高中数学数列讲义总结

高中数学数列讲义总结
高中数学数列讲义总结

09级高三数学总复习讲义——数列概念 知识清单

1.数列的概念

(1)数列定义:按一定次序排列的一列数叫做数列;

数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。

(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,

那么这个公式就叫这个数列的通项公式。

例如,数列①的通项公式是n a = n (n ≤7,n N +∈),

数列②的通项公式是n a = 1

n

(n N +∈)。

说明:

①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;

② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21

()1,2n k k Z n k

-=-?∈?

+=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示:

序号:1 2 3 4 5 6 项 :4 5 6 7 8 9

上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从

函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。

(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列

项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。

(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递

推公式。

(6) 数列{n a }的前n 项和n S 与通项n a 的关系:1

1(1)(2)n n

n S n a S S n -=?=?-?≥

课前预习

1.根据数列前4项,写出它的通项公式:

(1)1,3,5,7……;

(2)2212-,2313-,2414-,2515

-;

(3)11*2-,12*3,13*4-,1

4*5

2.数列{}n a 中,已知21

()3n n n a n N ++-=

∈, (1)写出10a ,1n a +,2n a ;

(2)2

793

是否是数列中的项?若是,是第几项?

3.如图,一粒子在区域{}(,)|0,0x y x y ≥≥上运动,在第一秒内它从原点运动到点1(0,1)B ,接着

按图中箭头所示方向在x 轴、y 轴及其平行方向上运动,且每秒移动一个单位长度。 (1)设粒子从原点到达点n n n A B C 、、时,所经过的时间分别为n n n a 、b 、c ,试写出

}n n n a {}、{b }、{c 的通相公式;

(2)求粒子从原点运动到点(16,44)P 时所需的时间;

(3)粒子从原点开始运动,求经过2004秒后,它所处的坐标。

4.(1)已知数列{}n a 适合:11a =,1n a +22

n

n a a =+,写出前五项并写出其通项公式;

(2)用上面的数列{}n a ,通过等式1n n n b a a +=-构造新数列{}n b ,写出n b ,并写出{}n b 的前5项。

5.(05广东,14)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,

=)(n f (用n 表示)。

6.(2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_____)内。

09级高三数学总复习讲义——等差数列

知识清单

1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等

于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 2、等差数列的通项公式:1(1)n a a n d =+-;

说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数

列,0d < 为递减数列。 3、等差中项的概念:

定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2

a b

A +=

a ,A ,

b 成等差数列?2

a b

A +=。 4、等差数列的前n 和的求和公式:11()(1)

22

n n n a a n n S na d +-==+。

5、等差数列的性质:

(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP ,

如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;

(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m

a a d n m

-=

-()m n ≠;

(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 说明:设数列{}n a 是等差数列,且公差为d ,

(Ⅰ)若项数为偶数,设共有2n 项,则①S 奇-S 偶nd =; ②

1

n n S a

S a +=奇偶; (Ⅱ)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②

1

S n

S n =-奇偶。 6、数列最值

(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值; (2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已知n a ,

则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥??≤?或10

n n a a +≤??≥?。

课前预习

1.(01天津理,2)设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列

2.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111

213a a a ++=( )

A .120

B .105

C .90

D .75

3.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )

A.13项

B.12项

C.11项

D.10项

4.(01全国理)设数列{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A.1 B.2 C.4 D.6 5.(06全国II )设S n 是等差数列{a n }的前n 项和,若36S S =1

3

,则612S S = A .

310 B .13 C .18 D .1

9

6.(00全国)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n

为数列{

n

S n

}的前n 项和,求T n 。 7.(98全国)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=100. (Ⅰ)求数列{b n }的通项b n ; (Ⅱ)设数列{a n }的通项a n =l g (1+

n b 1

),记S n 是数列{a n }的前n 项和,试比较S n 与2

1l gb n +1的大小,并证明你的结论。

8.(02上海)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) A.d <0 B.a 7=0C.S 9>S 5 D.S 6与S 7均为S n 的最大值 9.(94全国)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )

A.130

B.170

C.210

D.260

09级高三数学总复习讲义——等比数列

知识清单

1.等比数列定义

一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:

(0)n a q q =≠数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,2

1

-。(注意:

