九年级数学模拟试卷答题卡

合集下载

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。

2022-2023学年九年级数学中考二模试题(带答案)

2022-2023学年九年级数学中考二模试题(带答案)

数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 8页,满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.2.第Ⅰ卷每小题选出答案后,用2B铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内;如需改动,先划掉原来答案,然后再写上新答案.严禁使用涂改液、胶带纸修正带修改.不允许使用计算器.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.5.评分以答题卡上的答案为依据.不按以上要求作答的答案无效.第Ⅰ卷(选择题共48分)一、选择题:本大题共12 小题,每小题4 分,共48 分.在每小题给出的四个四个选项中,只有一个是符合题目要求的.属于同一类数的是1.下列各数中,与2(A) 1(B)20223(C) π(D)0.6182.如图所示,是一个空心正方体,它的左视图是3.把x24x C分解因式得(x-1)(x-3),则C的值为(A)4(B)3(C)-3(D)-4sin52°,正确的按键顺序4.利用我们数学课本上的计算器计算12是(A)(B)(C)(D)5.如图,在4×4的网格中,A,B,C,D,O均在格点上,则点O是(A)△ACD的内心(B)△ABC的内心(C)△ACD 的外心(D)△ABC 的外心6.已知0≤x-y≤1且1≤x+y≤4,则x的取值范围是(A) 1≤x≤2(B) 2≤x≤3(C) 12≤x≤52(D)32≤x≤527.如图,已知点E(-4, 2),F(-2. -2),以O为位似中心,把△EFO缩小为原来的12,则点E的坐标为(A) (2,-1)或(-2, 1)(B) (8,-4)或(-8,-4)(C) (2, -1)(D) (8,-4)8.如图,在扇形OAB中,∠AOB=100°30',OA=20,将扇形OAB沿着过点B的直线折叠,点O恰好落在AB的点D处,折痕交OA于点C,则AC的长为(A)4.5π(B)5π(C)203π(D)7.2π9.疫情期间,小区的王阿姨和李奶奶通过外卖订购了两包蔬菜.王阿姨订购的一包蔬菜包括西红柿、茄子、青椒各1千克,共花费11.8元;李奶奶订购的一包蔬菜包括西红柿2千克,茄子1.5千克,共花费13元,已知青椒每千克4.2元,则西红柿和茄子的价格是(A) 3.6元/千克,4元千克(B) 4.4 元/千克,3.2 元/千克(C) 4元/千克,3.6元千克(D) 3.2元/千克,4.4元/千克10.如图,等边三角形ABC和正方形DEFG按如图所示摆放,其中D,E两点分别在AB,BC上,且BD=DE.若AB=12,DE=4,则△EFC的面积为(A) 4(B) 8(C) 12(D) 16(x-2)2+1的图象沿y轴向11.如图,将函数y=12上平移得到一个函数的图象,其中点A(1,m),B (4,n)平移后的对应点为点A1,B2.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(A) y=12(x−2)2−2(B) y=12(x−2)2+7(C) y=12(x−2)2−5 (D) y=12(x−2)2+412.在平面直角坐标系xOy中,A(0,2),B(m,m-2),则AB+ OB的最小值是(A)第Ⅱ卷(非选择题共72分)二、填空题:本大题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.一个不透明的袋子中,装有4个红球、2个白球和2个黄球,每个球除颜色外都相同,从中任意摸出一个球,当摸到红球的概率是摸到白球概率的2倍时,需再往袋子里放入个红球..14.请你写两个多项式,使它们相乘的结果是4a2 -4ab +b2.你写的两个多项式分别为.15.若x1,x2是一元二次方程x2-5x+6=0的两个实数根,则x1x2-x1-x2的值为.16.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多个.(用含n 的代数式表示)(第16题图)17.将两个等腰Rt △ADE ,Rt △ABC (其中∠DAE=∠ABC=90°,AB=BC ,AD=AE )如图放置在一起,点E 在AB 上,AC 与DE 交于点H ,连接BH 、CE ,且∠BCE=15°,下列结论:①AC 垂直平分DE ; ②△CDE 为等边三角形;③tan ∠BCD=ABBE ;④3=3EBC EHCS S其中正确的结论是____________(填写所有正确结论的序号)(第17题图)三、解答题:本大题共7 小题,共 52分.解答要写出必要的文字说明、证明过程或演算步骤. 18.(本题满分5分)如图,在△ABC 中,AB=AC ,∠1=∠2,求证:△ABD ≌△ACD.解不等式组:3(2)41213x x x x --<⎧⎪+⎨-⎪⎩≤ 20.(本题满分8 分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)请你根据图中的数据填写下表:姓名 平均数 众数 甲 7 乙6(2)请通过计算方差,说明谁的成绩更稳定.21.(本题满分8 分)已知关于x 的一元二次方程ax28x260.(1)若方程有实数根,求a 的取值范围;(2)若a 为正整数,且方程的两个根也是整数,求a 的值.甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B地出发沿相同路线匀速驶向A地,出发t (t>0)小时后,乙车因故在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)写出甲车行驶的速度,并直接在图中的()内填上正确的数;(2)求甲车从B地返回A地的过程中,y与x的函数解析式(不需要写出自变量x的取值范围);(3)若从乙车出发至甲车到达A地,两车恰好有两次相距80千米,直接写出t的取值范围.(第22题图)23.(本题满分9 分)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=4,BE=1,5①求⊙O的半径;②求FN的长.(第23题图)24.(本题满分9 分)在平面直角坐标系中,抛物线y=x2+(k-1)x-k与直线y=kx+1交于A、B两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k-1)x-k(k>0)与x轴交于点C、D两点(点C在点D的左侧),是否存在实数k使得直线y=kx+1与以O、C为直径的圆相切?若存在,请求出k的值;若不存在,说明理由.数学答案及评分建议评卷要求:1.阅卷时本着对学生负责的态度,一丝不苟,精心阅卷.2.个别题目,若有多种解法,务必要阅卷组先商量后,阅卷组长统一得分标准,然后再得分,自己不要随意得分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:每小题4分,共12小题,计48分.二、填空题:(只要求填写最后结果,每小题填对得4分)13.0 ;14. 2a-b,2a-b; 15. 1 ;16.(4n+3);17. ①②③④三、解答题:18.(本题满分 5 分)解:∵∠1=∠2,∴BD=CD..............................................................................................1分在ABD 和△ACD ,AB =AC BD =CD AD =AD ⎧⎪⎨⎪⎩∴△ABD ≌△ACD ........................................................4分 ∴∠BAD=∠CAD .即AD 平分∠BAC .................................................................................5分 19.(本题满分 5 分) 解:3(2)41213x x xx --<⎧⎪⎨+-⎪⎩①≤ ②........................................................................................................1分解不等式①得,x >1;解不等式②得,x ≤4 ...............................................................3分 把不等式①②在数轴上表示,如图........................................................4分所以不等式的解集为:1<x≤4................................................................................................5分20.(本题满分 8 分)(1)7;64分(2)S甲2=15[67)2(77)2(87)2(77)2(77)2]=25;6分S乙2=15[36)2(66)2(66)2(76)2(86)2=1457 分因为S甲2<S乙2,所以甲比乙更稳定...........................................8分21.(本题满分8 分)解:(1)当a=0时,原方程化为8x+6=0,得x=-34,方程有实根,符合题意;当a≠0时,△=82-4×6a≥0,∴a≤83,∴a≤83且a≠0..4分(2)结合(1)的结论可得0<a≤83,因为a为整数,所以a=1,2.①当a=1时,原方程化为x2+8x+6=0,方程的根为无理根,不符合题意;②当a=2时,原方程化为x2+4x+3=0,x1=-1,x2=-3,符合题意.综上,a 的值为2. ................................................................................................................... 8分22.(本题满分 8 分) 解:(1)甲的速度=8008=100千米/小时;9....................................................................2分(2)由题意,得E 点坐标为(8,0),D (4,400)设DE 解析式y=kx+b ∴08k +b4004k +b⎧⎨⎩==∴k=-100,b=800,∴DE 解析式y=-100x+800................7分 (3)0<t <1.......................8分 23.(本题满分 9 分)解:(1)证明:连接OC ,如图所示: ∵直线DE 与⊙O 相切于点C ,∴OC ⊥DE , 又AD ⊥DE ,∴OC ∥AD .∴∠1=∠3 ∵OA=OC ,∴∠2=∠3,∴∠1=∠2, ∴AC 平分∠DAE ......................3分(2)①连接BF ,∵AB 为⊙O 的直径,∴∠AFB=90°.而DE ⊥AD ,∴BF ∥DE ,∴OC ⊥BF ,∴CF =BC ,∴∠COE=∠FAB , 设⊙O 的半径为r ,在Rt △OCE 中,cos ∠COE=4=5OC OE ,∴4=5r r +1,∴r=4,即⊙O 的半径为4...............................................................6分 ②连接BF ,在Rt △AFB 中,cos ∠FAB=AFAB,∴AF=8×45=325在Rt △OCE 中,OE=5,OC=4,∴CE=3, ∵AB ⊥FM ,∴AM =AF ,∴∠5=∠4, ∵FB ∥DE ,∴∠5=∠E=∠4,∵CF =BC ,∴∠1=∠2,∴△AFN ∽△AEC ,∴FN CE =AF AE ,即3FN=3259,∴FN=3215................................................................................................................ ................9分24.(本题满分 9 分)解:(1)A(-1,0),B(2,3)......................................................................................2分(2)设P(x,x2-1),如答图1所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=yF﹣yP=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=12PF(xF﹣xA)+12PF(xB﹣xF)=12PF(xB﹣xA)=32PF∴S△ABP=32(﹣x2+x+2)=﹣32(x﹣12)2+278.当x=12时,yP=x2﹣1=﹣34.∴△ABP面积最大值为278,此时点P坐标为(12,﹣34)............................................5分(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣1k ,0),F(0,1),OE=1k,OF=1.在Rt△EOF中,由勾股定理得:.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.(Ⅰ)设直线y=kx+1与以O、C为直径的圆相切的切点为Q,如答图2所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=2k.∴EN=OE﹣ON=1k ﹣2 k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ OF =ENEF,即21k1k﹣k=±5,∵k>0,∴k=5.∴存在实数k使得直线y=kx+1与以OC为直径的圆相切,此时k=.............................................................................................................. ............8分(Ⅱ)若直线AB过点C时,此时直线与以OC为直径的圆要相切,必有AB⊥x轴,而直线AB的解析式为y=kx+1,∴不可能相切.综上所述,k=5时,使得直线y=kx+1与以OC为直径的圆相切........................9分。

