MATLAB实现图像的平移缩放和旋转要点
MATLAB图像处理基础教程

MATLAB图像处理基础教程第一章:MATLAB图像处理简介MATLAB(Matrix Laboratory)是一种强大的数值计算和数据可视化软件,广泛应用于各个领域,包括图像处理。
图像处理是一门研究如何对数字图像进行分析、增强、重建和压缩的学科。
本教程将引导读者逐步了解MATLAB图像处理的基本概念和技术。
第二章:MATLAB图像的读取与显示在MATLAB中,可以使用imread函数读取不同格式的图像文件,并使用imshow函数显示图像。
此外,还可以使用imfinfo函数获取图像的详细信息,如分辨率、颜色空间和位深度等。
第三章:图像的灰度处理灰度处理是一种常见的图像预处理方法。
通过将彩色图像转换为灰度图像,可以减少图像的数据量,简化图像处理的复杂性。
在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像,并使用imhist函数查看灰度图像的直方图。
第四章:图像的滤波处理滤波是一种常用的图像处理操作,用于对图像进行平滑、增强或去噪。
MATLAB提供了各种滤波函数,如均值滤波、中值滤波和高斯滤波等。
可以根据具体需求选择合适的滤波方法,并使用imfilter函数进行滤波处理。
第五章:图像的二值化处理图像的二值化是将图像转换为黑白两色的过程,常用于物体检测、识别和分割等应用。
在MATLAB中,可以使用im2bw函数将灰度图像转换为二值图像,并可以调整阈值来控制二值化的效果。
第六章:图像的几何变换几何变换是一种常见的图像处理操作,用于对图像进行旋转、缩放、平移和翻转等操作。
MATLAB提供了imrotate、imresize、imtranslate和flip函数等实现各种几何变换。
通过组合这些函数,可以实现复杂的图像变换。
第七章:图像的特征提取图像的特征提取是图像处理中的重要步骤,用于从图像中提取出具有代表性的信息。
在MATLAB中,可以使用各种特征提取函数,如imgradient、imhistogram和imcontour等。
Matlab图像几何操作

figure(2)
transformtype = 'projective'; % 投影变换
transformmatrix = [ 1.1581 0
0;
-0.4228 0.6066 -0.0074;
4.2279 4.3566 1.0000 ];
% transformmatrix =[0.8 0 0; -0.2 0.8 -0.003; 3.5 1.5 1.5];
T = maketform(transformtype ,transformmatrix);
I = imread('cameraman.tif');
nI = imtransform(I,T);
subplot(1,2,1),imshow(I)
subplot(1,2,2),imshow(nI)
2.2 图像的几何变换
2.3.2 Matlab邻域操作函数
Matlab提供了可以实现邻域操作的函数,因此可以直接调用相应的邻域操作函数,完成各种邻域操 作功能: – nlfilter – colfilt – blkproc
2.3.2 Matlab邻域操作函数
nlfilter函数的一般形式为: nI =nlfilter(I,[M N],FUN)
【例】使用imtransform函数实现图像平面扭曲功能 transformtype = 'affine'; % 仿射变换 transformmatrix = [0.5 0 0; 0.5 1 0; 0 0 1]; % 仿射变换要求变换矩阵的最后一列除最后一个元素为1之外, % 其它的均为0 T = maketform(transformtype,transformmatrix); I = imread('cameraman.tif'); nI = imtransform(I,T); subplot(1,2,1),imshow(I) subplot(1,2,2),imshow(nI)
编程实现一幅图像的平移、镜像、旋转、缩小和放大

课程设计任务书学生姓名:专业班级:通信1003班指导教师:郭志强工作单位:信息工程学院题目: 通信工程应用技术初始条件:(1)使用matlab软件进行操作(2)选择一个图像进行处理要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1)编程实现一幅图像的平移、镜像、旋转、缩小和放大。
(2)给出所用算法的理论依据和必要的推导过程,给出原始图像和处理后的图像。
