考前三个月高考数学(全国甲卷通用理科)知识方法篇专题7解析几何第30练含答案

合集下载

2023高考理科数学全国甲卷(解析版)

2023高考理科数学全国甲卷(解析版)

2023高考理科数学全国甲卷(解析版)2023高考理科数学全国甲卷解析版高中数学常考知识点1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。

而其到角是带有方向的角,范围是4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.5.圆的方程:最简方程 ;标准方程 ;6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”(1)过圆上一点圆的切线方程过圆上一点圆的切线方程过圆上一点圆的切线方程如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程, (为圆心到直线的距离).7.曲线与的交点坐标方程组的解;过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.高三数学学习注意事项1、如果你是一个对自己要求严格的人,但是可能数学还是不怎么好的话,建议你首先要调整好自己的心态,因为数学不像是文科的一些学科,多背还是能提高的,高中数学是思路要比较清晰的人才能做得懂的,所以就算你做不懂也不要太难过,可以转向攻克其他科目。

高中数学解析几何复习 题集附答案

高中数学解析几何复习 题集附答案

高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。

直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。

下面我们通过一些例题来复习直线的方程的求解方法。

例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。

解析:首先我们可以求出直线L1的斜率k。

直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。

例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。

解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。

直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。

再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。

二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。

我们可以通过直线的方程和平面的方程来求解交点的坐标。

下面我们通过一些例题来复习直线和平面交点的求解方法。

例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题7 解析几何 第30练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题7 解析几何 第30练

第30练 直线与圆[题型分析·高考展望] 直线与圆是解析几何的基础,在高考中,除对本部分知识单独考查外,更多是在与圆锥曲线结合的综合题中对相关知识进行考查.单独考查时,一般为选择题、填空题,难度不大,属低中档题.直线的方程,圆的方程的求法及位置关系的判断与应用是本部分的重点.体验高考1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x +y +5=0或2x +y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题意有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A.2 6B.8C.4 6D.10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.3.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k , 则反射光线所在直线的方程为y +3=k (x -2), 即kx -y -2k -3=0.由反射光线与圆相切, 则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.4.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为______. 答案255解析 d =|1+1|22+12=255.5.(2016·课标全国丙)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3), BD 的直线方程为y -23=-3x , 令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( )A.2x +y -3=0B.x -2y +1=0C.x +2y -3=0D.2x -y -1=0答案 D解析 由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,∠B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程. 解 设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上, 可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,∴B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0,y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴y -57-5=x -101-10,故BC 边所在直线的方程是2x +9y -65=0. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧ 3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2,故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2, 则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0.题型二 圆的方程例2 (1)(2015·湖北)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝⎛⎭⎫|AB |22+12=2,解得r = 2. 所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0, 2+1).又点C (1, 2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y=0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切.①求圆C 的方程;②求以圆C 内一点B ⎝⎛⎭⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧(2-a )2+(-1-b )2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎪⎨⎪⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2), 则k CB =-52-(-2)2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2. 故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0.点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A.2 B.4 2 C.6 D.210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 ①圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. ②假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0,故所求的直线m 存在,方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t 2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95 > 5. 圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45 B.25 C.255 D.105答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22=255,所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A.3 2 B.2 2 C.3 3 D.42 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切 B.相交 C.外切 D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2=2, r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.5.与圆x 2+y 2=1和圆x 2+y 2-8x +7=0都相切的圆的圆心轨迹是( ) A.椭圆B.椭圆和双曲线的一支C.双曲线和一条直线(去掉几个点)D.双曲线的一支和一条直线(去掉几个点) 答案 D解析 设所求圆圆心为M (x ,y ),半径为r , 圆x 2+y 2-8x +7=0⇒(x -4)2+y 2=9,圆心设为C (4,0),由题意得当动圆与两定圆外切时, 即|MO |=r +1,|MC |=r +3,从而|MC |-|MO |=2<|OC |, 因此为双曲线的一支,当动圆与两定圆一个外切一个内切时, 必切于两定圆切点,即M 必在x 轴上, 但需去掉O ,C 及两定圆切点,因此选D.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.43 答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为 y -32=33⎝⎛⎭⎫x -12,② 联立①②,解得△ABC 外接圆的圆心坐标为⎝⎛⎭⎫1,233, 其到原点的距离为12+⎝⎛⎭⎫2332=213.故选B. 7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝⎛⎭⎫-341-(-1)=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________. 答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆, 设过点(-2,0)的直线的斜率为k , 则直线方程为y =k (x +2), 则点到直线距离等于圆的半径1, 有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24, 然后可知此时有一个交点,那么当满足题意的时候,可知斜率的取值范围是(-24,24), 故答案为(-24,24). 11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1, 得4-73<k <4+73. (2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12, ∴4k (1+k )1+k 2=4,解得k =1. 12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程. 解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m 2+1=1, ∴m =-43或0,∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA | =|MQ |2-|MA |2=|MQ |2-1 ≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝⎛⎭⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |, ∴|MQ |=3.设Q (x ,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.。