无锡市惠山区2020届九年级二模数学试题(含答案)

无锡市惠山区2020届九年级二模数学试题(含答案)

九年级数学模拟试卷 2020.06本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 实数4的算术平方根是 ( ▲ ) A .±2 B .16 C .2D .-22.函数y=24-xx中自变量x 的取值范围是 ( ▲ ) A .x ≠﹣4B .x ≠4C .x ≤﹣4D .x ≤4 3.下列运算正确的是 ( ▲ ) A .(ab )2=ab 2 B .a 2·a 3= a 6 C .(-2)2=4 D .2×3=64.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( ▲ )5.下列说法正确的是 ( ▲ ) A .一组数据2,2,3,4,这组数据的中位数是2 B .了解一批灯泡的使用寿命的情况,适合抽样调查C .小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数 是131分D .某日最高气温是7℃,最低气温是﹣2℃,则该日气温的极差是5℃6.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是 ( ▲ )A. B. C. D. 7.如图, 为的直径,是的弦,,则的度数为( ▲ )A .D .B .C .A. B. C. D.(第7题) (第8题) (第9题)8.10个全等的小正方形拼成如图所示的图形,点P 、X 、Y 是小正方形的顶点,Q 是边XY 上一点.若线段PQ 恰好将这个图形分成面积相等的两个部分,则 的值为 ( ▲ ) A .21B .32C .52 D .53 9.如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数ky x=的图象恰好经过A B '的中点D ,则k 的值是 ( ▲ )A .9B .12C .15D .1810.已知二次函数y =﹣x 2+2x +3,截取该函数图象在0≤x ≤4间的部分记为图象G ,设经过点(0,t )且平行于x 轴的直线为l ,将图象G 在直线l 下方的部分沿直线l 翻折,图象G 在直线上方的部分不变,得到一个新函数的图象M ,若函数M 的最大值与最小值的差不大于5,则t 的取值范围是( ▲ ) A .﹣1≤t ≤0B .﹣1≤t 12≤-C .102t -≤≤ D .t ≤﹣1或t ≥0二、填空题(每题2分,满分16分,将答案填在答题纸上) 11.因式分解:18﹣2x 2= ▲ .12.肥皂泡沫的泡壁厚度大约是0.0007mm ,则数据0.0007用科学记数法表示为 ▲ . 13.已知一个多边形的内角和是720°,则这个多边形是 ▲ 边形.14.已知圆锥的母线长为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 ▲ cm . 15.如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长 ▲ .(第15题) (第17题) (第18题)16.某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购0.6元,则该品牌饮料一箱 有 ▲ 瓶.I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为___▲____.18.如图,在矩形ABCD 中,AB = 8,AD = 6,以点C 为圆心作⊙C 与直线BD 相切,点P 是⊙C 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是__▲___. 三、解答题(共8小题,满分84分解答要写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)+121-⎪⎭⎫⎝⎛﹣cos60° (2)(2x ﹣y )2﹣(x+y )(x ﹣y ) 20.(本题满分8分)(1)解方程:x 2﹣6x ﹣6=0; (2)解不等式组:.21.(本题满分8分)如图,在□ABCD 中,点E 、F 分别在边CD 、AB 上,且满足CE =AF . (1)求证:△ADE ≌△CBF ;(2)连接AC ,若AC 恰好平分∠EAF ,试判断四边形AECF 为何种特殊的四边形?并说明理由.22.(本题满分6分)某校为检测“停课不停学”期间九年级学生的复习情况,进行了中考数学模拟测试并从中随机抽取了部分学生的测试成绩分成5个小组,根据每个小组的人数绘制如图 所示的尚不完整的频数分布直方图. 请根据信息回答下列问题: (1)若成绩在80﹣90分的频率为,请计算抽取的学生人数并补全频数分布直方图;(2)在此次测试中,抽取学生成绩的中位数在 ▲ 分数段中.(3)若该校九年级共有960名学生,成绩在80分以上的(含80分)为优秀,请通过计算说明,大约有多少名学生在本次测试中数学成绩为优秀.23.(本题满分8分)D EF ABC甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情. (1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别 相同的概率是 ▲ .(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护 人员来自同一所医院的概率.24.(本题满分8分)已知:如图,在Rt △ABC 中,∠C =90°,∠A ≠∠B .(1)请利用直尺和圆规作出△ABC 关于直线AC 对称的△AGC ;(不要求写作法,保留作图痕迹) (2)在AG 边上找一点D ,使得BD 的中点E 满足CE =AD .请利用直尺和圆规作出点D 和点E ;(不要求写作法,保留作图痕迹) 25.(本题满分8分)某企业接到一批防护服生产任务,按要求15天完成,已知这批防护服的出厂价为每件80元,为按时完成任务,该企业动员放假回家的工人及时返回加班赶制.该企业第x 天生产的防护服数量为y 件,y 与x 之间的关系可以用图中的函数图象来刻画.(1)直接写出y 与x 的函数关系式 ▲ ;(写好x 的取值范围)(2)由于特殊原因,原材料紧缺,服装的成本前5天为每件50元,从第6天起每件服装的成本比前一天增加2元,设第x 天创造的利润为w 元,直接利用(1)的结论,求w 与x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)26.(本题满分10分)如图,在△ABC 中,AB =BC =10,tan ∠ABC =43,点P 是边BC 上的一点,M 是线段AP 上一点,线段PM 绕点P 顺时针旋转90°得线段PN ,设BP =t.(1)如图①,当点P 在点B ,点M 是AP 中点时,试求AN 的长; (2)如图②,当PMMA =13时,①求点N 到BC 边的距离(用含t 的代数式表示);②当点P 从点B 运动至点C 时,试求点N 运动路径的长.27.(本题满分10分)已知:在平面直角坐标系xOy中,二次函数y=mx 2 +2mx-4(m≠0)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点C,△ABC的面积为12.(1)求这个二次函数的解析式;(2)点D的坐标为(-2,1),点P在二次函数的图象上,∠ADP为锐角,且tan∠ADP=2,求出点P的横坐标;28.(本题满分10分)【操作体验】如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,说明∠AP1B=30°;【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).【深入探究】(3)已知矩形ABCD,BC=2.AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,则m的取值范围为▲.(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为▲.九年级数学二模试卷答案2020.6题号 12345678910答案C BD D B A C B C A11. 2(3+x )(3-x) 12 7×10﹣4 13. 六 14. 3 15.10 16. 10 17. 4 18. 3 三、解答题(共84分) 19.(本题满分8分)解:(1)原式=2+2﹣ 3分 =3; 4分 (2)原式=4x 2﹣4xy +y 2﹣x 2+y 2 2分 =3x 2﹣4xy +2y 2. 4分 20(本题满分8分)解:(1)a =1,b =﹣6,c =﹣6,则b 2﹣4ac =36+24=60>0, 1分 则x =, 3分 则x 1=3+,x 2=3﹣; 4分(2),解①得:x ≤1, 1分 解②得:x >﹣2, 2分 则不等式组的解集是:﹣2<x ≤1. 4分21.(本题满分8分) (1在□ABCD 中,AD =BC ,AB =DC ,∠B =∠D . (1分) ∵CE =AF ,∴DC ―CE =AB ―AF ,即DE =BF .…(2分) ∴△ADE ≌△CBF . …………………………………(4分) (2)答:菱形. …………………………………(5分)在□ABCD 中,AB ∥DC ,∴∠DCA =∠CAB , ∵AC 恰好平分∠EAF ,∴∠EAC =∠CAB ,∴∠DCA =∠EAC ,∴AE =EC . ………………………………………………(6分) ∵AB ∥DC ,CE =AF ,∴四边形AECF 为平行四边形, ………………………(7分)D EF ABC∴四边形AECF为菱形.…………………………………………………………(8分)22.(本题满分6分)解:(1)∵80~90分的有9人,频率为,∴抽取的学生人数为9÷=48人,∴60~70分的人数为48﹣(3+6+9+18)=12人,补全统计图如图所示:…………………………………(2分)(2)∵共48人,∴中位数是第24和第25人的平均数,∴抽取学生成绩的中位数在70~80分数段中;故答案为:70~80;…………………………………(4分)(3)960×=300名,答:约有300名学生在本次测试中数学成绩为优秀.………………………………(6分)23.(本题满分8分)解:(1)1/2;…………………………………………………………………………(2分)(2)画树状图或列表(略)……………………………………………………(5分)共有12种等可能的结果,满足要求的有4种.……………………………(7分)则P(2名医生来自同一所医院的概率)=4/12=1/3……………………………(8分)24.(本题满分8分)解:(1)所画△AGC见图.…(2分)(2)所画图形见图.作图简要步骤如下:(1)作AC的垂直平分线,交AC于F点.…(5分)(2)连接BF 并延长,交AG 于D 点. …(6分) (3)作BD 的垂直平分线,交BD 于E 点,连接CE . 则D 点和E 点为所求.…(8分) (其他方法酌情给分,作出点D 得4分)25.(本题满分8分)解:(1)()()⎩⎨⎧≤+≤≤=155120305054x x x x y < ;……………………(2分)(2)1°当0≦x ≦5时 w=1620x ……………………(3分)当x=5时,w 最大=8100 ……………………(4分)2°当5<x ≦15时 w=480096060-2++x x ……………………(6分)当x=8时,w 最大=8640 ……………………(7分) 综上 :当x=8时,w 最大=8640 ……………………(8分)26.(本题满分10分)(1)∵在Rt △ABN 中,∠ABN =90°,AB =10,∴BN =BM =12AB =5, ∴AN =102+52=55; …(2分)(2)①(Ⅰ)当0≤t ≤6时(如图①),第26题解图① 第26题解图②如解图:过点A 作AE ⊥BC 于点E ,过点N 作NF ⊥BC 于点F ,∵tan ∠ABC =AE BE =43,设AE =4x ,则BE =3x , 在Rt △ABE 中,∠AEB =90°,∴AB 2=AE 2+BE 2,102=(3x )2+(4x )2,解得:x =2,∴AE =8,BE =6 …(3分) 当0 ≤t ≤6时.∵∠AEP =∠PFN =90°,∠APE +∠FPN =90°,∠APF +∠PAE =90°, ∴∠PAE =∠FPN ,∴△APE ∽△PNF , …(4分)∵PM MA =13,∴PF AE =FN PE =PN AP =14,∴FN =14(6-t )=32-14t ; …(5分) (Ⅱ)当6≤t ≤10时,同理可得:FN =14(t -6)=14t -32; …(7分) ②如图2点N 的运动路径是一条线段,当P 与O 重合时,FN =32,PF =2, …(8分) 当P 与C 重合时,F ′N ′=1,CF ′=2, …(9分)∴点N 的路径长NN ′=102+(1+32)2= 2…(10分)(2)作DF ⊥x 轴于点F .分两种情况: (ⅰ)当点P 在直线AD 的下方时,由(1)得点A (-4,0),点D (-2,1), ∴DF=1,AF=2.在Rt △ADF 中,∠AFD=90°,得tan ∠ADF=DFAF=2. 6分 延长DF 与抛物线交于点P 1,则P 1点为所求. ∴点P 1的坐标为(-2,-4). 7分(ⅱ)当点P 在直线AD 的上方时,延长P 1A 至点G 使得AG=AP 1,连接DG ,与抛物线交于点P 2,则P 2点为所求.又∵A (-4,0),P 1(-2,-4),∴点G 的坐标是(-6,4). 8分求出2143--=x y GD , 9分 与抛物线y=21x 2+x-4的交点P 2的横坐标为41617--综上:点P 横坐标为-2 或 41617-- 10分 (1)∵OA =OB =AB , ∴△OAB 是等边三角形, ∴∠AOB =60°, 由图②得:∠AP 1B=∠AOB =30°; 2分(2)如图③,①以B 、C 为圆心,以BC 为半径作圆,交AB 、DC 于E 、F , ②作BC 的中垂线,连接EC ,交于O , ③以O 为圆心,OE 为半径作圆,则弧EF 上所有的点(不包括E 、F 两点)即为所求; 4分 (3)如图④,122+<≤m 7分(4)如图⑤,234- 10分21。