时间安排:第15周:安排任务,布置题目;第15—18周:设计仿真,撰写报告第19周:完成设计,提交报告,答辩指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract ........................................................................................................................................................... I I 1 MA TLAB简介 .. (1)1.1 MA TLAB用途 (1)2图像选择及变换 (4)2.1 原始图像选择读取 (4)2.2 图像放大和缩小 (6)2.2.1 图像放大缩小的知识 (6)2.2.2 函数说明及参数选择 (8)2.2.3 源程序及运行结果 (8)2.3 图像任意角度的旋转 (10)2.3.1 函数说明及参数选择 (10)2.3.2 源程序及运行结果 (10)2.4 图像的平移 (12)2.4.1 函数说明及参数选择 (12)2.4.2 源程序及运行结果 (13)2.5 图像经过镜像 (13)3.5.1 函数说明及参数选择 (13)2.5.2 源程序及运行结果 (14)4 感悟体会小结 (17)5 参考文献 (18)附录 (19)全部源程序代码: (19)摘要MATLAB是—套高性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成—个方便的、界面友好的用户环境。
matlab实现图像的放大及旋转

MATLAB是一个包含大量计算算法的集合。
其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算功能。
函数中所使用的算法都是科研和工程计算中的最新研究成果,而前经过了各种优化和容错处理。
在通常情况下,可以用它来代替底层编程语言,如C和C 。
在计算要求相同的情况下,使用MATLAB的编程工作量会大大减少。
MATLAB的这些函数集包括从最简单最基本的函数到诸如距阵,特征向量、快速傅立叶变换的复杂函数。
函数所能解决的问题其大致包括矩阵运算和线性方程组的求解、微分方程及偏微分方程的组的求解、符号运算、傅立叶变换和数据的统计分析、工程中的优化问题、稀疏矩阵运算、复数的各种运算、三角函数和其他初等数学运算、多维数组操作以及建模动态仿真等。
(4)出色的图形处理功能MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和距阵用图形表现出来,并且可以对图形进行标注和打印。
高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。
可用于科学计算和工程绘图。
新版本的MATLAB 对整个图形处理功能作了很大的改进和完善,使他不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB 同样表现了出色的处理能力。
同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。
另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。
(5)应用广泛的模块集合工具箱MATLAB对许多专门的领域都开发了功能强大的模块集和工具箱。
一般来说,他们都是由特定领域的专家开发的,用户可以直接使用工具箱学习、应用和评估不同的方法而不需要自己编写代码。
目前,MATLAB已经把工具箱延伸到了科学研究和工程应用的诸多领域,诸如数据采集、数据库接口、概率统计、样条拟合、优化算法、偏微分方程求解、神经网络、小波分析、信号处理、图像处理、系统辨识、控制系统设计、LMI控制、鲁棒控制、模型预测、模糊逻辑、金融分析、地图工具、非线性控制设计、实时快速原型及半物理仿真、嵌入式系统开发、定点仿真、DSP 与通讯、电力系统仿真等,都在工具箱(Toolbox)家族中有了自己的一席之地。
matlab实现图像的放大及旋转

实验三图像的几何操作一、图像的基本运算1、加法运算图像相加一般用于对同一场景的多幅图像求平均效果,以便有效地降低具有叠加性质的随机噪声。
直接采集的图像品质一般都较好,不需要进行加法运算处理,但是对于那些经过长距离模拟通信方式传送的图像(如卫星图像),这种处理是必不可少的。
在MA TLAB7.0中,如果要进行两幅图像的加法,或者给一幅图像加上一个常数,可以调用imadd函数来实现。
imadd函数将某一幅输入图像的每一个像素值与另一幅图像相应的像素值相加,返回相应的像素值之和作为输入图像。
imadd函数的调用格式可参考图像处理的工具箱。
下面的程序可将图1两幅图像叠加在一起,叠加效果如图2所示。
