导数的零点问题
理科导数零点问题一

理科导数零点问题一11.(本小题共13分)已知函数mx x x f -+=)1ln()(.(I )当1m =时,求函数)(x f 的单调递减区间; (II )求函数)(x f 的极值;(III )若函数()f x 在区间20,1e ⎡⎤-⎣⎦上恰有两个零点,求m 的取值范围.2.(本小题满分14分)已知函数()()21ln 2f x a x a x x =--+(0a <).⑴ 求()f x 的单调区间;⑵ 若()12ln 21a -<<-,求证:函数()f x 只有一个零点0x ,且012a x a +<<+; ⑶ 当45a =-时,记函数()f x 的零点为0x ,若对任意[]120,0,x x x ∈,且211x x -=,都有()()21f x f x m -≥成立,求实数m 的最大值.(本题可参考数据:ln 20.7≈,9ln 0.84≈,9ln 0.595≈) 3.(海淀)已知函数2()e ()x f x x ax a =+-,其中a 是常数.(Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若存在实数k ,使得关于x 的方程()f x k =在[0,)+∞上有两个不相等的实数根,求k 的取值范围.4.(西城)已知函数()1e x a f x x ⎛⎫=+ ⎪⎝⎭,其中0a >.⑴求函数()f x 的零点; ⑵讨论()y f x =在区间(,0)-∞上的单调性;⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.5.(本小题共13分)石景山已知函数()=ln +1,f x x ax a R -∈是常数.(Ⅰ)求函数=()y f x 的图象在点(1,(1))P f 处的切线l 的方程; (Ⅱ)证明函数=()(1)y f x x ≠的图象在直线l 的下方; (Ⅲ)讨论函数=()y f x 零点的个数.答案:1.(本小题共13分)解:(I )依题意,函数()f x 的定义域为()+∞-,1, 当1m =时,()ln(1)f x x x =+-,∴1()11f x x'=-+ ……2分 由()0f x '<得1101x-<+,即01xx -<+ 解得0x >或1x <-,又1x >-,0x ∴>∴()f x 的单调递减区间为(0,)+∞. ……………………4分(II )m xx f -+='11)(,)1(->x (1)0≤m 时,0)(≥'x f 恒成立)(x f 在),1(∞+-上单调递增,无极值. …6分(2)0>m 时,由于111->-m 所以)(x f 在⎥⎦⎤ ⎝⎛--11,1m 上单调递增,在⎪⎭⎫⎢⎣⎡∞+-,11m 上单调递减, 从而1ln )11()(--=-=m m mf x f 极大值. ……………………9分 (III )由(II )问显然可知, 当0≤m 时,()f x 在区间20,1e ⎡⎤-⎣⎦上为增函数, ∴在区间20,1e ⎡⎤-⎣⎦不可能恰有两个零点. ……………………10分当0>m 时,由(II )问知()=f x 极大值1(1)f m-,又(0)0f =,0∴为()f x 的一个零点.…11分∴若()f x 在20,1e ⎡⎤-⎣⎦恰有两个零点,只需22(1)01011f e e m ⎧-≤⎪⎨<-<-⎪⎩即222(1)011m e m e⎧--≤⎪⎨<<⎪⎩2211m e ∴≤<- 2.(本小题满分14分)⑴ ()11f x a x x a'=⋅-+-()()21x a x x a a x a x x a x a --+-+-++==--,x a >. ………………2分 设()()21h x x a x =-++,则()0h a a =<,对称轴12a x a +=>,()21a ∆=+1°1a <-时,()h a 在(),a +∞有两个零点1a +和0,且10a +<∴()f x 在(),1a a +和()0,+∞上单调递减;()f x 在()1,0a +上单调递增. ………………3分 2°1a =-时,()h a 在(),a +∞上满足()0h a ≤∴()f x 在(),a +∞上单调递减……4分 3°10a -<<时,()h a 在(),a +∞有两个零点1a +和0,且01a <+∴()f x 在(),0a 和()0,1a +上单调递减;()f x 在()0,1a +上单调递增. ………………5分 ⑵ 当()12ln 21a -<<-时,由⑴中3°情形,只需要证明()00f >同时()20f a +<. ……7分 而()()0ln 0f a a =-> ………………8分()()()22112ln 222ln 2122f a a a a a a +=-+++=--()()()212ln 21ln 212ln 2102<----=⎡⎤⎣⎦ 因此原命题得证. ………………9分⑶ 当45a =-时,()()()()21111f x f x f x f x -=+-()22111111441441ln 111ln 552552x x x x x x ⎛⎫⎛⎫=-++-++++++- ⎪ ⎪⎝⎭⎝⎭ ………………10分11149441ln ln 55552x x x ⎛⎫⎛⎫=+-++- ⎪ ⎪⎝⎭⎝⎭ 设()49441ln ln 55552g x x x x ⎛⎫⎛⎫=+-++- ⎪ ⎪⎝⎭⎝⎭,则()24141151332194495555555x x g x x x x x ++'=⋅-⋅+=⋅⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭ ………………11分 因此()g x '在[)0,+∞上满足()0g x '>,∴()g x 在[)0,+∞()0,+∞上单调递增 ………………12分因此()()0g x g ≥49441491ln ln ln 0.1455552542=--=-≈ ………………13分也即当10x =,21x =时()()21f x f x -取得最小值为0.14,因此实数m 的最大值为0.14.………14分 3.(海淀)已知函数2()e ()x f x x ax a =+-,其中a 是常数. (Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若存在实数k ,使得关于x 的方程()f x k =在[0,)+∞上有两个不相等的实数根,求k 的取值范围.解:(Ⅰ)由2()e ()x f x x ax a =+-可得2'()e [(2)]x f x x a x =++.………2分 当1a =时,(1)e f = ,'(1)4e f =. ……4分所以 曲线()y f x =在点(1,(1))f 处的切线方程为()e 4e 1y x -=-,即4e 3e y x =-.……5分 (Ⅱ) 令2'()e ((2))0x f x x a x =++=,解得(2)x a =-+或0x =.……6分当(2)0a -+≤,即2a ≥-时,在区间[0,)+∞上,'()0f x ≥,所以()f x 是[0,)+∞上的增函数. 所以 方程()f x k =在[0,)+∞上不可能有两个不相等的实数根.…8分当(2)0a -+>,即2a <-时,()'(),f x f x 随x 的变化情况如下表x0 (0,(2))a -+ (2)a -+ ((2),)a -++∞'()f x 0-0 +()f xa -↘24e a a ++ ↗由上表可知函数()f x 在[0,)+∞上的最小值为24((2))e a a f a ++-+=.………10分 因为 函数()f x 是(0,(2))a -+上的减函数,是((2),)a -++∞上的增函数, 且当x a ≥-时,有()f x e ()aa a -≥->-. ……………11分所以 要使方程()f x k =在[0,)+∞上有两个不相等的实数根,k 的取值范围必须是24(,]e a a a ++-. 13分4.⑴令()0f x =,得x a =-,所以函数()f x 的零点为a -.⑵函数()f x 在区域(,0)-∞上有意义,22()e xx ax a f x x+-'=⋅, 令()0f x '=得221244,22a a a a a ax x --+-++==, 因为0a >,所以120,0x x <>,当x 在定义域上变化时,()f x '的变化情况如下:x 1(,)x -∞1(,0)x()f x ' +-()f x所以在区间24,2a a a ⎛⎫--+-∞ ⎪ ⎪⎝⎭上()f x 是增函数,在区间24,02a a a ⎛⎫--+ ⎪ ⎪⎝⎭上()f x 是减函数.⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上()f x 存在最小值2a f ⎛⎫- ⎪⎝⎭, 证明:由⑴知a -是函数()f x 的零点,因为22144022a a a a a aa x a --+-++--=--=>,所以10x a <-<.