数学-2021年中考长沙模拟试卷(原卷+答案解析+答题卡)

数学-2021年中考长沙模拟试卷(原卷+答案解析+答题卡)

数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1 B.C.0 D.﹣2.2021年初,新冠肺炎疫情再次袭卷全球,截止2021年4月底,据不完全统计,全球累计确诊人数约为13294万人,用科学记数法表示为()人.A.1.3294×107 B.1.3294×108 C.0.13294×108D.13.294×1063.下列运算结果是a6的是()A.﹣(a2)3 B.a3+a3 C.(﹣2a)3D.﹣3a8÷(﹣3a2)4.下列城市地铁的标志图案中,既是中心对称又是轴对称图形的是()A.B.C.D.5.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.6.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的7.如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0 C.k且k≠0 D.k8.如图所示,矩形纸片ABCD中,AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AD的长为()A.8cm B.7cm C.6cm D.5cm9.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.1710.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布()尺.A.B.C.D.11.如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A.B.C.3 D.12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,CD⊥AB于点D.点P从点A出发,沿A→D →C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题有4个小题,每小題3分,共12分)13.分解因式:x2+ax+b=(x﹣1)(x﹣3),则a+b=.14.如图,某水库水坝的坝高为24米,如果迎水坡AB的坡度为1:0.75,那么该水库迎水坡AB的长度为米.15.如图,三角形ABC是直角三角形,AC长为4cm,BC长为2cm,以AC、BC为直径画半圆,两个半圆的交点在AB边上,则图中阴影部分的面积为cm2.16.如图,正方形ABCD的边长为10,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则DH的长为.三、解答题:本大题有9个小题,第17.18.19题每6分,第20.21题每小题8分,第22.23题每小题9分,第24.25题每小题10分,共72分。