2022高考考前三个月数学(四川专用理科)二轮文档:专题7 解析几何 第31练 Word版含答案

2022高考考前三个月数学(四川专用理科)二轮文档:专题7 解析几何 第31练 Word版含答案

第31练 与抛物线有关的热点问题[题型分析·高考展望] 抛物线是三种圆锥曲线之一,应用广泛,是高考的重点考查对象,抛物线方程、几何性质、直线与抛物线结合的问题都是高考热点.考查形式有选择题、填空题也有解答题,小题难度一般为低中档层次,解答题难度为中档偏上.常考题型精析题型一 抛物线的定义及其应用例1 设P 是抛物线y 2=4x 上的一动点,(1)求点P 到A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),抛物线的焦点为F ,求|PB |+|PF |的最小值.解 (1)由于A (-1,1),F (1,0),P 是抛物线上的任意一点,则|AP |+|PF |≥|AF |=22+1=5,从而知点P 到A (-1,1)的距离与点P 到F (1,0)的距离之和的最小值为5,所以点P 到A (-1,1)的距离与P 到直线x =-1的距离之和的最小值也为 5.(2)如图所示,自点B 作BQ 垂直于抛物线的准线于点Q ,交抛物线于点P 1,此时|P 1Q |=|P 1F |,那么|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4,即|PB |+|PF |的最小值为4.点评 与抛物线有关的最值问题,一般状况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的机敏性,因此此类问题也有肯定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0等于( )A .1B .2C .4D .8答案 A解析 由题意知抛物线的准线为x =-14.由于|AF |=54x 0,依据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1.题型二 抛物线的标准方程及几何性质例2 抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.解 由题意,得抛物线方程为x 2=2ay (a ≠0). 设公共弦MN 交y 轴于A ,N 在y 轴右侧, 则|MA |=|AN |,而|AN |= 5. ∵|ON |=3,∴|OA |=32-(5)2=2,∴N (5,±2).∵N 点在抛物线上,∴5=2a ·(±2),即2a =±52,故抛物线的方程为x 2=52y 或x 2=-52y .抛物线x 2=52y 的焦点坐标为⎝⎛⎭⎫0,58, 准线方程为y =-58.抛物线x 2=-52y 的焦点坐标为⎝⎛⎭⎫0,-58,准线方程为y =58. 点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p 的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是推断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.变式训练2 (2021·福建)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解 方法一 (1)由抛物线的定义得|AF |=2+p2.由于|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)由于点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)同方法一.(2)设以点F 为圆心且与直线GA 相切的圆的半径为r . 由于点A (2,m )在抛物线E :y 2=4x上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎪⎨⎪⎧y =22(x -1),y 2=4x得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切. 题型三 直线和抛物线的位置关系例3 (2021·课标全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a .当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要留意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必需用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系接受“设而不求”“整体代入”等解法.提示:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,说明理由.解 (1)∵抛物线C :x 2=1m y ,∴它的焦点F (0,14m). (2)∵|RF |=y R +14m ,∴2+14m =3,得m =14. (3)存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0⇒m >-12.设A (x 1,mx 21),B (x 2,mx 22),则⎩⎨⎧x 1+x 2=2m,x 1·x 2=-2m,(*)∵P 是线段AB 的中点,∴P (x 1+x 22,mx 21+mx 222),即P (1m ,y P ),∴Q (1m ,1m).得QA →=(x 1-1m ,mx 21-1m ),QB →=(x 2-1m ,mx 22-1m), 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即(x 1-1m )·(x 2-1m )+(mx 21-1m )(mx 22-1m )=0, 结合(*)化简得-4m 2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,而2∈(-12,+∞),-12∉(-12,+∞).∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.高考题型精练1.(2022·辽宁)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12 B.23 C.34 D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0)①,由于Δ=1-4×k8(2k +3)=0,所以k =-2或k =12.由于切点在第一象限,所以k =12.将k =12代入①中,得y =8,再代入y 2=8x 中得x =8,所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43.2.(2021·浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1答案 A解析 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 3.已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( ) A .2±3 B .2+ 3 C.3±1 D.3-1答案 A解析 依题意得F ⎝⎛⎭⎫p 2,0,设P ⎝⎛⎭⎫y 212p ,y 1,Q ⎝⎛⎭⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝⎛⎭⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.4.(2022·课标全国Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334 B.938 C.6332 D.94答案 D解析 由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34),即4x -43y -3=0.方法一 联立抛物线方程化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S △OAB =12|OF ||y A -y B |=12×34×6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.