“从第二项起”、“常数”q 、等比数列的公比和项都不为零) 2.等比数列通项公式为:)0(111≠??=-q a q a a n n 。

说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数

列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n m n

a

q a -=。

3.等比中项

如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项)。 4.等比数列前n 项和公式

一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++ ,当1≠q 时,

q q a S n n --=1)1(1 或11n n a a q S q

-=-;当q=1时,1na S n =(错位相减法)。

说明:(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是n q ,

通项公式中是1-n q 不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况。 5.等比数列的性质

①等比数列任意两项间的关系:如果n a 是等比数列的第n 项,m a 是等差数列的第m 项,且

n m ≤,公比为q ,则有m n m n q a a -=;

②对于等比数列{}n a ,若v u m n +=+,则v u m n a a a a ?=?,也就是:

=?=?=?--23121n n n

a a a a a a ,如图所示:

n

n a a n a a n n a a a a a a ??---11

2,,,,,,12321。 ③若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数

列。

如下图所示:

k

k

k k

k S S S k k S S k k k a a a a a a a a 3232k

31221S 321-+-+++++++++++ 课前预习

1.在等比数列{}n a 中

,712,a q ==则19_____.a = 2

.2

和2的等比中项为( ) .

()1A ()1

B - ()1

C ± ()2

D 3. 在等比数列{}n a 中,22-=a ,545=a ,求8a ,

4.在等比数列{}n a 中,1a 和10a 是方程22510x x ++=的两个根,则47a a ?=( )

5()2A - ()2B 1()2C - 1()2

D 5. 在等比数列{}n a ,已知51=a ,100109=a a ,求18a .

6.(2006年辽宁卷)在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )

A .122n +-

B . 3n

C .2n

D .31n -

7.(2006年北京卷)设4710310()22222()n f n n N +=+++++∈ ,则()f n 等于( )

A .2(81)7n -

B .12(81)7n +-

C .32(81)7n +-

D .42(81)7

n +-

8.(1996全国文,21)设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q ; 9.(2005江苏3)在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( )

(A )33 (B )72 (C )84 (D )189

10.(2000上海,12)在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N )成立.类比上述性质,相应地:在等比数列{b n }中,若b 9=1,则有等式 成立。

09级高三数学总复习讲义——数列通项与求和

知识清单

1.数列求通项与和

(1)数列前n 项和S n 与通项a n 的关系式:a n =???--1

1s s s n n 12

=≥n n 。

(2)求通项常用方法

①作新数列法。作等差数列与等比数列;

②累差叠加法。最基本的形式是:a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1; ③归纳、猜想法。 (3)数列前n 项和

①重要公式:1+2+…+n=2

1

n(n+1);

12+22+…+n 2=6

1

n(n+1)(2n+1);

13+23+…+n 3=(1+2+…+n)2=4

1

n 2(n+1)2;

②等差数列中,S m+n =S m +S n +mnd ;

③等比数列中,S m+n =S n +q n S m =S m +q m S n ; ④裂项求和

将数列的通项分成两个式子的代数和,即a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:

)11(1))((1C An B An B C C An B An a n +-+-=++=

)1(1+n n =n 1-1

1

+n 、n ·n !=(n+1)!-n!、C n -1r -1=C n r -C n -1r 、

)!1(+n n =!1

n -)!

1(1+n 等。 ⑤错项相消法

对一个由等差数列及等比数列对应项之积组成的数列的前n 项和,常用错项相消法。

n n n c b a ?=, 其中{}n b 是等差数列, {}n c 是等比数列,记n n n n n c b c b c b c b S ++?++=--112211,

则1211n n n n n qS b c b c b c -+=+??++,…

⑥并项求和

把数列的某些项放在一起先求和,然后再求S n 。

数列求通项及和的方法多种多样,要视具体情形选用合适方法。 ⑦通项分解法:n n n c b a ±=

2.递归数列

数列的连续若干项满足的等量关系a n+k =f(a n+k -1,a n+k -2,…,a n )称为数列的递归关系。由递归关系及k 个初始值可以确定的一个数列叫做递归数列。如由a n+1=2a n +1,及a 1=1,确定的数列}12{-n 即为递归数列。

递归数列的通项的求法一般说来有以下几种:

(1)归纳、猜想、数学归纳法证明。 (2)迭代法。

(3)代换法。包括代数代换,对数代数,三角代数。

(4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。 课前预习

1.已知数列{}n a 为等差数列,且公差不为0,首项也不为0,求和:∑

=+n

i i i a a 11

1

。 2.求)(,32114321132112111*N n n

∈+++++++++++++++

。 3.设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和。

4.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令)(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。

5.求S C C nC n n n n

n

=+++36312…。 6.设数列{}n a 是公差为d ,且首项为d a =0的等差数列,

求和:n

n n n n n C a C a C a S +++=+ 11001

7.求数列1,3+5,7+9+11,13+15+17+19,…前n 项和。

典型例题

一、有关通项问题

1、利用1

1(1)(2)n n

n S n a S S n -=?=?-≥?求通项.

EG :数列{}n a 的前n 项和2

1n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?

变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式;

变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,11

3

n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.

变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*

15()n n S S n n N +=++∈,证

明数列{}1n a +是等比数列. 2、解方程求通项:

EG :在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.

变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于

(A )667 (B )668 (C )669 (D )670 3、待定系数求通项:

EG :写出下列数列{}n a 的前5项:(1)111

,41(1).2

n n a a a n -==+> 变式题1、(2006年福建卷)已知数列{}n a 满足*

111,21().n n a a a n N +==+∈

求数列{}n a 的通项公

式;

4、由前几项猜想通项:

EG :根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式. 变式题1、(2007年深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个

多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a , 则6a = ;

34599

1111

a a a a +++???+

.

变式题2、观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 .

A .40个

B .45个

C .50个

D .55个

2条直线相

交,最多有1个交点

3条直线相交,最多有3个交点

4条直线相交,最多有6个交点

(1)

(4)

(7)

( )

( )

二、有关等差、等比数列性质问题

EG :一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )

A .83

B .108

C .75

D .63

变式1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。 变式

2、(江苏版第

76

页习题

1)等比数列{}n a 的各项为正数,且

5647313231018,log log log a a a a a a a +=+++= 则( )

A .12

B .10

C .8

D .2+3log 5

EG :设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( )

A .1 B.2 C.4 D.8

变式题1、在各项都为正数的等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++=

A 33

B 72

C 84

D 189 三、数列求和问题

EG :已知}{n a 是等差数列,其中131a =,公差8d =-。(1)求数列}{n a 的通项公式,并作出它的图像;

(2)数列}{n a 从哪一项开始小于0?(3)求数列}{n a 前n 项和的最大值,并求出对应n 的值. 变式题1、已知}{n a 是各项不为零的等差数列,其中10a >,公差0d <,若100S =,求数列}{n a 前n 项和

的最大值.

变式题2、在等差数列}{n a 中,125a =,179S S =,求n S 的最大值. EG :求和:2

1

123n n S x x nx -=++++

变式题1、已知数列42n a n =-和1

2

4

n n b -=

,设n n n b a c =,求数列}{n c 的前n 项和n T . 变式题2、(2007全国1文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,

3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ??

????

的前n 项和n S .

变式题2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .

3、利用等比数列的前n 项和公式证明 EG :11

1

22

1

= (,0,0)n n n

n n n n

a b a a

b a

b ab

b n N a b a b

++---*-+++++∈>>-

变式题、(05天津)已知)0,0,( 1221>>∈+++++=*---b a N n b ab b a b a a u n n n n n n .当b a =时,求数列{}n u 的前n 项和n S .

EG :(1)已知数列}{n a 的通项公式为1

(1)

n a n n =

+,求前n 项的和;(2)已知数列}{n a

的通项公式为

n a =

n 项的和.

变式题1、已知数列}{n a 的通项公式为n a =

1

2

n +,设13242111n n n T a a a a a a +=+++

??? ,求n T . 变式题2、数列{a n }中,a 1=8,a 4=2,且满足:a n+2-2a n+1+a n =0(n ∈N*), (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设n n n n b b b S N n a n b +++=∈-=

21*)()

12(1

,,是否存在最大的整数m ,使得任意的n 均有

32

m

S n >

总成立?若存在,求出m ;若不存在,请说明理由. 实战训练A

1.(07重庆文)在等比数列{a n }中,a 2=8,a 1=64,,则公比q 为 (A )2 (B )3 (C )4 (D )8

2.(07重庆理)若等差数列{n a }的前三项和93=S 且11=a ,则2a 等于( ) A .3 B.4 C. 5 D. 6

3.设{n a }为公比q>1的等比数列,若2004a 和2005a 是方程03842=+x x 的两根,则

=+20072006a a __________.