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.22.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×1053.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,几何体的左视图是( )A.B.C.D.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A .35,38B .38,38C .38,35D .35,356 ( )A .5B C .±5D .7.正八边形的每一个外角的度数是() A .30°B .45︒C .60︒D .135︒8.关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是() A .14a >-B .14a ≥-C .14a ≥-且0a ≠ D .14a >-且0a ≠ 9.一元一次不等式组的解集在数轴上表示为()A .B .C .D .10.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A .2B .2.2C .2.4D .2.5二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.12x 应满足的条件是______. 13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个. 14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 15.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =50°,则∠2=_________.16.如图,已知△ABC 中,AB =AC =12厘米,BC =8厘米,点D 为AB 的中点,如果点M 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点N 在线段CA 上由C 点向A 点运动,若使△BDM 与△CMN 全等,则点N 的运动速度应为_____厘米/秒.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒-.19.先化简,再求值:,其中满足20.如图,在△ABC 中,∠ABC =80°,∠BAC =40°,AB 的垂直平分线分别与AC 、AB 交于点D 、E . (1)在图中作出AB 的垂直平分线DE ,并连接BD . (2)证明:△ABC ∽△BDC .四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2020年中考数学全真模拟试卷(广东)(四)答题卡姓名:______________班级:______________选择题(请用2B 铅笔填涂)非选择题(请在各试题的答题区内作答)20题、23题、24题、2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.2【答案】B【解析】根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可求解【详解】根据负数的绝对值是它的相反数,得11 22 -=.故选B.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的定义和性质是解题的关键.2.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×105【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法表示15000是:1.5×104.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查对轴对称图形和中心对称图形的识别,熟练掌握,即可解题.4.如图,几何体的左视图是( )A.B.C.D.【答案】A【解析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38B.38,38C.38,35D.35,35【答案】B【解析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】把这些数从小到大排列为:28,35,35,38,38,38,48,最中间的数是38,则中位数是38;∵38出现了3次,出现的次数最多,∴这组数据的众数是38;故选B.【点睛】此题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.6( )A.5 B C.±5 D.【答案】A【解析】根据算术平方根的定义即可求解.【详解】故答案选A..【点睛】本题考查的知识点是算术平方根,解题的关键是熟练的掌握算术平方根.7.正八边形的每一个外角的度数是()A.30°B.45︒C.60︒D.135︒【答案】B【解析】根据多边形的外角和为360度,再用360度除以边数即可得到每一个外角的度数.【详解】∵多边形的外角和为360度,∴每个外角度数为:360°÷8=45°,故选:B.【点睛】考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角.8.关于x的一元二次方程210ax x+-=有实数根,则a的取值范围是()A.14a>-B.14a≥-C.14a≥-且0a≠D.14a>-且0a≠【答案】C【解析】从两方面考虑①方程要是一元二次方程,则二次项系数不能为0;②利用根的判别式△≥0列出不等式求解.【详解】解:要使方程210ax x+-=为一元二次方程则a≠0此时∵关于x的方程210ax x+-=有实数根,∴214(1)140a a=-⨯⨯-=+V…解得:14 a-…,故答案为14a≥-且0a≠,选C.【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.在本题中切记二次项系数不能为0.9.一元一次不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】试题分析:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.考点:解一元一次不等式组;在数轴上表示不等式的解集.10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2 B.2.2 C.2.4 D.2.5【答案】C【解析】根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.【答案】x (y+2)(y-2)【解析】首先提公因式x ,然后利用平方差公式分解即可;【详解】解:224)4(2)((2)x y x y y y x x --+-==故答案为:x (y+2)(y-2)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12有意义时,x 应满足的条件是______. 【答案】8x >.【解析】直接利用二次根式的定义和分数有意义求出x 的取值范围.【详解】有意义,可得:80x ->,所以8x >, 故答案为:8x >.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个.【答案】24【解析】分析:首先设黄球的个数为x 个,根据题意得:1212x +=13,解此分式方程即可求得答案. 详解:设黄球的个数为x 个, 根据题意得:1212x +=13, 解得:x =24,经检验:x =24是原分式方程的解;∴黄球的个数为24.故答案为24点睛:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 【答案】a b <【解析】由反比例函数y =-2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x 的增大而增大,根据这个判定则可.【详解】∵反比例函数中y =-2x中20k =-<, ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴a <b.故答案为:a<b.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握该特征是本题解题的关键.15.如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2=_________.【答案】100°【解析】试题解析:如图,∵长方形纸片ABCD的边AD∥BC,∴∠3=∠EFG=50°,根据翻折的性质,∠1=180°-2∠3=180°-2×50°=80°,又∵AD∥BC,∴∠2=180°-∠1=180°-80°=100°.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为_____厘米/秒.【答案】2或3【解析】分两种情形讨论①当BD=CM=6,BM=CN时,△DBM≌△MCN,②当BD=CN,BM=CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【详解】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t=2=1,2∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t=4=2,CN=BD=6厘米,2∴点N的速度为:6=3厘米/秒.2故点N的速度为2或3厘米/秒.故答案为2或3.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.【答案】194n -(或2292n -) 【解析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【详解】如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC=CA 1=P 1C=3,设A 1D=a ,则P 2D=a ,∴OD=6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入y=-13x+4,得:-13(6+a )+4=a , 解得:a=32, ∴A 1A 2=2a=3,P 2D=32, 同理求得P 3E=34、A 2A 3=32, ∵12311391339639,3,222422416S S S =⨯⨯==⨯⨯==⨯⨯=、…… ∴S n =194n -(或2292n -). 故答案为194n -(或2292n -). 【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒--. 【答案】2【解析】分析:根据负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质求解即可. 详解:原式=142212-+⨯-=2. 点睛:此题主要考查了实数的混合运算,关键是熟记并灵活运用负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质计算即可.19.先化简,再求值:,其中满足【答案】原式=x 2−1−x2+2xx(x+1)×(x+1)2x(2x−1)=x+1x2∵∴x2=x+1原式=x+1x+1=1【解析】试题分析:先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后整体代入求值. 原式=·原式=1.考点:分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20.如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC∽△BDC.【答案】(1)见解析(2)证明见解析【解析】(1)分别以A、B为圆心,大于12AB的长为半径画弧,两弧交于两点,过两点作直线,即为AB的垂直平分线;(2)由线段垂直平分线的性质,得DA=DB,则∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出△ABC∽△BDC.【详解】(1)如图,DE即为所求;(2)∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=80°﹣40°=40°,∴∠DBC=∠BAC,∵∠C=∠C,∴△ABC∽△BDC.【点睛】本题考查了作图——基本作图,相似三角形的判定,线段垂直平分线的性质,熟练掌握相关的性质与判定定理是解题的关键.四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?【答案】(1)2013;2016;(2)54°;(3)460人;(4)20400人【解析】(1)由图中的数据进行判断即可;(2)先求得“短跑”在扇形图中所占的百分比为15%,进而得到α=360°×15%=54°;(3)依据2017年抽取的学生总数,即可得到喜欢羽毛球和短跑的学生数量;(4)依据喜欢乒乓球和羽毛球两项运动的百分比,即可估计我市2017年喜欢乒乓球和羽毛球两项运动的人数.【详解】解:(1)由图可得,2013年抽取的调查人数最少;2016年抽取的调查人数中男生、女生人数相等;故答案为:2013,2016;(2)1﹣35%﹣10%﹣15%﹣25%=15%,∴α=360°×15%=54°;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有(600+550)×(25%+15%)=460(人);(4)我市2017年喜欢乒乓球和羽毛球两项运动的大约有34000×(25%+35%)=20400(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【答案】(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得15 56310 y xx y-=⎧⎨+=⎩解得2035 xy=⎧⎨=⎩答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个. (2)设租用a辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤32 3 ,符合条件的a的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系. 23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)见解析;(2)见解析【解析】本题主要考查菱形及全等三角形的应用(1)先由MD为BE的中位线,可证MD∥EN且MD=12BE,又∠GDN+∠DNE=180°,可证四边形MDNE为平行四边形,从而可证平行四边形DMEN为菱形(2)取BE中点F,连接DM,DF,利用(1)的结论可证△DMG≌△DFN,即可得出答案【详解】证明:(1)如图2中,∵AM =ME .AD =DB ,∴DM ∥BE ,∴∠GDN+∠DNE =180°,∵∠GDN =∠AEB ,∴∠AEB+∠DNE =180°,∴AE ∥DN ,∴四边形DMEN 是平行四边形, ∵11,,22DM BE EM AE AE BE ===,∴DM =EM ,∴四边形DMEN 是菱形.(2)如图1中,取BE 的中点F ,连接DM 、DF .由(1)可知四边形EMDF 是菱形,∴∠AEB =∠MDF ,DM =DF ,∴∠GDN =∠AEB ,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN.【点睛】本题的关键是掌握菱形的性质及判断以及全等三角形的判定五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.【答案】(1)详见解析;(2)∠ADB=30°;(3)AC=2AM=【解析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD =90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM =60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,设OM=OE=r,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM =BM ,∵OB =OM ,∴OB =OM =BM ,∴∠OBM =60°,∴∠ADB =30°;(3)解:连接EM ,过M 作MF ⊥AE 于F ,∵OM =DM ,∴∠MOF =∠MDF =30°,设OM =OE =r ,1,2FM r OF ∴==EF r ∴= 222EF FM EM +=Q221122r r r ⎛⎫⎛⎫∴-+= ⎪ ⎪ ⎪⎝⎭⎝⎭解得:r∴AE =2r =∵AE 是⊙O 的直径,∴∠AME =90°,∴AM=,∴AC =2AM =【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(﹣1,0),y=ax+a;(2)y=25x2﹣45x﹣65;(3)以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【解析】(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D 的坐标,然后利用待定系数法即可求得直线l 的函数表达式.(2)设点E (m ,ax 2﹣2ax ﹣3a ),知HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,根据直线和抛物线解析式求得点D 的横坐标,由S △ADE =S △AEH +S △DEH 列出函数解析式,根据最值确定a 的值即可; (3)分以AD 为矩形的对角线和以AD 为矩形的边两种情况利用矩形的性质确定点P 的坐标即可.【详解】解:(1)令y =0,则ax 2﹣2ax ﹣3a =0,解得x 1=﹣1,x 2=3∵点A 在点B 的左侧,∴A (﹣1,0),如图1,作DF ⊥x 轴于F ,∴DF ∥OC , ∴OF CD OA AC=, ∵CD =4AC , ∴4,OF CD OA AC== ∵OA =1,∴OF =4,∴D 点的横坐标为4,代入y =ax 2﹣2ax ﹣3a 得,y =5a ,∴D (4,5a ),把A 、D 坐标代入y =kx +b 得045,k b k b a -+=⎧⎨+=⎩解得,k a b a =⎧⎨=⎩∴直线l 的函数表达式为y =ax +a .(2)如图2,过点E 作EH ∥y 轴,交直线l 于点H ,设E (x ,ax 2﹣2ax ﹣3a ),则H (x ,ax +a ).∴HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,由223y ax a y ax ax a =+⎧⎨=--⎩得x =﹣1或x =4, 即点D 的横坐标为4,∴S △ADE =S △AEH +S △DEH =52(﹣ax 2+3ax +4a )253125228a x a ⎛⎫=--+ ⎪⎝⎭.∴△ADE的面积的最大值为1258a,∴12525,84a=解得:25 a=,∴抛物线的函数表达式为y=25x2﹣45x﹣65(3)已知A(﹣1,0),D(4,5a).∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P(1,m),①若AD为矩形的边,且点Q在对称轴左侧时,则AD∥PQ,且AD=PQ,则Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=17,∵a>0,∴a∴P1(1),②若AD为矩形的边,且点Q在对称轴右侧时,则AD∥PQ,且AD=PQ,则Q(4,5a),此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.∴x D+x A=x P+x Q,y D+y A=y P+y Q,∴x Q=2,∴Q(2,﹣3a).∴y P=8a∴P(1,8a).∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2即a2=14,∵a>0,∴a=12∴P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.。

