6.3 实践与探索 7.1 二元一次方程组和它的解 *7.3 三元一次方程组及其解法 阅读材料 鸡兔同笼 8.1 认识不等式 1 不等式的解集 3 解一元一次不等式 阅读材料 等于与不等号的由来 第9章 多边形 1 认识三角形 3 三角形的三边关系 9.3 用正多边形铺设地面 2 用多钟正多边形 第10章 轴对称、平移与旋转
1 等式的性质与方程的简单变 形
2020最新华师大版七年级数学下册 电子课本课件【全册】
2 解一元一次方程
2020最新华师大版七年级数学下册 电子课本课件【全册】
阅读材料 丢番图的墓志铭与方 程

华东师大版七年级数学下册等式的性质及方程的变形规则教学设计

华东师大版七年级数学下册等式的性质及方程的变形规则教学设计
5.反思总结题:写一篇关于等式性质和方程变形规则学习心得的短文,内容包括自己在学习过程中的收获、遇到的困难和解决方法,以及对方程学习的看法和建议。
作业要求:
-请学生认真完成作业,书写规范,保持卷面整洁。
-对于实践应用题,鼓励学生创造性地将所学知识应用到实际问题中,并注重解题过程的逻辑性和条理性。
-小组合作题需要体现每个成员的参与和贡献,报告内容应详尽、清晰。
(五)总结归纳
在课程的最后,我会带领学生进行总结归纳,巩固所学知识。
1.知识回顾:引导学生回顾本节课所学的等式性质、方程变形规则以及解题方法。
2.归纳总结:帮助学生梳理知识体系,形成清晰的认识。
3.拓展延伸:鼓励学生在课后尝试解决更复杂的一元一次方程,提高自己的解题能力。
五、作业布置
为了巩固学生对等式的性质及方程变形规则的理解,以及提高他们解决实际问题的能力,我设计了以下作业:
6.拓展延伸,提升思维:
-通过拓展性问题,引导学生深入思考等式性质的本质,鼓励学生尝试解决更复杂的一元一次方程,提高思维的深度和广度。
四、教学内容与过程
(一)导入新课
在新课的导入阶段,我将采用生活情境引入法,以学生的生活经验为切入点,激发他们对等式性质及方程变形规则的学习兴趣。
1.情境设定:假设我们正在组织一次郊游活动,同学们需要坐车去目的地。已知每辆大巴车可以坐40人,如果全校共有7年级的200名学生参加活动,我们需要租几辆大巴车?
3.教师点评:在各小组交流分享的基础上,我会进行点评,强调重点和难点,纠正错误的认识。
(四)课堂练习
1.设计练习题:根据学生的学习情况,设计不同难度的练习题,包括基本的变形题和综合应用题。
2.学生答题:学生在规定时间内独立完成练习题,期间我会巡回指导,解答学生的疑问。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 等式的基本性质
1.由等式3a -5=2a +6得到a =11的变形是( )
A .等式两边都除以3
B .等式两边都加上5
C .等式两边都加上(2a -5)
D .等式两边都减去(2a -5)
2.下列等式变形不正确的是( )
A .若4x =5x +2,则x =2
B .若6x =5x -2,则x =-2
C. 若3x =x +4,则2x =4
D .若x -3=5,则x =8
3.若m +2n =p +2n ,则m =____,依据是__________________,它是将等式的两边都________.
4.把方程12
x =1变形为x =2,其依据是( ) A .等式的基本性质1 B .等式的基本性质2
C .乘法的交换律
D .加法的结合律
5.下列运用等式的性质对等式进行变形,正确的是( )
A .由-x 4=0,得x =4
B .由-12x =-14,得x =12
C .由-2x =6,得x =3
D .由3x =2,得x =32
6.下列变形正确的是( )
A .若ac =bc ,则a =b
B .若2x =3,则x =23
C .若x =2,则x 2=2x
D .若2x =-2x ,则2=-2
7.从等式ac =bc 变形得到a =b ,则c 必须满足条件________.
8.下列根据等式的性质变形正确的是( )
A .由-13x =23
y ,得x =2y B .由3x -2=2x +2,得x =4 C .由2x -3=3x ,得x =3 D .由3x -5=7,得3x =7-5
9.下列判断错误的是( )
A .若a =3,则a -3=0
B .若a =b ,则ac =bc
C .若2x =3y ,则2x +y =4y
D .若3x =5y ,则x 3=y 5
10.已知a =b ,则下列等式不成立的是( )
A .a +1=b +1 B.a 5+4=b 5
+4 C .-4a -1=-1-4b D .1-2a =2b -1
11.根据等式的性质,下列变形正确的是( )
A .若x =y ,则x -5=y +5
B .若a =b ,则ac -1=bc -1
C .若ac =bc ,则2a =2b
D .若x =y ,则x a 2=y a 2
12.已知等式3a =2b +5,则下列等式中不一定成立的是( )
A .3a -5=2b
B .3a +1=2b +6
C .3ac =2bc +5
D .a =23b +53
13.下列说法正确的是( )
A .在等式ab =ac 的两边同时除以a ,可得b =c
B .在等式a =b 的两边同时除以c 2+1,可得a c 2+1=b c 2+1
C .在等式b a =c
a
的两边同时除以a ,可得b =c
D .在等式x -2=6的两边同时加2,可得x =6 14.已知x =y ≠-12,且xy ≠0.下列各式:①x -3=y -3;②5x =y 5;③x 2y +1=y 2x +1
;④2x +2y =0.其中一定正确的有( )
A .1个
B .2个
C .3个
D .4个
15.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明是根据等式的哪一条性质变形得到的.
(1)如果-x 10=y 5
,那么x =_______,根据___________________; (2)如果23x =4-13
x ,那么x =__ __,根据______________________. 16.在横线上填上适当的数或式子:
(1)如果a +3=b -1,那么a +4=_____;
(2)如果14
x =3,那么x =________. 17.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量.如图②,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与__ __个砝码C 的质量
18.观察下列变形:
∵x =1, ①
∴3x -2x =3-2, ②
∴3x -3=2x -2, ③
∴3(x -1)=2(x -1), ④
∴3=2. ⑤
(1)由②到③这一步是怎样变形的?
(2)发生错误的变形是哪一步?其原因是什么?
19.利用等式的性质求值.
(1)已知x 2-x -6=0,求3x 2-3x 的值;
(2)已知x -2=3-y ,求x +y 的值;
(3)已知2x 2-3=5,求x 2+3的值.
20.已知2x +3y =3x +2y +1,试比较x 和y 的大小.
21.能不能由(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能由x =b -1a +3得到(a +3)x =b -1?
初中数学试卷
桑水出品。

相关文档
最新文档