4.(07天津理)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( )A.2

B.4

C.6

D.8

5.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则2

2

lim

n n n

a n S →∞-= . 6.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =

(A)9 (B)10 (C)11 (D)12 5.等差数列{a n }的前n 项和为S n ,若2462,10,S S S ==则等于

(A )12

(B )18

(C )24

(D )42

6.(全国2文)已知数列的通项52n a n =-+,则其前n 项和n S = .

7.(07全国1理)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .

8.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( )

A.23

-

B.13

-

C.13

D.

23

9.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( )A.3

B.2

C.1

D.2-

10.已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = . 11.(07辽宁理)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63

B .45

C .36

D .27

12.(07江西理)已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若11

9

a =,则36a = . 实战训练B

1.(07江西文)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=

2.(07湖南文)在等比数列{}n a (n ∈N*)中,若11a =,41

8

a =,则该数列的前10项和为( )

A .41

22

-

B .2122

- C .10122

- D .11122

-

3.(07湖北理)已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且

745

3

n n A n B n +=

+,则使得n

n

a b 为整数的正整数n 的个数是( ) A .2

B .3

C .4

D .5

4.(07广东理)已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k = A .9 B .8 C. 7 D .6

5.(07广东文)已知数列{n a }的前n 项和29n S n n =-,则其通项n a = ;若它的第k 项满足58k a <<,则k = . 6.数列{}n a 的前n 项和为n S ,若1

(1)

n a n n =+,则5S 等于( )

A .1

B .5

6

C .16

D .

130

7.等比数列{}n a 中,44a =,则26a a 等于( ) A.4

B.8

C.16

D.32

8.若数列{}n a 的前n 项和210(123)n S n n n =-= ,

,,,则此数列的通项公式为 ;数

列{}n na 中数值最小的项是第

项.

9.若数列{}n a 的前n 项和210(123)n S n n n =-= ,

,,,则此数列的通项公式为

10.(07安徽文)等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==

(A )12

(B )10

(C )8

(D )6

11.(07辽宁文)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63

B .45

C .36

D .27

12.数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.

(I )求c 的值;

(II )求{}n a 的通项公式.

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列综合专项练习讲义

高中数学数列综合专项 练习讲义 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

专题数 列综合 考点精要 会求简单数列的通项公式和前n 项和. 热点分析 数列的通项和求和,历来是高考命题的常见考查内容.要重点掌握错位相减法,灵活运用裂项相消法,熟练使用等差和等比求和公式,掌握分组求和法. 知识梳理 1.数列的通项求数列通项公式的常用方法: (1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、 数字、字母与项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :则???≥-==-2111 n S S n S a n n n (注意:不能忘记讨论1=n ) (4)逐项作差求和法(累加法);已知)2)((1≥=--n n f a a n n ,且{f(n)}的和可求,则求n a 可用累加法 (5)逐项作商求积法(累积法);已知 )2)((1 ≥=-n n f a a n n ,且{f(n)}的和可求,求n a 用累乘法. (6)转化法 2几种特殊的求通项的方法 (一)1n n a ka b +=+型。 (1)当1k =时,{}1n n n a a b a +-=?是等差数列,1()n a bn a b =++ (2)当1k ≠时,设1()n n a m k a m ++=+,则{}n a m +构成等比数列,求出{}n a m +的通项,进一步求出{}n a 的通项。 例:已知{}n a 满足111,23n n a a a +==-,求{}n a 的通项公式。

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

高中数列知识点总结

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 1()2n n n a a S +=na =中间项 1(1)2 n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次函数图像的分点表示形式。 四 性质结论 1.3或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2() +∈N n n ,则,奇偶nd S S =- 1 +=n n a a S S 偶奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -= 数列{a n }是等比数列的一个等价条件是: (1),(0,01n n S a b a b =-≠≠,) 当0q >且0q ≠时,n a 关于n 的图像是指数函数图像的分点表示形式。