2024年浙江省杭州市上城区九年级中考二模数学试卷

2024年浙江省杭州市上城区九年级中考二模数学试卷

2023学年第二学期九年级学情调查考试 (二)数 学考生须知:1.本试卷分试题卷和答题卡两部分,考试时间120分钟,满分120分;2.答题前,请在答题卡的密封区内填写姓名和准考证号;3.不能使用计算器;考试结束后,试题卷和答题卡一并上交;4.所有答案都必须做在答题卡规定的位置上,注意试题序号和答题序号相对应.一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.-2的相反数是A. 12 B.−12 C. -2 D.2 2.以下四个标志中,是轴对称图形的是3.要使分式2x+2有意义,x 的取值应满足A. x>-2B. x<-2C. x≠-2D. x=-2 4.下列运算正确的是A.a³⋅a⁴=a¹²B. 3ab-2ab=1C.(a +b )²=a²+b²D.(ab )³=a³b³5.一个不透明的袋·子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为A. 14B. 13C. 12D. 236.如图, 菱形ABCD 的对角线AC, BD 相交于点O.若∠ACB=60°, 则 BDAC = A. √2 B. 3 c √3 D.3√327.如图, △ABC 圆内接于⊙O, 连接OA, DB, OC, ∠AOB=2∠BOC. 若∠OBC=65°, 则∠ABC 的度数是 A. 95° B. 105° C. 115° D. 135°8.如图,数轴上三个不同的点B ,C ,A 分别表示实数b ,a-b ,a ,则下列关于原点位置的描述正确的是A.原点在 B 点的左侧B.原点在B、C之间C. 原点在C、A之间D.原点在A点的右侧9.已知二次函数.y=ax²−2ax+3图象上两点P(x₁, y₁), Q(x₁, y₁), 且y₁<y₁.下列命题正确的是A. 若|x₁+I|>|x₁+1|,则a<0B. 若|x₁-1|>|x₁-1|, 则a>0C. 若|x₁+1|>|x₁+1|,则a>0D. 若|x₁-1|>|x₁-1|, 则a<010.如图, 在△ABC中, 点D是AB上一点(不与点A, B重合), 过点D作DE∥BC交AC于点 E, 过点E作EF∥AB交 BC于点 F, 点 G是线段DE上一点, EG=2DG, 点H是线段CF 上一点, CH=2HF, 连接AG, AH, GH, HE. 若已知△AGH的面积, 则一定能求出A. △ABC的面积B. △ADE的面积C. 四边形 DBFE的面积D. △EFC的面积二、填空题:本大题有6小题,每题3分,共18分.11.因式分解:a²+3a=12.由中国民航局获悉,2024年春运期间,全国民航日均运输旅客超过2086000人,数2086000.用科学记数法表示为▲ .13.若点(m, n)在第二象限, 则点(n+1, m)在第▲ 象限.14.如图, 已知D, E是△ABC边AB, AC上两点, 沿线段DE折叠, 使点 A落在线段 BC的点 F处, 若 BD=DF,∠C=70°,则∠CEF=▲ .15.如图, 矩形ABCD, 点E、F分别是BC, CD上一点, 连接EF,,则sin∠AFD=令∠AEB=α, 已知A E=AF, BE=5CE, sinα=35▲(x⟩0)16.如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴于点 B,函数y=kx的图象经过线段AB的中点D, 交OA于点C, 连接CB.若△AOB的面积为12, 则 k=▲ ; △COB的面积为▲ .三、解答题:本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(本题共6分) (1)计算 2−1+|−12|+(√2−2024)0;(2)解一元一次不等式组: {3x −2≤3x +1>218.(本题6分)小亮在学习物理后了解到:在弹性限度内,某种弹簧长度y(cm)与所挂物体质量x(kg)之间的关系如图所示: (1)请求出y 与x 之间的关系式.(2)小亮妈妈在水果摊贩上买了8kg 水果,小亮将该水果放在袋中(袋子的质量忽略不计)挂到弹簧下端,测得弹簧长度为16.1cm 请你通过计算帮助小亮确定水果是否足称.19.(本题8分)如图,平行四边形ABCD 的两条对角线AC 与BD 相交于点O ,E, F 是线段BD 上的两点, 且∠AEB=∠CF D, 连接AE, EC,CF, FA. (1) 求证:四边形AECF 是平行四边形.(2) 从下列条件: ①AC 平分∠EAF, ②∠EAF=60°, ③AB=BC 中选择一个合适的条件添加到题干中,使得四边形AECF 为菱形. 我选的是 (请填写序号),并证明.20.(本题8分)为了进一步加强中小学生对于民族文化的认同感,某中学开展了形式多样的传统文化教育培训活动.为了解培训效果,该校组织全校学生参加了传统文化主题知识竞赛,为了解竞赛成绩,随机抽样调查了七、八年级各10名学生的成绩x(单位:分),分数如下:七年级10名学生竞赛成绩: 75, 83, 79, 89, 79, 83, 95, 70, 64, 83;八年级10名学生竞赛成绩中分布盔80<x≤90的成绩如下: 84, 85, 85, 85, 86. 【整理数据】: 年级 0<x≤70 70<x≤80 80<x≤90 90<x≤100 七年级 2 m 4 1 八年级1351(1) 填空: m= , b= , a= ;(2)若学生的竞赛成绩超过80分为“优秀”,请估计该校参加竞赛的八年级320名学生中,竞赛成绩为“优秀”的人数;(3)根据以上统计结果,从不同角度说明七年级与八年级哪个年级成绩更优秀.21.(本题10分) 在边长为6的正方形ABCD中, 点E在BC的延长线上, 且CE=3,连接AE交CD于点 F.(1) 求 DF的长.(2) 作∠DCE的平分线与AE 相交与点 G, 连接DG, 求DG的长.22.(本题10分) 某数学研学小组将完成测量古塔大门上方匾额高度的任务,如图1是悬挂巨大匾额的古塔,如图2,线段BC是悬挂在墙壁AM上的匾额的截面示意图.已知BC=1米,∠MBC=37°,起始点D处看点 C,仰角.∠ADC=45°,继续向前行走,在点E处看点 B,仰角.∠AEB=53°..且D到E走了2.4米,作CN⊥AM.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)CN=.(2)求匾额下端距离地面的高度AB.23.(本题12分)综合与实践:根据以下素材,探索完成任务. 生活中的数学: 如何确定汽车行驶的安全距离背景现代社会汽车大量增加,发生交通事故的一个原因是遇到意外不能立即停车.驾驶员从发现前方道路有异常情况到立即操纵制动器需要一段时间,这段时间叫反应时间, 在这段时间里汽车通过的距离叫做反应距离; 从操纵制动器制动,到汽车静止, 汽车又前进一段距离, 这段据距离叫制动距离.素材1《驾驶员守则》中驾驶员在不同车速时所对应的正常反应距离的表格:注意: 1千米/时=518米/秒(1) 已知反应时间=反应距离(米)车速(米/秒),则驾驶员正常的反应时间为_▲_秒.车速x(千米/时) 30 60 90反应距离s2.55素材2制动距离(俗称: 刹车距离) 与汽车速度有关.下表为测试某种型号汽车的刹车性能, 工程师进行了大量模拟测试, 测得汽车的数据如下表:刹车时车速()km/h5 10 15 20 25 30刹车距离()m0 0.1 0.3 0.6 1 1.5 2.1素材3 相关法规: 《道路安全交通法》第七十八条: 高速公路上行驶的小型载客汽车最高车速不得超过每小时 120 公里.任务 1(2) 请根据素材2回答: 测量必然存在误差, 请利用平面直角坐标系(如图 1) , 以所测得数据刹车时车速x 为横坐标, 刹车距离y 为纵坐标, 描出所表示的点, 并用 光滑的曲线连接,画出函数大致图象,并求出 一个大致满足这些数据的函数表达式;任务2(3) 请根据素材2和3相应的结论回答:在测试中,该型号的汽车在高速公路上发生了一次交通事故,现场测得刹车距离为32.5米,请推测汽车是否超速行驶;任务3(4)请根据以上所有的素材回答问题:测试汽车在宽D=3米的机动车道正常行驶中,某时突然有一人骑自行车横穿机动车道,此时自行车前轮行至非机动车道与机动车道交界处的C点时与轿车的距离s=11.1米 (见图2) .测试汽车看到行人后立即刹车,若要让行人安全通过(见图3) ,汽车刹车前的最大速度不能超过多少? (注意:停车距离=反应距离+制动距离)24.(本题12分) 如图1, 已知△ABC内接于⊙O, 且AB=AD=DC, E是BĈ的中点,连接AE 交直径BC于点F, 连接BD.(1) 求证: AE⊥BD.(2) 若 BC=10, 求AE的长.(3) 如图2, 连接EO并延长交AC于点 G, 连接OD. 求S△BDOS△EAG的值.。