imshow('rice.png');imshow('cameraman.tif');I=imread('rice.png');J=imread('cameraman.tif');K=imadd(I,J,'uint16');%大小必须一样imshow(K,[])图1 图2给图像的每一个像素加上一个常数可以使图像的亮度增加。
例如以下程序示例的处理效果如图3所示。
I=imread('rice.png');J=imadd(I,50);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(J);图32、减法运算图像减法也称为差分方法,是一种常用于检测图像变化及运动物体的图像处理方法。
图像减法可以作为许多图像处理过程的准备步骤。
例如,可以使用图像减法来检测一系列相同场景图像的差异。
图像减法与阈值化处理的综合使用通常是建立机器视觉系统最有效的方法之一。
当然,在利用图像减法处理图像时,往往需要考虑背景的更新机制,尽量补偿因天气、光线等因素对图像显示效果造成的影响。
在MATLAB7.0中,使用imsubtract函数可以将一幅图像从另一幅图像中减去,或者从一幅图像中减去一个常数。
Matlab中的图像配准与图像校正技术详解

Matlab中的图像配准与图像校正技术详解图像配准和图像校正是数字图像处理中非常重要的技术。
在实际应用中,我们常常会遇到图像对齐、图像平移、旋转和校正等问题。
Matlab作为一款强大的科学计算软件,提供了丰富的函数和工具箱,可以方便地实现图像配准和校正。
本文将详细介绍Matlab中的图像配准与图像校正技术。
一、图像配准图像配准是指将两幅或多幅图像在空间中对齐,使得它们的几何形状和空间位置相对一致。
图像配准技术在很多领域都有广泛的应用,比如医学影像处理、遥感图像处理等。
在Matlab中,图像配准可以通过使用imregister函数来实现。
imregister函数实现图像配准的基本原理是计算输入图像和参考图像之间的几何变换。
常用的几何变换有平移、旋转、缩放和仿射变换等。
根据不同的应用需求,可以采用不同的几何变换。
imregister函数根据输入图像和参考图像之间的像素灰度值差异,采用最大似然估计或最小二乘法来优化几何变换参数。
除了imregister函数,Matlab中还提供了其他图像配准工具箱,如Image Processing Toolbox和Computer Vision Toolbox。
这些工具箱中包含了更多高级的图像配准算法和函数,可以满足更加复杂的应用需求。
二、图像校正图像校正是对图像进行校正和矫正,使得图像在几何形状和视觉效果上更加符合预期。
常见的图像校正包括图像去畸变、边缘校正和亮度校正等。
在Matlab中,可以通过使用Camera Calibration Toolbox进行图像校正。
Camera Calibration Toolbox是Matlab中一个用于相机标定和图像校正的工具箱。
它可以通过运行标定图像的算法,得到相机的内参和畸变参数,并根据这些参数对图像进行校正。
根据标定图像的不同,有多种标定算法可供选择,比如张正友标定法、Tsai标定法等。
根据不同的应用需求,可以选择合适的标定算法。
MATLAB实现RGB图像的平移、缩放和旋转

Func的1 2 3分别对应平移、旋转、缩放功能function []=transition(func,I)if func==1delta_x=str2double(inputdlg('请输入向右平移量', 'INPUT scale factor', 1, {'-60'})); %负数为向左delta_y=str2double(inputdlg('请输入向下平移量', 'INPUT scale factor', 1, {'-89'})); %负数为向上img=imread(I);%读入图像B=size(img); %获取原始图像的高和宽imgn(:,:,:)=zeros(B(1)+abs(delta_y),B(2)+abs(delta_x));%创建平移图像输出矩阵rot=[1 0 0;0 1 0;delta_y delta_x 1]; %寻求新坐标用到的平移矩阵pix1=[1 1 1]*rot; %pix1(1),pix1(2)分别为变换后图像的左上角的y,x,分别为1+delta_y,1+delta_x,这种三维空间坐标被称为齐次坐标表示法pix4=[B(1) B(2) 1]*rot; %pix4(1),pix4(2)分别为变换后图像的右下角的y,x,分别为v+delta_y,u+delta_xfor q=1:3 %为每个通道做相同处理%%向右下方移动if delta_x>=0 && delta_y>=0 %如果两个平移量都为正for