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学数列讲义总结

09级高三数学总复习讲义——数列概念 知识清单 1.数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示, 那么这个公式就叫这个数列的通项公式。 例如,数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1 n (n N +∈)。 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从 函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替 ()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列 项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 (5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递 推公式。 (6) 数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2)n n n S n a S S n -=?=?-?≥ 课前预习 1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……; (2)2212-,2313-,2414 -,2515-; (3)11*2-,12*3,13*4-,1 4*5 。 2.数列{}n a 中,已知21 ()3n n n a n N ++-= ∈, (1)写出10a ,1n a +,2n a ;

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学数列知识点基础

数列的相关概念和定义 1.数列的定义 按照一定顺序排列的一列数称为数列。数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第1位的数称为这个数列的第1项,也叫做首项,排在第2位的数称为这个数列的第2项,排在第n位的数称为这个数列的第n项。 项数有限的数列称为有穷数列;项数无限的数列称为无穷数列,有穷数列的最后一项一般也称为末项. 数列的一般形式:a 1, a 2, a 3, … , a n ,…, 可以简记为{a n}.其中a n表示数列的第n项, 称为数列的通项。 一般地,如果数列的第n项a n与n之间的关系可以用 a n=f(n) 来表示,其中f(n)是关于n的不含其他未知数的表达式,则称上述关系式为这个数列的一个通项公式。显然,根据数列的通项公式,能够写出这个数列的任意一项。 2.数列与函数的关系 数列{a n}可以看成定义域为正整数集的子集的函数,数列中的数就是自变量从小到大依次取正整数值时对应的函数值,而数列的通项公式也就是相应函数的解析式,这也就提示我们,数列也可以用平面直角坐标系中的点来直观的表示。如此我们用类似函数性质的术语来描述数列。从第2项起,每一项都大于它的前一项的数列称为递增数列;从第2项起,每一项都小于它的前一项的数列称为递减数列;各项都相等的数列称为常数数列,简称为常数列。 3.数列中的递推关系 如果已知数列的首项(或前几项),且数列的相邻两项或两项以上的关系都可以用一个公式来表示,则称这个公式为数列的递推关系,也称为递推公式或递归公式。一般来说,根据数列的首项(或前几项)以及数列的递推关系,可以求出这个数列的每一项。

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

高中数学讲义微专题55 数列中的不等关系

第55炼 数列中的不等关系 一、基础知识: 1、在数列中涉及到的不等关系通常与数列的最值有关,而要求的数列中的最值项,要依靠数列的单调性,所以判断数列的单调性往往是此类问题的入手点 2、如何判断数列的单调性: (1)函数角度:从通项公式入手,将其视为关于n 的函数,然后通过函数的单调性来判断数列的单调性。由于n N * ∈ ,所以如果需要用到导数,首先要构造一个与通项公式形式相同,但定义域为()0,+∞ 的函数,得到函数的单调性后再结合n N * ∈得到数列的单调性 (2)相邻项比较:在通项公式不便于直接分析单调性时,可考虑进行相邻项的比较得出数列的单调性,通常的手段就是作差(与0比较,从而转化为判断符号问题)或作商(与1比较,但要求是正项数列) 3、用数列的眼光去看待有特征的一列数:在解数列题目时,不要狭隘的认为只有题目中的 {}{},n n a b 是数列,实质上只要是有规律的一排数,都可以视为数列,都可以运用数列的知识 来进行处理。比如:含n 的表达式就可以看作是一个数列的通项公式;某数列的前n 项和n S 也可看做数列{}12:,,,n n S S S S L 等等。 4、对于某数列的前n 项和{}12:,,,n n S S S S L ,在判断其单调性时可以考虑从解析式出发,用函数的观点解决。也可以考虑相邻项比较。在相邻项比较的过程中可发现:1n n n a S S -=-,所以{}n S 的增减由所加项n a 的符号确定。进而把问题转化成为判断n a 的符号问题 二、典型例题 例1:已知数列{}1,1n a a =,前n 项和n S 满足()130n n nS n S +-+= (1)求{}n a 的通项公式 (2)设2n n n n c a λ?? =- ??? ,若数列{}n c 是单调递减数列,求实数λ的取值范围 解:(1)()113 30n n n n S n nS n S S n +++-+=? =

相关文档
最新文档