2023-2024学年九年级下学期数学开学摸底考试卷(人教版)及答案

2023-2024学年九年级下学期数学开学摸底考试卷(人教版)及答案

2023-2024学年下学期开学摸底考01九年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。

写在本试卷上无效。

4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。

写在本试卷上无效。

5.测试范围:初中全部知识。

6.考试结束后,将本试卷和答题卡一并交回。

参考公式:抛物线()20y ax bx c a =++≠的顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a=-一、选择题:本题共10小题,每小题4分,共40分。

1.下列实数中,是无理数的是( )A .0B .3.14C .87-D 2.以下四家银行的标志图中,不是轴对称图形的是( )A .B .C .D .3.下列正确的是( )A .22263236a b a b a b⋅=B .40.000767.610=⨯C .()2222a a b a ab -+=-+D .()()2212232x x x x +-=--4.如图,已知ABC 与DEF 位似,位似中心为O ,且ABC 与DEF 的周长之比是4:3,则:AO DO的值为( )A .4:7B .4:3C .3:4D .16:952的值应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间6.如图,有一面积为600m 2的长方形鸡场,鸡场的一边靠墙(墙长35m ),另三边用竹篱笆围成,其中一边开有1m 的门,竹篱笆的总长为69m .设鸡场垂直于墙的一边为x m ,则列方程正确的是( )A .()6912600x x +-=B .()6912600x x --=C .()692600x x -=D .()3512600x x +-=7.如所示图形都是由同样大小的棋子按一定的规律组成,其中第1个图形有6颗棋子,第2个图形一共有10颗棋子,第3个图形一共有16颗棋子,第4个图形一共有24颗棋子,…,则第7个图形中棋子的颗数为( )A .41B .45C .50D .608.如图,AB 是O 的直径,点C 、D 是O 上的点,OD AC ⊥,连接DC ,若30COB ∠=︒,则ACD∠的度数为( )A .30︒B .37.5︒C .45︒D .60︒9.如图,在边长为ABCD 中,点M 为线段CD 上一点,且23CM DM =,点P 是对角线AC 上一动点,过点P 作PE AD ⊥于点E ,PF CD ⊥于点F ,则PM EF +的最小值为( )AB.C.+D .1010.已知()1n nxf x x=+,()()()()()123n n T x f x f x f x f x =++++…(n 为正整数),下列说法:①()120232023n n f f n ⎛⎫+=⎪⎝⎭;②()()()()12321231231111123n n f f f f n n n f f f f n ++++=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…;③()()11n n T x nT x n -+>;④若()()13t t ty f t T t t+=-+,则y 的最小值为3.其中正确选项的个数是( )A .0B .1C .2D .3二、填空题:本题共8小题,共32分。