y=pix1(1):pix4(1) %新图像纵坐标从最开始到结束处for x=pix1(2):pix4(2) %新图像横坐标从最开始到结束处pix=[y x 1]/rot; %pix矩阵经计算后为[y-delta_y,x-delta_x,1] if pix(1)>=0.5 && pix(2)>=0.5 && pix(1)<=B(1) && pix(2)<=B(2)%这里是判断是否有像素可进行平移,例如:若y-delta_y<0.5,则说明没有找到可平移的像素坐标imgn(y,x,q)=img(round(pix(1)),round(pix(2)),q); %新的图像(x,y)点的像素值选取(x-delta_x,y-delta_y)处的像素值,则实现了平移endendendend%%向左下方移动if delta_x<0 && delta_y>=0for y=pix1(1):pix4(1)for x=pix1(2):pix4(2)pix=[y x 1]/rot;if pix(1)>=0.5 && pix(2)>=0.5 && pix(1)<=B(1) && pix(2)<=B(2)imgn(y,x-delta_x,q)=img(round(pix(1)),round(pix(2)),q);endendendend%%向左上方移动if delta_x<0 && delta_y<0for y=pix1(1):pix4(1)for x=pix1(2):pix4(2)pix=[y x 1]/rot;if pix(1)>=0.5 && pix(2)>=0.5 && pix(1)<=B(1) && pix(2)<=B(2)imgn(y-delta_y,x-delta_x,q)=img(round(pix(1)),round(pix(2)),q);endendendend%%向右上方移动if delta_x>=0 && delta_y<0for y=pix1(1):pix4(1)for x=pix1(2):pix4(2)pix=[y x 1]/rot;if pix(1)>=0.5 && pix(2)>=0.5 && pix(1)<=B(1) && pix(2)<=B(2)imgn(y-delta_y,x,q)=img(round(pix(1)),round(pix(2)),q);endendendendendimshow(uint8(imgn));title('平移');endif func==2img=imread(I); %读入原图像B=size(img);%获取图像的高度和宽度K1 =str2double(inputdlg('请输入列缩放倍数', 'INPUT scale factor', 1, {'0.5'}));%行默认变为原来的0.5倍K2 =str2double(inputdlg('请输入行缩放倍数', 'INPUT scale factor', 1, {'0.5'}));%列默认变为原来的0.5倍width = K1 * B(1); %缩放后的图像宽度height = K2 * B(2); %缩放后的图像高度for p=1:3imgn(:,:,p) = uint8(zeros(round(width),round(height))); %创建输出图像矩阵,round是进行数值取整endwidthScale = B(1)/width; %列缩放倍数的倒数heightScale = B(2)/height;%行缩放倍数的倒数for q=1:3for x = 5:width - 5 % 5是为了防止矩阵超出边界溢出for y = 5:height - 5oldX = x * widthScale; % oldX,oldY为原坐标,x,y为新坐标oldY = y * heightScale;if(oldX/double(uint16(oldX)) == 1.0) && (oldY/double(uint16(oldY)) == 1.0) %判断oldx,oldy是否为整数imgn(x,y,q) = img(int16(oldX),int16(oldY),q);elsea = double(round(oldX));b = double(round(oldY)); %若不是整数四舍五入后把临近值赋过去imgn(x,y,q) = img(a,b,q);endendendendimshow(imgn);title('最邻近插值缩放');endif func==3H=1; %索引pix中第一个元素,即高度W=2; %索引pix中第二个元素,即宽度angle=str2double(inputdlg('请输入旋转角度', 'INPUT scale factor', 