依据抛物线的定义有|AB |=x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+(-43)2=38, 因此S △OAB =12|AB |·h =94.5.已知抛物线y 2=8x 的准线为l ,点Q 在圆C :x 2+y 2+2x -8y +13=0上,记抛物线上任意一点P 到直线l 的距离为d ,则d +|PQ |的最小值等于( ) A .3 B .2 C .4 D .5答案 A解析 如图所示,由题意,知抛物线y 2=8x 的焦点为F (2,0),连接PF ,则d =|PF |.圆C 的方程配方,得(x +1)2+(y -4)2=4,圆心为C (-1,4),半径r =2.d +|PQ |=|PF |+|PQ |,明显,|PF |+|PQ |≥|FQ |(当且仅当F ,P ,Q 三点共线时取等号). 而|FQ |为圆C 上的动点Q 到定点F 的距离, 明显当F ,Q ,C 三点共线时取得最小值, 最小值为|CF |-r =(-1-2)2+(4-0)2-2=5-2=3.6.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值肯定等于( )A .-4B .4C .p 2D .-p 2 答案 A解析 ①若焦点弦AB ⊥x 轴, 则x 1=x 2=p 2,则x 1x 2=p 24;②若焦点弦AB 不垂直于x 轴,可设AB :y =k (x -p2),联立y 2=2px 得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24.则y 1y 2=-p 2.故y 1y 2x 1x 2=-4.7.(2022·湖南)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案2+1解析 ∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C (a 2,-a ),F (a2+b ,b ).又∵点C ,F 在抛物线y 2=2px (p >0)上,∴⎩⎪⎨⎪⎧a 2=pa ,b 2=2p (a 2+b ),解得ba =2+1. 8.已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若AM →=M B →,则p =________. 答案 2解析 如图,由AB 的斜率为3,知α=60°,又AM →=M B →, ∴M 为AB 的中点.过点B 作BP 垂直准线l 于点P ,则∠ABP =60°, ∴∠BAP =30°. ∴||BP =12||AB =||BM .∴M 为焦点,即p2=1,∴p =2.9.过抛物线y 2=2x的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.答案 56解析 ∵1|AF |+1|BF |=2p =2,|AB |=|AF |+|BF |=2512,|AF |<|BF |,∴|AF |=56,|BF |=54.10.已知抛物线C 的方程为y 2=-8x ,设过点N (2,0)的直线l 的斜率为k ,且与抛物线C 相交于点S ,T ,若S ,T 两点只在其次象限内运动,线段ST 的垂直平分线交x 轴于Q 点,则Q 点横坐标的取值范围为________. 答案 (-∞,-6)解析 设S (x 1,y 1),T (x 2,y 2),由题意得直线ST 的方程为y =k (x -2)(明显k ≠0),与y 2=-8x 联立,得ky 2+8y +16k =0,y 1+y 2=-8k,y 1y 2=16.由于直线l 与抛物线C 相交于S ,T 两点,所以Δ=64-64k 2>0,再由y 1>0,y 2>0,则-8k >0,故-1<k <0.又线段ST 的中点坐标为⎝⎛⎭⎫-4k 2+2,-4k ,所以线段ST 的垂直平分线方程为y +4k =-1k ⎝⎛⎭⎫x +4k 2-2.令y =0,得Q 点的横坐标为x Q =-2-4k 2<-6,故Q 点横坐标的取值范围为(-∞,-6).11.(2022·安徽)如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值. (1)证明 设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,得A 1⎝⎛⎭⎫2p 1k 21,2p 1k 1, 由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝⎛⎭⎫2p 2k 21,2p 2k 1. 同理可得B 1⎝⎛⎭⎫2p 1k 22,2p 1k 2,B 2⎝⎛⎭⎫2p 2k 22,2p 2k 2.所以A 1B 1→=⎝⎛⎭⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝⎛⎭⎫1k 22-1k 21,1k 2-1k 1.A 2B 2→=(2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1)=2p 2(1k 22-1k 21,1k 2-1k 1)故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2.(2)解 由(1)知A 1B 1∥A 2B 2, 同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2, 所以△A 1B 1C 1∽△A 2B 2C 2.因此S 1S 2=⎝ ⎛⎭⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2A 2B 2→知|A 1B 1→||A 2B 2→|=p 1p 2,故S 1S 2=p 21p 22. 12.(2021·湖南)已知抛物线C 1 :x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)的一个焦点.C 1 与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC →与BD →同向. (1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.解 (1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).由于F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.① 又C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为⎝⎛⎭⎫±6,32,所以94a 2+6b 2=1.② 联立①,②得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1.(2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因AC →与BD →同向,且|AC |=|BD |,所以AC →=BD →,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③ 设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 得x 2-4kx -4=0. 而x 1,x 2是这个方程的两根, 所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,x 28+y 29=1得(9+8k 2)x 2+16kx -64=0. 而x 3,x 4是这个方程的两根,所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k 2,⑤ 将④,⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2,所以(9+8k 2)2=16×9,解得k =±64,即直线l 的斜率为±64.。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做中档大题规范练2立体几何与空间向量含答案