由()1e x a f x x ⎛⎫=+ ⎪⎝⎭知,当x a <-时,()0f x >.又函数在1(,0)x 上是减函数,且102ax a <-<-<.所以函数在区间1,2a x ⎛⎤- ⎥⎝⎦上的最小值为2a f ⎛⎫- ⎪⎝⎭,且02a f ⎛⎫-< ⎪⎝⎭. 所以函数在区间,2a ⎛⎤-∞- ⎥⎝⎦上的最小值为2a f ⎛⎫- ⎪⎝⎭. 计算得2e 2aa f -⎛⎫-=- ⎪⎝⎭.5.(本小题共13分) (Ⅰ)1()=f x a x'- …………………1分 (1)=+1f a -,=(1)=1l k f a '-,所以切线 l 的方程为(1)=(1)l y f k x --,即=(1)y a x -. ……3分(Ⅱ)令()=()(1-)=ln +1>0F x f x a x x x x --,,则11()=1=(1)()=0=1.F x x F x x x x''--, 解得 x )1 , 0(1) , 1(∞+()F x ' +-)(x F↗最大值↘…………………6分(1)<0F ,所以>0x ∀且1x ≠,()<0F x ,()<(1)f x a x -,即函数=()(1)y f x x ≠的图像在直线 l 的下方. …………………8分 (Ⅲ)令()=ln +1=0f x x ax -,ln +1=x a x . 令 ln +1()=x g x x ,22ln +11(ln +1)ln ()=()==x x xg x x x x -''- 则()g x 在(0,1)上单调递增,在(1,+)∞上单调递减,当=1x 时,()g x 的最大值为(1)=1g . 所以若>1a ,则()f x 无零点;若()f x 有零点,则1a ≤.…10分若=1a ,()=ln +1=0f x x ax -,由(Ⅰ)知()f x 有且仅有一个零点=1x .若0a ≤,()=ln +1f x x ax -单调递增,由幂函数与对数函数单调性比较,知()f x 有且仅有一个零点(或:直线=1y ax -与曲线=ln y x 有一个交点).若0<<1a ,解1()==0f x a x'-得1=x a ,由函数的单调性得知()f x 在1=x a 处取最大值,11()=ln >0f a a,由幂函数与对数函数单调性比较知,当x 充分大时()<0f x ,即()f x 在单调递减区间1(,+)a∞有且仅有一个零点;又因为1()=<0af e e-,所以()f x 在单调递增区间1(0)a ,有且仅有一个零点.综上所述,当>1a 时,()f x 无零点;当=1a 或0a ≤时,()f x 有且仅有一个零点; 当0<<1a 时,()f x 有两个零点. …………………13分。
微专题10 导数解答题之零点问题(解析版)

微专题10导数解答题之零点问题秒杀总结1.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围. 求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数.例1.(第21讲零点问题之一个零点-突破2022年新高考数学导数压轴解答题精选精练)已知函数21()sin cos ,[,]2f x x x x ax x ππ=++∈-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0a =时,求()f x 的单调区间;(3)当0a >时,()f x 在区间[,]2ππ有一个零点,求a 的取值范围. 【答案】(1)1y =(2)单调递增区间为(,)2ππ--,(0,)2π,单调递减区间为(2π-,0),(2π,)π. (3)(0,22]π 【解析】 【分析】(1)求出函数在0x =处的导数值,即切线斜率,求出(0)1f =,即可求出切线方程; (2)求出函数导数并判断正负即可得出单调区间; (3)转化为22sin 2cos x x xa x +=-,构造函数,利用导数判断函数单调性即可求出.