1, {'45'})); %要旋转的角度,旋转方向为顺时针img=imread(I); %这里v为原图像的高度,u为原图像的宽度B=size(img); %读入高度和宽度theta=angle/180*pi; %将角度单位换算成弧度单位rot=[cos(theta) -sin(theta) 0;sin(theta) cos(theta) 0;0 0 1]; %寻求坐标所用到的旋转矩阵pix1=[1 1 1]*rot; %变换后图像左上点的坐标pix2=[1 B(2) 1]*rot; %变换后图像右上点的坐标pix3=[B(1) 1 1]*rot; %变换后图像左下点的坐标pix4=[B(1) B(2) 1]*rot; %变换后图像右下点的坐标height=round(max([abs(pix1(H)-pix4(H))+0.5 abs(pix2(H)-pix3(H))+0.5])); %变换后图像的高度,为避免溢出要加上0.5,相当于进一法width=round(max([abs(pix1(W)-pix4(W))+0.5 abs(pix2(W)-pix3(W))+0.5])); %变换后图像的宽度for p=1:3imgn(:,:,p)=zeros(height,width); %创建图像输出矩阵enddelta_y=abs(min([pix1(H) pix2(H) pix3(H) pix4(H)])); %取得y方向的负轴超出的偏移量(Y轴坐标是向下的)delta_x=abs(min([pix1(W) pix2(W) pix3(W) pix4(W)]));%取得x方向的负轴超出的偏移量for q=1:3for y=1-delta_y:height-delta_yfor x=1-delta_x:width-delta_xpix=[y x 1]/rot;if pix(H)>=0.5 && pix(W)>=0.5 && pix(H)<=B(1) && pix(W)<=B(2)imgn(y+delta_y,x+delta_x,q)=img(round(pix(H)),round(pix(W)),q);endendendendimshow(uint8(imgn));title('最近邻插值旋转');end。
MATLAB图像处理之平移,旋转,倾斜,放缩

MATLAB图像处理之平移,旋转,倾斜,放缩实验内容:如何对号灰度图像(或彩色图像)进行方所、平移、旋转和综合变换实验内容一:图像的放缩实验程序:%注意,当处理图像大小过大时,请先使用size函数得出矩阵大小,否则处理之后图像会提示内存不足,或者先压缩图像,又或者可以改变电脑运行内存,具体方法可以根据具体情况通过论坛查询,这里就不再过多赘述. x1=imread('0045.jpg');%导入真彩图片0045.jpg,是三维矩阵b=imresize(x1,20);%将原图像放大20倍c=imresize(x1,0.05);%将原图像缩小为原来的20倍figure,subplot(131),imshow(x1),title('原始图像');%此区域内显示1行3列个图像,该图像位于第1个,显示x1的图像,并命名为“原始图像”subplot(132),imshow(b),title('放大20倍');%此区域内显示1行3列个图像,该图像位于第2个,显示b的图像,并命名为“放大200倍”subplot(133),imshow(c),title('缩小20倍');%此区域内显示1行3列个图像,该图像位于第3个,显示c的图像,并命名为“缩小20倍”实验结果:实验内容二:图像的旋转实验程序:clear allclc%imrotate(A,angle,method,bbox)%功能:将矩阵(图片)A旋转任意角度%参数:A——待操作矩阵,angle——需要旋转的角度,method——插值方法,bbox——输出图像大小%将矩阵A旋转angle度(任意),其中angle应用角度制表示;method包括'nearest'、'bilinear'、%'bicubic'分别为“邻近插值法”、“双线性插值法”、“三次卷积插值法”;%bbox(Bounding ? ? box defining size of output