考前三个月高考数学(全国甲卷通用理科)考前抢分必做中档大题规范练2立体几何与空间向量含答案

中档大题规范练2 立体几何与空间向量1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为63?若存在,求出PQQD的值;若不存在,请说明理由.(1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD .(2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1).PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,-1).则⎩⎪⎨⎪⎧u ·CP ,→=-x +z =0,u ·PD ,→=y -z =0,取z =1,得u =(1,1,1),B 点到平面PDC 的距离 d =|BP ,→·u ||u |=33.(3)解 假设存在,则设PQ →=λPD →(0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ),设平面CAQ 的法向量为m =(a ,b ,c ), 则⎩⎪⎨⎪⎧m ·AC ,→=0,m ·AQ ,→=0,即⎩⎪⎨⎪⎧a +b =0,(λ+1)b +(1-λ)c =0,所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为63, 所以|m·n||m||n |=63,所以3λ2-10λ+3=0,所以λ=13或λ=3(舍去),所以PQ QD =12.2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小.(1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE ,∴D 1F →=23D 1E →=23 (1,1,-2)=(23,23,-43),DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43)=(23,23,23).设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0,∴⎩⎪⎨⎪⎧23x +23y +23z =0,2y =0,取x =1得平面FDC 的一个法向量n =(1,0,-1). 设p =(x ,y ,z )是平面ED 1C 的法向量, 则⎩⎪⎨⎪⎧ p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1). ∵n·p =(1,0,-1)·(1,1,1)=0, ∴平面DFC ⊥平面D 1EC .(2)解 设q =(x ,y ,z )是平面ADF 的法向量, 则q ·DF →=0,q ·DA →=0. ∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1), 设二面角A —DF —C 的平面角为θ, 由题中条件可知θ∈(π2,π),则cos θ=-|n·q|n|·|q ||=-0+0+12×2=-12,∴二面角A —DF —C 的大小为120°.3.如图所示,在直三棱柱A 1B 1C 1—ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解 (1)以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B ,→·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ), 因为AD →=(1,1,0),AC 1→=(0,2,4), 所以n 1·AD →=0,n 1·AC 1→=0, 即x +y =0且y +2z =0, 取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量. 取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ. 由|cos θ|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23, 得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 4.如图,在四棱锥P —ABCD 中,平面P AD ⊥底面ABCD ,其中底面ABCD 为等腰梯形,AD ∥BC ,P A =AB =BC =CD =2,PD =23,P A ⊥PD ,Q 为PD 的中点.(1)证明:CQ ∥平面P AB ; (2)求二面角D —AQ —C 的余弦值.(1)证明 如图所示,取P A 的中点N ,连接QN ,BN .在△P AD 中,PN =NA ,PQ =QD , 所以QN ∥AD ,且QN =12AD .在△APD 中,P A =2,PD =23,P A ⊥PD , 所以AD =P A 2+PD 2=22+(23)2=4, 而BC =2,所以BC =12AD .