(1)()sin cos sin cos f x x x x x ax x x ax '=+-+=+,所以()00k f ='=切,又(0)1f =,所以()f x 在(0,(0))f 处的切线方程:10y -=,即1y =. (2)当0a =时,()sin cos f x x x x =+, ()sin cos sin cos f x x x x x x x '=+-=,所以在(,)2ππ--,(0,)2π上,()0f x '>,()f x 单调递增, 在(2π-,0),(2π,)π上,()0f x '<,()f x 单调递减,所以()f x 单调递增区间为(,)2ππ--,(0,)2π,单调递减区间为(2π-,0),(2π,)π. (3)当0a >时,令()0f x =,得21sin cos 02x x x ax ++=, 所以22sin 2cos x x xa x +=-,令22sin 2cos ()x x xg x x+=-,[2x π∈,]π,222(2sin 2cos 2sin )()(2sin 2cos )(2)()()x x x x x x x x x g x x +---+-'=-322222222cos 4sin 4cos 2cos (2)4sin ()()x x x x x x x x x x x x x -++-++==--当[2x π∈,]π时,cos 0x <,220x -+<,即()0g x '>, 所以()g x 在[2π,]π上单调递增,又24()24g ππππ==--,2222()g πππ-==-, 若()f x 在区间[,]2ππ有一个零点,则242a ππ-剟, 故a 的取值范围(0,22]π.例2.(吉林省长春市东北师范大学附属中学2021-2022学年高三上学期第三次摸底考试理科数学试题)已知函数ln sin ()(0)x x a eaf x x a =+>,()'f x 为()f x 的导数.(1)若0x =为()'f x 的零点,试讨论()f x 在区间[]0,π的零点的个数; (2)当1a =时,()(0)2cos xf x mx x <>+,求实数m 的取值范围.【答案】(1)两个 (2)1[,)3+∞ 【解析】 【分析】(1)由题意得到()[cos (1)e ]x f x a x x -'=--,先得到(0)0f =,再由(0,π]x ∈时,设()cos (1)e x g x x x -=--,则()(2)e sin x g x x x -'=--,分π(0,]2x ∈、π(,2]2x ∈和(2,π]x ∈三种情况讨论,即可求解; (2)当1a =时,转化为sin 02cos x mx x ->+,令sin ()2cos xG x mx x=-+,利用导数求得函数的单调性与最值,即可求解.(1)解:由题意,函数ln sin ()(0)x x a e a f x x a =+>,可得ln (1)()cos e xa x f x a x -'=+, 因为0x =为()'f x 的零点,所以(0)0f '=,即ln 0a a +=, 从而(1)()cos [cos (1)e ]e xxa x f x a x a x x ---'=+=--, ①因为(0)0f =,所以0是()f x 的零点;②当(0,π]x ∈时,设()cos (1)e x g x x x -=--,则()(2)e sin x g x x x -'=--,(ⅰ)若π(0,]2x ∈,令()()(2)e sin x h x g x x x -'==--,则()(3)e cos 0x h x x x -'=--<,所以()h x 在π(0,]2单调递减,因为π2ππ(0)20,()(2)e 1022h h -=>=--<,所以存在唯一的0π(0,)2x ∈,使得0()0h x =,当0(0,)x x ∈时,()()0h x g x '=>,()g x 在0(0,)x 上单调递增; 当0π(,)2x x ∈时,()()0h x g x '=<,()g x 在0π(,)2x 上单调递减;(ⅰ)若π(,2]2x ∈,令()(2)e x x x ϕ-=-,则()(3)e 0x x x ϕ-=-<',故()ϕx 在π(,2]2上单调递减,所以π2ππ1()()(2)22ex e ϕϕ-<=-<.又π1sin sin 2sin(π2)sin 62x ≥=->=,所以()(2)e sin 0,()x g x x x g x -'=--<在π(,2]2上单调递减;(ⅰ)若(2,π]x ∈,则()(2)e sin 0,()x g x x x g x -'=--<在(2,π]上单调递减. 由(ⅰ)(ⅰ)(ⅰ)可得,()g x 在0(0,)x 上单调递增,在0(,π]x 上单调递减,因为π0()(0)0,(π)(π1)e 10g x g g ->==--<,所以存在唯一10(,π)x x ∈使得1()0g x =.