image)包括'crop'、'loose',%分别表示将旋转后的图像剪裁为输入图像大小后输出和已旋转后图像大小输出%x1=imread('0045.jpg');%导入真彩图片0045.jpg,是三维矩阵x2=rot90(x1,1);%将图片旋转整数倍个90度figure;%生成图像subplot(272);%此区域生成2行7列个图像,该图像位于第2个imshow(x1);%显示x1生成的图像title('原始图像');%命名x1图像为“原始图像”subplot(275);%此区域生成2行7列个图像,该图像位于第5个imshow(x2);%显示x2生成的图像title('旋转90度');%命名x1图像为“旋转90度”x3=imrotate(x1,30,'nearest','loose');%使用最邻近法逆时针将图像旋转30度,使用loose形式输出图像x5=imrotate(x1,30,'nearest','crop');%使用最邻近法逆时针将图像旋转30度,使用crop形式输出图像x4=imrotate(x1,30,'bilinear','crop');%使用双线性插值法逆时针将图像旋转30度,使用crop形式输出图像x6=imrotate(x1,30,'bilinear','loose');%使用双线性插值法逆时针将图像旋转30度,使用loose形式输出图像subplot(278);%此区域生成2行7列个图像,该图像位于第8个imshow(x3);%显示x3生成的图像title('最邻近法逆时针旋转30度1');%命名x3图像为“最邻近法逆时针旋转30度”subplot(2,7,12);%此区域生成2行7列个图像,该图像位于第12个imshow(x4);%显示x4生成的图像title('双线性插值法逆时针旋转30度1');%命名x4图像为“双线性插值法逆时针旋转30度”subplot(2,7,10);%此区域生成2行7列个图像,该图像位于第10个imshow(x5);%显示x5生成的图像title('最邻近法逆时针旋转30度2');%命名x5图像为“最邻近法逆时针旋转30度2”subplot(2,7,14);%此区域生成2行7列个图像,该图像位于第14个imshow(x6);%显示x6生成的图像title('双线性插值法逆时针旋转30度2');%命名x6图像为“双线性插值法逆时针旋转30度2”实验结果:实验内容三:图像的平移3.1将图像从一个位置平移到另一个位置实验程序:x1=imread('0045.jpg');%导入真彩图片0045.jpg,是三维矩阵figure(1);%生成图像subplot(121),imshow(x1),title('原始图像');%此区域生成1行2列个图像,该图像位于第1个,并命名为“原始图像”,显示x1的图像se1=translate(strel(1),[100 -100]);%形态学膨胀后j1就是平移后的图像j1=imdilate(x1,se1);%对x1,se1进行膨胀操作subplot(122),imshow(j1),title('左下平移');%此区域生成1行2列个图像,该图像位于第2个,并命名为“左下平移”,显示j1的图像实验结果:实验内容四:图像的倾斜实验程序:A=imread('0045.jpg');%将图像导入工作区tform=affine2d([2 0.33 0;0 1 0;0 0 1]);%创建定义仿射几何变换的affine2d 对象B=imwarp(A,tform);%使用 imwarp 对图像应用几何变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理课程设计题目图像的几何变换重建系 (部) 信息工程系班级姓名学号指导教师2013 年 12 月 16 日至 12 月 27 日共 2 周2013年 12 月 27 日数字图像处理课程设计任务书课程设计成绩评定表目录1 引言 (4)1.1课程设计的目的........................... 错误!未定义书签。
1.2课程设计的任务........................... 错误!未定义书签。
1.3课程设计的要求........................... 错误!未定义书签。
1.4开发工具................................. 错误!未定义书签。
2设计内容 (4)2.1设计内容 (4)2.2 系统框图 (4)3 设计方案 (5)3.1功能模块的划分 (5)3.2算法描述 (5)3.3实现主要功能的原理和方法 (8)3.3.1最近邻域插值法 (8)3.3.2双线性插值法 (8)4功能模块的具体实现 (10)4.1 模块功能 (10)4.2流程图 (11)4.3程序清单及各模块的实现效果图 (11)4.4 系统仿真与调试 (21)5 总结与体会 (22)参考文献 (22)附录 (23)1 引言2设计内容2.1设计内容我选取的是图像的几何变换,设计内容如下,(1)能够读取和存储图像。
(2)实现图像的平移、缩放、旋转几何变换。
(3)分别采用最近邻插值和双线性插值技术进行图像重建。
(4)编写代码实现上述功能。
图2-1系统框图本次课设所做的图像几何变换包括平移变换、缩放变换和旋转变换。
缩放变换和旋转变换均用双线性插值变换和最近邻插值变换两种方法来做,对图像进行处理后再存储。