浙江杭州西湖区2025届九年级数学第一学期期末监测模拟试题含解析

浙江杭州西湖区2025届九年级数学第一学期期末监测模拟试题含解析

浙江杭州西湖区2025届九年级数学第一学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在∆ABC 中,点D 为BC 边上的一点,且AD =AB =5, AD⊥AB 于点A ,过点D 作DE⊥AD,DE 交AC 于点E ,若DE =2,则∆ADC 的面积为( )A .42B .4C .1256D .2532.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大. 3.下列函数中,是二次函数的是( ) A .y =2x +1 B .y =(x ﹣1)2﹣x 2 C .y =1﹣x 2D .y =4.如图,在正方形ABCD 中,点E 为AB 边的中点,点F 在DE 上,CF CD =,过点F 作FG FC ⊥交AD 于点G .下列结论:①GF GD =;②AG AE >;③AF DE ⊥;④4DF EF =.正确的是( ).A .①②B .①③C .①③④D .③④5.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个( ) A .45B .48C .50D .556.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )A .(6,4)B .(6,2)C .(4,4)D .(8,4)7.⊙O 的半径为8,圆心O 到直线l 的距离为4,则直线l 与⊙O 的位置关系是 A .相切B .相交C .相离D .不能确定8.方程x (x ﹣1)=0的根是( ) A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=﹣19.如图,点A ,B ,C 均在坐标轴上,1AO BO CO ===,过A ,O ,C 作D ,E 是D 上任意一点,连结CE ,BE ,则22CE BE +的最大值是( )A .4B .5C .6D .42+10.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4 D .y =2(x ﹣3)2+411.已知,则等于( )A .B .C .2D .312.下列事件中,是必然事件的是( ) A .掷一次骰子,向上一面的点数是6B .13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C .射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯 二、填空题(每题4分,共24分)13.定义:在平面直角坐标系中,我们将函数22y x =+的图象绕原点O 逆时针旋转60后得到的新曲线L 称为“逆旋抛物线”.(1)如图①,己知点(1,)A a -,(,6)B b 在函数22y x =+的图象上,抛物线的顶点为C ,若L 上三点'A 、'B 、'C 是A 、B 、C 旋转后的对应点,连结''A B ,''A C 、''B C ,则'''A B C S ∆=__________; (2)如图②,逆旋抛物线L 与直线32y =相交于点M 、N ,则OMN S ∆=__________.14.方程220x x -=的解是 .15.已知二次函数24y x x c =++的图象与x 轴的一个交点为1,0,则它与x 轴的另一个交点的坐标是__________.16.计算:sin30°+tan45°=_____.17.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 18.已知△ABC 中,AB =5,sinB =35,AC =4,则BC =_____. 三、解答题(共78分)19.(8分)已知,如图,在△ABC 中,∠C=90°,点D 是AB 外一点,过点D 分别作边AB 、BC 的垂线,垂足分别为点E 、F ,DF 与AB 交于点H ,延长DE 交BC 于点G .求证:△DFG ∽△BCA20.(8分)问题背景:如图1,在Rt ABC ∆中,90C ∠=︒,10AE =,6BE =,四边形CDEF 是正方形,求图中阴影部分的面积.(1)发现:如图2,小芳发现,只要将ADE ∆绕点E 逆时针旋转一定的角度到达A D E ∆''',就能将阴影部分转化到一个三角形里,从而轻松解答.根据小芳的发现,可求出图1中阴影部分的面积为______;(直接写出答案)(2)应用:如图3,在四边形ABCD 中,AD CD =,90ADC ABC ∠=∠=︒,90ADC ABC ∠=∠=︒于点E ,若四边形ABCD 的面积为16,试求出DE 的长;(3)拓展:如图4,在四边形ABDC 中,180B C ∠+∠=︒,DB DC =,120BDC ∠=︒,以D 为顶点作EDF ∠为60︒角,角的两边分别交AB ,AC 于E ,F 两点,连接EF ,请直接写出线段BE ,CF ,EF 之间的数量关系.21.(8分)如图,在菱形ABCD 中, 点E 是边AD 上一点,延长AB 至点F ,使BF AE =, 连接BE CF 、求证:BE CF =.22.(10分)为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元. (1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫? 23.(10分)九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队? 24.(10分)如图,在锐角三角形ABC 中,AB=4,BC=33,∠B=60°,求△ABC 的面积25.(12分)已知在平面直角坐标系中,抛物线212y x bx c =-++与x 轴相交于点A ,B ,与y 轴相交于点C ,直线y=x+4经过A ,C 两点,(1)求抛物线的表达式;(2)如果点P ,Q 在抛物线上(P 点在对称轴左边),且PQ ∥AO ,PQ=2AO ,求P ,Q 的坐标; (3)动点M 在直线y=x+4上,且△ABC 与△COM 相似,求点M 的坐标.26.如图是一个横断面为抛物线形状的拱桥,当水面宽(AB )为4m 时,拱顶(拱桥洞的最高点)离水面2m .当水面下降1m时,求水面的宽度增加了多少?参考答案一、选择题(每题4分,共48分)1、D【分析】根据题意得出AB∥DE,得△CED∽△CAB,利用对应边成比例求CD长度,再根据等腰直角三角形求出底边上的高,利用面积公式计算即可.【详解】解:如图,过A作AF⊥BC,垂足为F,∵AD⊥AB,∴∠BAD =90°在Rt△ABD中,由勾股定理得,22225552AB AD,∵AF⊥BD,∴52 2∵AD⊥AB,DE⊥AD,∴∠BAD=∠ADE=90°,∴AB∥DE,∴∠CDE=∠B, ∠CED=∠CAB, ∴△CDE∽△CBA,∴DE CD AB CB,∴2552CDCD,∴CD=1023, ∴S △ADC =11102522522323CD AF . 故选:D【点睛】本题考查相似三角形的性质与判定及等腰直角三角形的性质,利用相似三角形的对应边成比例求线段长是解答此题的关键. 2、D【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1); A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意; B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 3、C【解析】根据二次函数的定义进行判断.【详解】解:A 、该函数是由反比例函数平移得到的,不是二次函数,故本选项错误; B 、由已知函数解析式得到:y =-2x +1,属于一次函数,故本选项错误; C 、该函数符合二次函数的定义,故本选项正确; D 、该函数不是二次函数,故本选项错误;故选:C . 【点睛】本题考查二次函数的定义.熟知一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数是解答此题的关键. 4、C【分析】连接CG .根据“HL”可证Rt CFG ∆≌Rt CDG ∆,利用全等三角形的对应边相等,可得GF GD =,据此判断①;根据“ASA ”可证ADE ∆≌DCG ∆,可得AE DG =,从而可得AG AE =,据此判断②;由(2)知GF GD GA ==,可证90AFD ∠=,据此判断③;根据两角分别相等的两个三角形相似,可证AEF ∆∽DAF ∆∽DEA ∆,可得12EF AF EA AF DF DA ===, 从而可得24DF AF EF ==,据此判断④. 【详解】解:(1)连接CG . 如图所示: ∵四边形ABCD 是正方形, ∴∠ADC=90°, ∵FG ⊥FC , ∴∠GFC=90°,在Rt △CFG 与Rt △CDG 中,{CG CGCF CD==∴Rt CFG ∆≌()Rt CDG HL ∆. ∴GF GD =...①正确.(2)由(1),CG 垂直平分DF .∴∠EDC+∠2=90°, ∵∠1+∠EDC=90°, ∴12∠=∠.∵四边形ABCD 是正方形,∴AD=DC=AB ,∠DAE=∠CDG=90°, ∴ADE ∆≌()DCG ASA ∆ . ∴AE DG =. ∵E 为AB 边的中点,∴G 为AD 边的中点. ∴AG AE =.∴②错误.(3)由(2),得GF GD GA ==. ∴90AFD ∠=.③正确. (4)由(3),可得AEF ∆∽DAF ∆∽DEA ∆. ∴ 12EF AF EA AF DF DA === ∴24DF AF EF ==. ∴④正确. 故答案为:C. 【点睛】本题考查正方形的性质、全等三角形的判定和性质、相似三角形的判定与性质、三角形中位线定理、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题. 5、A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数. 【详解】∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球, ∴白球与红球的数量之比为1:9, ∵白球有5个, ∴红球有9×5=45(个), 故选A . 6、A【分析】直接利用位似图形的性质结合相似比得出AD 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴13AD BG =, ∵BG =12, ∴AD =BC =4, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴13OA OB = ∴0A 14OA 3=+ 解得:OA =2,∴OB =6,∴C 点坐标为:(6,4), 故选A . 【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO 的长是解题关键. 7、B【分析】根据圆O 的半径和圆心O 到直线L 的距离的大小,相交:d <r ;相切:d=r ;相离:d >r ;即可选出答案. 【详解】∵⊙O 的半径为8,圆心O 到直线L 的距离为4, ∵8>4,即:d <r ,∴直线L 与⊙O 的位置关系是相交. 故选B . 8、C【分析】由题意推出x =0,或(x ﹣1)=0,解方程即可求出x 的值. 【详解】解:∵x (x ﹣1)=0, ∴x 1=0,x 2=1, 故选C . 【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键. 9、C【分析】连接AC ,DE ,如图,利用圆周角定理可判定点D 在AC 上,易得(0,1)A ,(1,0)B -,(1,0)C ,2AC =,11,22D ⎛⎫⎪⎝⎭,设(,)E m n ,则22222()2EB EC m n +=++,由于22m n +表示E 点到原点的距离,则当OE 为直径时,E 点到原点的距离最大,由于OD 为平分AOC ∠,则m n =,利用点E 在圆上得到222112()()()222m n -+-=,则可计算出1m n ==,从而得到22EB EC +的最大值. 【详解】解:连接AC ,DE ,如图,90AOC ∠=︒,AC ∴为D 的直径,∴点D 在AC 上,1AO BO CO ===,(0,1)A ∴,(1,0)B -,(1,0)C ,AC =11,22D ⎛⎫ ⎪⎝⎭, 设(,)E m n , 222222(1)(1)EB EC m n m n +=-++++222()2m n =++,而22m n +表示E 点到原点的距离,∴当OE 为直径时,E 点到原点的距离最大, OD 为平分AOC ∠,m n =∴,122DE AC ==,22211()()22m n ∴-+-=, 即22m n m n +=+1m n ∴==,∴此时22222()22(11)26EB EC m n +=++=++=,即22CE BE +的最大值是1.故选:C .