又BC ∥AD ,所以QN ∥BC ,且QN =BC , 故四边形BCQN 为平行四边形,所以BN ∥CQ . 又CQ ⊄平面P AB ,BN ⊂平面P AB ,所以CQ ∥平面P AB .(2)解 如图,在平面P AD 内,过点P 作PO ⊥AD 于点O ,连接OB .因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 又PO ⊥AD ,AP ⊥PD ,所以PO =AP ×PD AD =2×234=3,故AO =AP 2-PO 2=22-(3)2=1.在等腰梯形ABCD 中,取AD 的中点M ,连接BM ,又BC =2,AD =4,AD ∥BC ,所以DM =BC =2,DM ∥BC ,故四边形BCDM 为平行四边形. 所以BM =CD =AB =2.在△ABM 中,AB =AM =BM =2,AO =OM =1,所以BO ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以BO ⊥平面P AD .如图,以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),D (0,3,0),A (0,-1,0),B (3,0,0),P (0,0,3),C (3,2,0),则AC →=(3,3,0).因为Q 为DP 的中点,故Q ⎝⎛⎭⎫0,32,32,所以AQ →=⎝⎛⎭⎫0,52,32.设平面AQC 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ⊥AC →,m ⊥AQ →,可得⎩⎨⎧m ·AC →=3x +3y =0,m ·AQ →=52y +32z =0,令y =-3,则x =3,z =5.故平面AQC 的一个法向量为m =(3,-3,5). 因为BO ⊥平面P AD ,所以OB →=(3,0,0)是平面ADQ 的一个法向量.故cos 〈OB →,m 〉=OB →·m |OB →|·|m |=333·32+(-3)2+52=337=33737.从而可知二面角D —AQ —C 的余弦值为33737.5.在四棱锥P —ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =90°,AB =AD =PD =1,CD =2.(1)求证:BC ⊥平面PBD ;(2)在线段PC 上是否存在一点Q ,使得二面角Q —BD —P 为45°?若存在,求PQPC的值;若不存在,请说明理由.(1)证明 平面PCD ⊥底面ABCD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD . 如图,以D 为原点建立空间直角坐标系Dxyz ,则A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1), DB →=(1,1,0),BC →=(-1,1,0), 所以BC →·DB →=0,BC ⊥DB ,又由PD ⊥平面ABCD ,可得PD ⊥BC , 因为PD ∩BD =D , 所以BC ⊥平面PBD .(2)解 平面PBD 的法向量为BC →=(-1,1,0), PC →=(0,2,-1),设PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ),设平面QBD 的法向量为n =(a ,b ,c ), DB →=(1,1,0),DQ →=(0,2λ,1-λ), 由n ·DB →=0,n ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 令b =1,所以n =(-1,1,2λλ-1), 所以cos 45°=|n ·BC →||n ||BC →|=222+(2λλ-1)2=22, 注意到λ∈(0,1),得λ=2-1,所以在线段PC 上存在一点Q ,使得二面角Q —BD —P 为45°,此时PQPC=2-1.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

2023高考数学解析几何应用练习题及答案

2023高考数学解析几何应用练习题及答案

2023高考数学解析几何应用练习题及答案解析几何是高中数学中重要的一部分,也是高考数学中难度较大的题型之一。

2023年高考数学中解析几何应用的题目考察内容涵盖了直线、平面、坐标系等知识点。

下面是几道2023高考数学解析几何应用练习题及答案,希望对广大考生的备考有所帮助。

题目一:已知直线AB过点(2,3)和点(5,7),直线CD过点(-1,4)且垂直于直线AB。

求直线CD的方程。

解析:首先,我们计算直线AB的斜率。

根据斜率的定义,斜率k等于两个点的纵坐标之差与横坐标之差的比值:k = (7 - 3) / (5 - 2) = 4/3由于直线CD垂直于直线AB,所以两条直线的斜率乘积为-1。