3 设计方案3.1功能模块的划分本次设计整体分为四大模块:原图、平移、缩放和旋转。
其中缩放和旋转又分别有双线性插值和最近邻插值两模块。
3.2算法描述图像比例缩放是指将给定的图像在x 轴方向按比例缩放fx 倍,在y 轴按比例缩放fy 倍,从而获得一幅新的图像。
如果fx=fy ,即在x 轴方向和y 轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。
如果fx ≠fy ,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。
设原图像中的点P 0(x 0,y 0)比例缩放后,在新图像中的对应点为P(x,y),则比例缩放前后两点P 0(x 0,y 0)、P(x,y)之间的关系用矩阵形式可以表示为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11000000100y x fy fx y x (3-1)其逆运算为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1100010001100y x fy fxy x (3-2)即⎪⎪⎩⎪⎪⎨⎧==fy yy fx x x 00 (3-3) 比例缩放所产生的图像中的像素可能在原图像中找不到相应得像素点,这样就必须进行插值处理。
下面首先讨论图像的比例缩小。
最简单的比例缩小时当fx=fy=0.5时,图像被缩到一半大小,此时缩小后图像中的(0,0)像素对应于原图像中的(0,0)像素;(0,1)像素对应于原图像中的(0,2)像素;(1,0)像素对应于原图像中的(2,0)像素,以此类推。
图像缩小之后,因为承载的数据量小了,所以画布可相应缩小。
此时,只需在原图像基础上,每行隔一个像素取一点,每隔一行进行操作,即取原图的偶奇数行和偶奇数列构成新的图像。
如果图像按任意比例缩小,则需要计算选择的行和列。
如果M×N 大小的原图像F(x,y)缩小为kM×kN 大小的新图像I(x,y)时,则I(x,y)=F(int(c×x),int(c×y)) (3-4)其中,c=1/k 。
由此公式可以构造出新图像。
当fx ≠fy 时,图像不按比例缩小,这种操作因为在x 方向和y 方向的缩小比例不同,一定会带来图像的几何畸变。
图像不按比例缩小的方法是:如果M×N 大小的旧图F(x,y)缩小为k 1M×k 2N 大小的新图像I(x,y)时,则I(x,y)=F(int(c 1×x),int(c 2×y)) (3-5)其中c 1=1/k 1,c 2=1/k 2,由此公式可以构造出新图像。
图像的缩小操作中,是在现有的信息里如何挑选所需要的有用信息。
而在图像的放大操作中,则需要对尺寸放大后所多出来的空格填入适当的像素值,这是信息的估计问题,所以较图像的缩小要难一些。
当fx=fy=2时,图像被按全比例放大二倍,放大后图像中的(0,0)像素对应于原图中的(0,0)像素;(0,1)像素对应于原图中的(0,0.5)像素,该像素不存在,可以近似为(0,0)也可以近似为(0,1);(0,2)像素对应于原图像中的(0,1)像素;(1,0)像素对应于原图中的(0.5,0),它的像素值近似于(0,0)或(1,0)像素;(2,0)像素对应于原图中的(1,0)像素,依此类推。
其实这是将原图像每行中的像素重复取值一遍,然后每行重复一次。
按比例将原图像放大k 倍时,如果按照最近邻域法则需要将一个像素值添在新图像的k×k 的子块中。
显然,如果放大倍数太大,按照这种方法处理会出现马赛克效应。
当fy fx ≠)0,(>fy fx 时,图像在x 方向和y 方向不按比例放大,此时这种操作由于x 方向和y 方向的放大倍数不同,一定会带来图像的几何畸变。
放大的方法是将原图像的一个像素添到新图像的一个21k k ⨯的子块中去。
为了提高几何变换后的图像质量,常采用线性插值法。
该方法的原理是,当求出的分数地址与像素点不一致时,求出周围四个像素点的距离比,根据该比率,由四个邻域的像素灰度值进行线性插值。
旋转。
一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。
旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。
图像的旋转变换也可以用矩阵变换来表示。
设点),(000y x P 逆时针旋转θ角后的对应点为),(y x P 。