【点睛】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到22222()2EB EC m n +=++是解题的关键. 10、A【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y =2(x ﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y =2(x+1)2+4,故选:A .【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.11、A【解析】由题干可得y =2x ,代入计算即可求解. 【详解】∵, ∴y =2x , ∴, 故选A .【点睛】 本题考查了比例的基本性质:两内项之积等于两外项之积.即若,则ad =bc ,比较简单. 12、B【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.【详解】解:A .掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C .射击运动员射击一次,命中靶心,属于随机事件;D .经过有交通信号灯的路口,遇到红灯,属于随机事件;故选B .【点睛】此题主要考查事件发生的概率,解题的关键是熟知必然事件的定义.二、填空题(每题4分,共24分)13、3; 372【分析】(1)求出点A 、B 的坐标,再根据割补法求△ABC 的面积即可得到'''A B C S ∆;(2)将旋转后的MN 和抛物线旋转到之前的状态,求出直线解析式及交点坐标,利用割补法求面积即可.【详解】解:(1)在22y x =+上,令x=0,解得y=2,所以C (0,2),OC=2,将(1,)A a -,(,6)B b 代入22y x =+,解得a=3,b=2,∴(1,3)A -,(2,6)B ,设(1,3)A -,(2,6)B 的直线解析式为y kx b =+,则362k b k b =-+⎧⎨=+⎩, 解得14k b =⎧⎨=⎩, 直线AB 解析式为4y x =+,令x=0,解得,y=4,即OD=4,∴422CD =-=,11[2(1)]23322ABC S CD ∆=•--=⨯⨯= ∴'''3A B C S ∆= (2)如图,由旋转知,3'2OE OE ==,'60OGF EOE ∠=∠=,30OFG ∠= ∴'OE FG ⊥,3OF =,3OG =直线:33FG y =-+,令2332y x y x ⎧=-+⎪⎨=+⎪⎩,得2310x x +-= ∴23(3)41(1)37212x -±-⨯⨯--±==⨯ ∴7M N x x -=∴137722OMN S OF ∆=•=【点睛】此题考查了二次函数与几何问题相结合的问题,将三角形的面积转化为解题关键.14、122,0x x ==【解析】解:,122,0x x ==. 15、3,0【分析】确定函数的对称轴2b x a=- =-2,即可求出. 【详解】解:函数的对称轴 2b x a =- =-2,则与x 轴的另一个交点的坐标为(-3,0) 故答案为(-3,0)【点睛】此题主要考查了抛物线与x 轴的交点和函数图像上点的坐标的特征,熟练掌握二次函数与坐标轴的交点、二次函数的对称轴是解题的关键.16、32【详解】解:sin30°+tan45°=13+1=22 【点睛】此题主要考察学生对特殊角的三角函数值的记忆30°、45°、60°角的各个三角函数值,必须正确、熟练地进行记忆. 17、0.8【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n(x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S , 即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.18、或4【分析】根据题意画出两个图形,过A 作AD ⊥BC 于D ,求出AD 长,根据勾股定理求出BD 、CD ,即可求出BC .【详解】有两种情况:如图1:过A 作AD ⊥BC 于D ,∵AB=5,sinB=35=ADAB,∴AD=3,由勾股定理得:BD=4,CD=227AC AD-=,∴BC=BD+CD=4+7;如图2:同理可得BD=4,CD=227AC AD-=,∴BC=BD﹣CD=4﹣7.综上所述,BC的长是7或47.故答案为:7或47【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.三、解答题(共78分)19、见解析【分析】通过角度转化,先求出∠D=∠B,然后根据∠C=∠DFG=90°,可证相似.【详解】∵ DF⊥BC于F,∠C=90°∴∠DFG=∠C=90°又DE⊥AB于点E∴∠DGB+∠B=90°又∠DGB+∠D=90°∴∠B=∠D∴△DFG ∽△BCA .【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.20、(1)30;(2)4DE =;(3)EF BE CF =+.【分析】(1)由题意根据全等三角形的性质以及运用等量代换得出'90A EB ︒∠=,进而得出'A EB 的面积即阴影部分的面积;(2)由题意把ADE ∆绕点D 旋转到DCF ∆处,使AD 与DC 重合,利用全等三角形的性质进行等量代换得出ABCD DEBF S S =四边形四边形,进而进行分析即可;(3)根据题意延长AC 到G ,使CG=BE ,并构造全等三角形,运用全等三角形的判定和性质进行分析即可 .【详解】解:(1)∵ADE ∆绕点E 逆时针旋转一定的角度到达A D E ∆''',∴',''AE AE AED A ED =∠=∠,∵四边形CDEF 是正方形,90C ∠=︒,∴等量代换可知'90A EB ︒∠=,∵10AE =,6BE =,∴阴影部分的面积即'A EB 的面积为:1106302⨯⨯=. (2)如图,把ADE ∆绕点D 旋转到DCF ∆处,使AD 与DC 重合,可得DC .90ADC ABC ︒∠=∠=,180A DCB ∴∠+∠=︒,即180DCF DCB ∠+∠=︒,F 、C 、B 三点共线.又DE DF =,四个角都为90︒,∴四边形DEBF 是正方形,易得ABCD DEBF S S =四边形四边形.216DE ∴=,即4DE =.(3)线段BE 、CF 、EF 之间的数量关系为:EF=BE+CF.理由:如图,延长AC 到G ,使CG=BE ,∵∠B+∠ACD=180°,∠ACD+∠DCG=180°,∴∠B=∠DCG ,在△DBE 和△DCG 中,BE GC B DCG BD CD ⎧⎪⎨⎪∠⎩∠===,∴△DBE ≌△DCG (SAS ),∴DE=DG ,∠BDE=∠CDG ,∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°,∴∠CDG+∠CDF=60°,∴∠EDF=∠GDF ,在△EDF 和△GDF 中,DE DG EDF GDF DF DF ⎧⎪⎨⎪⎩∠∠===,∴△EDF ≌△GDF (SAS ),∴EF=GF ,∵GF=CG+CF ,∴GF=BE+CF ,∴EF=BE+CF .【点睛】本题考查四边形的综合问题,根据题意熟练掌握全等三角形的判定与性质以及四边形的性质,综合运用数形结合思维分析是解题的关键.21、见解析.【分析】根据菱形的性质得出∠A=∠CBF ,进而判断出△ABE ≌△BCF ,即可得出答案.【详解】证明:∵四边形ABCD 是菱形∴,//AB BC AD BC =∴A CBF ∠=∠在ABE ∆和BCF ∆中AE BF A CBF AB BC =⎧⎪∠=∠⎨⎪=⎩∴()ABE BCF SAS ∆≅∆∴BE=CF【点睛】本题考查的是菱形和全等三角形,比较简单,需要熟练掌握相关基础知识.22、(1)20%;(2)1728万元.【分析】(1)设年平均增长率为x ,根据:2017年投入资金×(1+增长率)2=2019年投入资金,列出方程求解可得; (2)根据求得的增长率代入求得2020年的投入即可.【详解】解:(1)设该地投入教育扶贫资金的年平均增长率为x ,根据题意,得:1000(1+x )2=1440,解得:x =0.2或x =﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.【点睛】本题考查的知识点是用一元二次方程求增长率问题,根据题目找出等量关系式是解此题的关键.23、(1)9,1;(2)乙【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.24、9【分析】过点A 作AD ⊥BC 于D ,根据锐角三角函数求出AD ,然后根据三角形的面积公式计算面积即可.【详解】解:过点A 作AD ⊥BC 于 D在Rt △ABD 中,AB=4, ∠B=60°∴AD=AB ·sin B=23∴S △ABC =12BC ·AD =133232⨯=9【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键.25、(1)2142y x x =-+(2)P 点坐标(﹣5,﹣72),Q 点坐标(3,﹣72)(3)M 点的坐标为(﹣83,43),(﹣3,1)【解析】试题分析:(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据待定系数法,可得函数解析式; (2)根据平行于x 轴的直线与抛物线的交点关于对称轴对称,可得P 、Q 关于直线x=﹣1对称,根据PQ 的长,可得P 点的横坐标,Q 点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM 的长,根据等腰直角三角形的性质,可得MH 的长,再根据自变量与函数值的对应关系,可得答案.试题解析:(1)当x=0时,y=4,即C (0,4),当y=0时,x+4=0,解得x=﹣4,即A (﹣4,0),将A 、C 点坐标代入函数解析式,得 ()214440{24b c ⨯--+==,解得1{4b c =-=,抛物线的表达式为2142y x x =-+; (2)PQ=2AO=8, 又PQ ∥AO ,即P 、Q 关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=12×(﹣5)2﹣(﹣5)+4=﹣,即P (﹣5,﹣72); ﹣1+4=3,即Q (3,﹣72); P 点坐标(﹣5,﹣72),Q 点坐标(3,﹣72); (3)∠MCO=∠CAB=45°,①当△MCO ∽△CAB 时,OC CM BA AM=,即4642CM =, CM=823. 如图1,过M 作MH ⊥y 轴于H ,MH=CH=22CM=83, 当x=﹣83时,y=﹣83+4=43, ∴M (﹣83,43); 当△OCM ∽△CAB 时,OC CM CA AB =642CM =,解得2, 如图2,过M作MH⊥y轴于H,MH=CH=22CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣83,43),(﹣3,1).考点:二次函数综合题26、水面宽度增加了(6﹣4)米【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±6,所以水面宽度增加了(6﹣4)米.【点睛】此题考查的是二次函数的应用,建立适当的坐标系,利用待定系数法求二次函数的解析式是解决此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大最全最精的教育资源网
www.xsjjyw.com
新世纪教育网 最新、最全、最精的教育资源网 www.xsjjyw.com







总 分

此方框为缺考考生
标记,由监考员用
2B铅笔添涂

正确填涂

示 例

二.非选择题(请用0.5毫米黑色墨水签字笔书写)

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边

19
1 2 3 4 5 6 7 8 9 10
A A A A A A A A A A
B B B B B B B B B B
C C C C C C C C C C
D D D D D D D D D D

初三数学模拟考试
数 学 答 题 卡
请在各题目的答题区域内作答,超出黑色矩形边

11、 12、
13、 14、
15、 16、

一.选择题(将正确答案的方框用铅笔涂黑)

17.(本题7分)计算:
12)21(30tan3)21(01

19、
(7分)

20、
(8分)解方程组:


433283222yx
yx

18、(7分)aaaaaa2)(2()21(22 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边请在各题目的答题区域内作答,超出黑色矩形边请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 23.(8分) x(分) y(千米) O 10 20 12 44 第23题图 24、(本小题满分9分)
A

A

A

相关文档
最新文档