即:k * k' = -1代入已知的斜率,得到:4/3 * k' = -1解方程可得斜率k' = -3/4。

由点斜式方程的定义可知,y - y1 = k' * ( x - x1 )将已知点(-1,4)代入,得到直线CD的方程为:y - 4 = -3/4 * ( x + 1 )简化方程,得到 CD 的方程为:3x + 4y - 16 = 0所以答案为:3x + 4y - 16 = 0。

题目二:已知平面P1过点A(1,2,3),并且与向量n1(2,1,4)垂直,平面P2过点B(-1,3,2),并且与向量n2(3,1,-1)垂直。

求平面P1和平面P2的交线方程。

解析:由于平面P1过点A且与向量n1垂直,所以平面P1的方程为:n1 · (X - A) = 0其中,·表示点乘运算。

代入已知的点A(1,2,3)和向量n1(2,1,4),得到:2(x - 1) + 1(y - 2) + 4(z - 3) = 0简化方程,得到平面P1的方程:2x + y + 4z - 18 = 0同理,平面P2的方程为:3x + y - z + 2 = 0要求平面P1和平面P2的交线方程,即联立平面P1和平面P2的方程,解得交点即为交线方程:联立方程可得:2x + y + 4z - 18 = 03x + y - z + 2 = 0解这个线性方程组,可得交点为(x, y, z) = (2, 6, 3)。

考前三个月高考数学(全国甲卷通用,理科)知识·方法篇 专题7 解析几何专题7 第35练

考前三个月高考数学(全国甲卷通用,理科)知识·方法篇 专题7 解析几何专题7 第35练
解析答案
(2)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的弦长恒 为定值?若存在,求出l的方程;若不存在,请说明理由.
点评
解析答案
变式训练 2 椭圆 C 的方程为ax22+by22=1(a>b>0),F1、F2 分别是它的左、
右焦点,已知椭圆
C
过点(0,1),且离心率
e=2
3
2 .
解析答案
1234
(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),
且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B. ①设直线 PM,QM 的斜率分别为 k,k′,证明k′k 为定值; 证明 设P(x0,y0)(x0>0,y0>0). 由M(0,m),可得P(x0,2m),Q(x0,-2m). 所以直线 PM 的斜率 k=2mx-0 m=xm0. 直线 QM 的斜率 k′=-2mx0-m=-3xm0 . 此时k′k =-3.所以k′k 为定值-3.
解析答案
12
②直线 l 与 y 轴交于点 G,记△PFG 的面积为 S1,△PDM 的面积为 S2, 求SS12的最大值及取得最大值时点 P 的坐标.
解析答案
12
2.(2016·四川)已知椭圆 E:ax22+by22=1(a>b>0)的两个焦点与短轴的一个端 点是直角三角形的三个顶点,直线 l:y=-x+3 与椭圆 E 有且只有一个 公共点 T. (1)求椭圆E的方程及点T的坐标;
明理由.
解析答案
返回
高考题型精练
1234
1.(2015·陕西)如图,椭圆 E:ax22+by22=1(a>b>0)经过点 A(0,-1),且离

考前三个月高考数学(全国甲卷通用理科)知识方法篇专题7解析几何第33练

考前三个月高考数学(全国甲卷通用理科)知识方法篇专题7解析几何第33练

与△ ACF 的面积之比就等于
|BC | |AC |.由抛物线方程知焦点
F (1,0),作准线 l,则 l 的方程为 x=
-1.
∵点 A,B 在抛物线上,过 A,B 分别作 AK ,BH 与准线垂直,垂足分别为点 K ,H,且与 y
轴分别交于点 N,M .由抛物线定义, 得 |BM |= |BF |- 1,|AN|= |AF|- 1.在 △ CAN 中,BM ∥ AN,
你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云
第 33 练 与抛物线有关的热点问题
[题型分析 ·高考展望 ] 抛物线是三种圆锥曲线之一,应用广泛,是高考的重点考查对象,抛
物线方程、几何性质、直线与抛物线结合的问题都是高考热点
.考查形式有选择题、填空题
也有解答题,小题难度一般为低中档层次,解答题难度为中档偏上
∴||BACC
||=||BAMN||=
|BF |AF
|- |-
1 . 1
3.(2016 四·川 )设 O 为坐标原点, P 是以 F 为焦点的抛物线 y2= 2px(p>0)上任意一点, M 是线
段 PF 上的点,且 |PM |= 2|MF |,则直线 OM 的斜率的最大值为 ( )
32
2
A. 3 B.3 C. 2 D.1
(1) 求 d1的最小值,并求此时点 P 的坐标;
(2) 若点 P 到抛物线的准线的距离为