那么,旋转前后点),(000y x P 、),(y x P 的坐标分别是:⎩⎨⎧==ααcos cos 00r y r x (3-6) ⎩⎨⎧+=+=+=-=-=+=θθθαθαθαθθθαθαθαcos sin sin cos cos sin )sin(sin cos sin sin cos cos )cos(0000y x r r r y y x r r r x (3-7)写成矩阵表达式为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11000cos sin 0sin cos 100y x y x θθθθ (3-8)其逆运算为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11000cos sin 0sin cos 100y x y x θθθθ (3-9) 利用上述方法进行图像旋转时需要注意如下两点:(1)图像旋转之前,为了避免信息的丢失,一定要有坐标平移。
(2)图像旋转之后,会出现许多空洞点。
对这些空洞点必须进行填充处理,否则画面效果不好,一般也称这种操作为插值处理。
以上所讨论的旋转是绕坐标轴原点(0,0)进行的。
如果图像旋转是绕一个指定点(a,b)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图象平移回原来的坐标原点,这实际上是图像的复合变换。
如将一幅图像绕点(a,b)逆时针旋转θ度,首先将原点平移到(a,b),即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1001001b a A (3-10) 然后旋转⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0000cos sin 0sin cos θθθθB (3-11) 然后再平移回来 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001001b a C (3-12)综上所述,变换矩阵为A B C T ⋅⋅=。
3.3实现主要功能的原理和方法3.3.1最近邻域插值法最近邻域插值法:它输出的像素灰度值就等于距离它映射到的位置最近的输入像素的灰度值,取离I(i/b,j/a,k)最近的整数点的灰度值为点I(i/b,j/a,k)的灰度值。
取最近整数点用四舍五入。
在许多情况下,最近邻插值的结果可以令人接受。
最邻近点插值取插值点的4个邻点中距离最近的邻点灰度值作为该点的灰度值。
设插值点(i,j)到周边4个邻点f k(i,j)(k =1,2,3,4)的距离为d k(k =1,2,3,4),则:g(i,j)=f k(i,j),d l=min{d1,d2,d3,d4},l=1,2,3,4。
最近邻点插值的一个隐含的假设条件是任一网格点p(x,y)的属性值都使用距它最的位置点的属性值,用每一个网格节点的最邻点值作为待的节点值[3]。
当数据已经是均匀间隔分布,要先将数据转换为SURFER的网格文件,可以应用最近邻点插值法;或者在一个文件中,数据紧密完整,只有少数点没有取值,可用最近邻点插值法来填充无值的数据点。
有时需要排除网格文件中的无值数据的区域,在搜索椭圆(SearchEllipse)设置一个值,对无数据区域赋予该网格文件里的空白值。
设置的搜索半径的大小要小于该网格文件数据值之间的距离,所有的无数据网格节点都被赋予空白值。
在使用最近邻点插值网格化法,将一个规则间隔的XYZ数据转换为一个网格文件时,可设置网格间隔和XYZ数据的数据点之间的间距相等。
最近邻点插值网格化法没有选项,它是均质且无变化的,对均匀间隔的数据进行插值很有用,同时,它对填充无值数据的区域很有效。
3.3.2双线性插值法双线性插值法:它是利用了需要处理的原始图像像素点周围的四个像素点的相关陛,通过双线眭算法计算得出的。
对于一个目的坐标,通过向后映射法得到其在原始图像的对应的浮点坐标(i+u,j+v),其中i,j均为非负整数,u,v为[0,l]区间的浮点数,则这个像素的值f(i+u,j+v)可由原图像中坐标为(I,j)、(i+l,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v)=(1-u)×(1-v)×f(,j)+(1-u)×v×f(i,j+1)+u×(1-v)×f(i+l,j)+u×v×f(i+,j+1),其中f(i,j)表示源图像(i,j)处的的像素值,以此类推,这就是双线性插值法。
如图3-1所示,已知(0,0)、(0,1)、(1,0)、(1,1)四点的的灰度,可以由相邻像素的灰度值f(0,0)和f(1,0)在X方向上线性插值求出(x,0)的灰度f(x,0),由另外两个相邻像素f(0,1)和f(1,1)在X方向上线性插值可求出(x,1)的灰度f(x,1),最后由f(x,0),f(x,1)在Y方向上进行线性插值就可以得到(x,y)的灰度f(x,y)。