(1)设
P
(y20, 6
y0)

d2,求 d1+ d2 的最小值 .
.
体验高考
1.(2015 四·川 )设直线 l 与抛物线 y2=4x 相交于 A, B 两点,与圆 (x- 5)2+ y2= r 2(r> 0)相切于 点 M ,且 M 为线段 AB 的中点,若这样的直线 l 恰有 4 条,则 r 的取值范围是 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第30练 直线与圆[题型分析·高考展望] 直线与圆是解析几何的基础,在高考中,除对本部分知识单独考查外,更多是在与圆锥曲线结合的综合题中对相关知识进行考查.单独考查时,一般为选择题、填空题,难度不大,属低中档题.直线的方程,圆的方程的求法及位置关系的判断与应用是本部分的重点.体验高考1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x +y +5=0或2x +y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题意有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A.2 6B.8C.4 6D.10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.3.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k , 则反射光线所在直线的方程为y +3=k (x -2), 即kx -y -2k -3=0.由反射光线与圆相切, 则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.4.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为______. 答案255解析 d =|1+1|22+12=255.5.(2016·课标全国丙)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3), BD 的直线方程为y -23=-3x , 令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( )A.2x +y -3=0B.x -2y +1=0C.x +2y -3=0D.2x -y -1=0答案 D解析 由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,∠B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程. 解 设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上, 可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,∴B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0,y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴y -57-5=x -101-10,故BC 边所在直线的方程是2x +9y -65=0. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧ 3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2,故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2, 则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0.题型二 圆的方程例2 (1)(2015·湖北)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝⎛⎭⎫|AB |22+12=2,解得r = 2. 所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0, 2+1).又点C (1, 2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切.①求圆C 的方程;②求以圆C 内一点B ⎝⎛⎭⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧(2-a )2+(-1-b )2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎪⎨⎪⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2), 则k CB =-52-(-2)2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2. 故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0.点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( )A.2B.4 2C.6D.210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 ①圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. ②假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0,故所求的直线m 存在,方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t 2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t 2,令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95 > 5. 圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45 B.25 C.255 D.105 答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22=255,所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A.3 2 B.2 2 C.3 3 D.4 2 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切 B.相交 C.外切 D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2, 由几何知识得⎝⎛⎭⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2=2, r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.5.与圆x 2+y 2=1和圆x 2+y 2-8x +7=0都相切的圆的圆心轨迹是( ) A.椭圆B.椭圆和双曲线的一支C.双曲线和一条直线(去掉几个点)D.双曲线的一支和一条直线(去掉几个点) 答案 D解析 设所求圆圆心为M (x ,y ),半径为r , 圆x 2+y 2-8x +7=0⇒(x -4)2+y 2=9,圆心设为C (4,0),由题意得当动圆与两定圆外切时, 即|MO |=r +1,|MC |=r +3,从而|MC |-|MO |=2<|OC |, 因此为双曲线的一支,当动圆与两定圆一个外切一个内切时, 必切于两定圆切点,即M 必在x 轴上, 但需去掉O ,C 及两定圆切点,因此选D.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.43 答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为 y -32=33⎝⎛⎭⎫x -12,② 联立①②,解得△ABC 外接圆的圆心坐标为⎝⎛⎭⎫1,233, 其到原点的距离为12+⎝⎛⎭⎫2332=213.故选B. 7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝⎛⎭⎫-341-(-1)=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________. 答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆, 设过点(-2,0)的直线的斜率为k , 则直线方程为y =k (x +2), 则点到直线距离等于圆的半径1, 有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24,然后可知此时有一个交点,那么当满足题意的时候, 可知斜率的取值范围是(-24,24), 故答案为(-24,24).11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1, 得4-73<k <4+73. (2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12, ∴4k (1+k )1+k 2=4,解得k =1. 12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程. 解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m 2+1=1, ∴m =-43或0, ∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA | =|MQ |2-|MA |2=|MQ |2-1≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝⎛⎭⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |, ∴|MQ |=3.设Q (x ,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

相关文档
最新文档