当1(0,)x x ∈时,()()0f x ag x '=>,()f x 在1(0,)x 上单调递增,()(0)0f x f >=, 当1(,π]x x ∈时,()()0f x ag x '=<,()f x 在1(,π]x 上单调递减, 因为1()(0)0,(π)0f x f f >=<,所以()f x 在1(,π]x 上有且只有一个零点. 综上可得,()f x 在[]0,π上有两个零点. (2)(2)当1a =时,()sin f x x =,则不等式化为sin 2cos x mx x <+,即为sin 02cos xmx x->+.令sin ()2cos xG x mx x=-+,则()()2222cos +123111()=+=32cos 2cos 332cos 2cos x G x m m m x x x x ⎛⎫'=---+- ⎪++⎝⎭++当13m ≥时,()0G x '>,()G x 在()0+∞,单调递增,且(0)=0G ,故13m ≥时满足题意; 当103m <<时,令()sin 3H x x mx =-,则()cos 3H x x m '=-在()0+∞,有无数零点 所以存在最小的一个()00,x x ∈,使()0H x '>,则()H x 在()0+∞,单调递增, 所以()(0)0H x H >=,即sin 3x mx >,所以()00,x x ∃∈,使sin sin 2cos 3x xmx x >>+,所以sin 02cos x mx x -<+,故103m <<不满足题意,舍去.当0m ≤时,因为0x >,所以0mx ≤,令()sin 2cos x n x x=+,πsin π12=0π222cos 2n ⎛⎫=> ⎪⎝⎭+,不满足题意,舍去. 综上可得,13m ≥,即实数m 的取值范围是1[,)3+∞.例3.(湖南省长沙市雅礼中学2021-2022学年高三上学期月考(四)数学试题)已知函数()()sin ln 1f x x x =-+.(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)证明:()f x 有且仅有2个零点. 【答案】(1)0y = (2)证明见解析 【解析】 【分析】(1)、求出()f x ',将0x =代入即可求出切线斜率,再确定切点,然后利用点斜式即可求出切线方程; (2)、先求出()f x ',令()()g x f x '=,确定()g x 的单调性和正负,确定()f x 的单调性及正负,从而得出()f x 零点个数. (1)()()sin ln 1f x x x =-+,()1cos 1f x x x'∴=-+,()0cos 010x f x ='∴=-=,又()00f =,()y f x ∴=在点()0,0处的切线斜率为0.∴曲线()yf x =在点()()0,0f 处的切线有程为0y =.(2)()()sin ln 1f x x x =-+,()1cos 1f x x x'∴=-+, 令()()1cos 1g x f x x x'==-+,()()()21sin 11g x x x x '∴=-+>-+,①、当(]1,0x ∈-时,sin 0x ->,()()21sin 01g x x x '∴=-+>+,()g x ∴在(]1,0-上单调递增,又()()000g f '==,(]1,0x ∴∈-时()0g x ≤,(]1,0x ∴∈-时()0f x '≤,()fx ∴在(]1,0-上单调递减,又()00f =,0x ∴=是()f x 在(]1,0-上的唯一零点;②、当0,2x π⎛⎤∈ ⎥⎝⎦时,()()21sin 1g x x x '=-++,()()32cos 01g x x x ''∴=--<+,()g x '∴在0,2x π⎛⎤∈ ⎥⎝⎦上单调递减, 又()()210sin 0010g '=-+>+,21sin 02212g πππ⎛⎫'=-+< ⎪⎝⎭⎛⎫+ ⎪⎝⎭,()g x '∴在0,2x π⎛⎤∈ ⎥⎝⎦上有唯一零点m ,其中02m π<<, 当()0,x m ∈时,()0g x '>,()g x ∴在()0,x m ∈上单调递增; 当2x m π⎛⎫∈ ⎪⎝⎭,时,()0g x '<,()g x ∴在2x m π⎛⎫∈ ⎪⎝⎭,上单调递减;而()()000g f '==,1cos 022212g f ππππ⎛⎫⎛⎫'==-< ⎪ ⎪⎝⎭⎝⎭+,,2n m π⎛⎫∴∃∈ ⎪⎝⎭使()0f n '=,当(),x m n ∈时,()0g x >,()0f x '∴>,()f x ∴在(),x m n ∈上单调递增; 当2x m π⎛⎫∈ ⎪⎝⎭,时,()0g x <,()0f x '∴<,()f x ∴在2x m π⎛⎫∈ ⎪⎝⎭,上单调递减;而()00f =,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,0,2x π⎛⎤∴∈ ⎥⎝⎦时,()0f x >,()f x ∴在0,2x π⎛⎤∈ ⎥⎝⎦上无零点;③、当,2x ππ⎛⎤∈ ⎥⎝⎦时,1sin 0x -<-≤,()()21sin 01g x x x '∴=-+<+,()g x '∴在,2x ππ⎛⎤∈ ⎥⎝⎦上单调递减, 02g π⎛⎫'< ⎪⎝⎭,()g x ∴在,2x ππ⎛⎤∈ ⎥⎝⎦上单调递减;又02g π⎛⎫< ⎪⎝⎭,,2x ππ⎛⎤∴∈ ⎥⎝⎦时()0f x '<,()f x ∴在,2x ππ⎛⎤∈ ⎥⎝⎦上单调递减;而()002f f ππ⎛⎫>< ⎪⎝⎭,,()f x ∴在,2x ππ⎛⎤∈ ⎥⎝⎦上有一个零点;④、当()x π∈+∞,时,1sin 1x -≤≤,()ln 11x +>, ()()sin ln 10f x x x ∴=-+<,()f x ∴在()x π∈+∞,上无零点; 综上所述:()f x 有且仅有2个零点.例4.(黑龙江省哈尔滨市呼兰区第一中学校2021-2022学年高三上学期第二次校内检测数学(理)试题)已知()()1e 0xf a x x x -->=,1x =是()f x 的极值点(其中e 是自然对数的底数).(1)求a 的值;(2)讨论函数()()sin h x f x x =-在()0,π的零点个数. (参考数据:12e 1.77π-≈). 【答案】(1)1; (2)2个﹒ 【解析】 【分析】(1)求导得1()e x f x a -'=-,易知f '(1)0=,从而求得a 的值.(2)1()e sin (0)x h x x x x π-=--<<,1()e 1cos x h x x -'=--,第一次构造函数()()H x h x '=,易证()H x 在(0,)π上单调递增,由于(0)0H <,()02H π>,故0(0,)2x π∃∈,使得0()0H x =,且可推出()h x 在(0,)π上的单调性,从而得0()()min h x h x =;第二次构造函数()1cos sin g x x x x =+--,(0,)2x π∈,再次借助导数和隐零点的思维,证明()0<g x 即()0min h x <在(0,)2π上成立,进而确定函数()h x 的零点个数. (1)1()e (0)x f x ax x -=->,1()e x f x a -'∴=-,1x =是()f x 的极值点,f '∴(1)0e 0a =-=,解得1a =.(2)由(1)知,1()()sin e sin (0)x h x f x x x x x π-=-=--<<,1()e 1cos x h x x -'∴=--,令1()()e 1cos x H x h x x -'==--,则1()e sin 0x H x x -'=+>在(0,)x π∈上恒成立, ()H x ∴在(0,)π上单调递增.又1(0)e 20H -=-<,12()e 102H ππ-=->,0(0,)2x π∴∃∈,使得0()0H x =,即010e 1cos 0x x ---=,当00x x <<时,()0H x <,即()0h x '<,()h x 单调递减; 当0x x π<<时,()0H x >,即()0h x '>,()h x 单调递增.01000000()()e sin 1cos sin x min h x h x x x x x x -∴==--=+--.令()1cos sin g x x x x =+--,(0,)2x π∈,则()cos 1cos 0g x x x '=---<恒成立, ()g x ∴在(0,)2π上单调递减,又(0)1120g =+=>,()11022g ππ=--<,1(0,)2x π∴∃∈,使得当1(x x ∈,)2π时,()0<g x ,即()0min h x <成立.1(0)e 0h -=>,1()e 0h πππ-=->,故()h x 在(0,)π上有2个零点. 【点睛】本题考查利用导数研究函数的单调性和零点问题,需要多次构造函数,且涉及隐零点的思维,考查学生的转化思想、逻辑推理能力和运算能力,属于难题.过关测试1.(江苏省南通市如皋、镇江市2021-2022学年高三上学期期末联考数学试题)设f (x )=x e x -mx 2,m ∈R . (1)设g (x )=f (x )-2mx ,讨论函数y =g (x )的单调性;(2)若函数y =f (x )在(0,+∞)有两个零点x 1,x 2,证明:x 1+x 2>2. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求出()()()1e 2'=+-xg x x m ,分0m ≤、102m e<<、12>m e 、12m e =讨论()g x 的单调性即可;(2)令()2e 0=-=xf x x mx 得e =x mx ,代入12,x x 两式相除得,1212x x x e x -=,设21x x >,令21t x x =-求出11t t x e x +=,反解出11t t x e =-,则122e 1+=+-tt x x t ,即证221t t t e +>-,等价于证明:()()22e 10+--tt t >,构造函数()()()()22e 10=+--th t t t t >,利用导数求出单调性可得答案.(1)()()2e 2=--∈x g x x mx mx x R ,()()()1e 2'=+-x g x x m ,0m ≤时,20x e m ->,当1x >-时()0g x '>,()g x 是单调递增函数,当1x <-时()0g x '<,()g x 是单调递减函数;0m >时,令()0g x '=,得()121,ln 2=-=xx m ,当()1ln 2->m 即102m e<<时,1x >-或()ln 2<x m 时()0g x '>,()g x 是单调增函数,()ln 21<<-m x 时()0g x '<,()g x 是单调递减函数,当()1ln 2-<m 即12>m e时,1x <-或()ln 2>x m 时()0g x '>,()g x 是单调增函数,()1ln 2-<<x m 时()0g x '<,()g x 是单调递减函数,当()1ln 2-=m 即12m e=时,()0g x '>,()g x 在x ∈R 上是单调增函数, 综上所述0m ≤时,()g x 在()1,-+∞是单调递增函数,在(),1-∞上是单调递减函数;102m e<<时,()g x 在()1,-+∞,()(),ln 2-∞m 上是单调增函数,在()()ln 2,1-m 是单调递减函数, 12>m e时,()g x 在(),1-∞-,()()ln 2,+∞m 上是单调增函数,在()()1,ln 2-m 是单调递减函数, 12m e=时,()g x 在x ∈R 上是单调增函数. (2)令()2e 0=-=xf x x mx ,因为0x >,所以e =x mx ,令()()=e 0->xF x mx x ,()()12=0,=0F x F x ,两式相除得,1212x x x e x -=,① 不妨设21x x >,令21t x x =-,则0t >,21x t x =+,代入①得:11tt x e x +=,反解出:11t t x e =-,则121221ttx x x t t e +=+=+-, 故要证122x x +>即证221ttt e +>-,又因为10t e ->, 等价于证明:()()22e 10+--tt t >, 构造函数()()()()22e 10=+--th t t t t >,则()()1e 1'=-+th t t ,()e 0''=t h t t >,故()h t '在()0+,∞上单调递增,()(0)0h t h ''>=, 从而()h t 在()0+,∞上单调递增,()(0)0h t h >=. 即122x x +>.2.(考点12导数与不等式,函数零点等-2021年新高考数学一轮复习考点扫描)已知函数()ln f x x ax a =-+,2()1g x x =-.(1)当0a =,0x >且1x ≠时,证明:212()()11x f x g x x x +<--; (2)定义,{,},m m nmax m n n m n≥⎧=⎨<⎩,设函数(){(),()}(0)h x max f x g x x =>,试讨论()h x 零点的个数.【答案】(1)证明见解析;(2)答案见解析. 【解析】 【分析】(1)即证:当1x >时,2(1)ln 1x x x ->+;当01x <<时,2(1)ln 1x x x -<+.令2(1)()ln 1x x x x ϕ-=-+,则()ϕx 在(0,1)上单调递增,在(1,)+∞上单调递增.即得解;(2)对x 分三种情况1,1,01x x x >=<<讨论,得1a >时,()h x 有两个零点;1a ≤时,()h x 仅有一个零点. 【详解】(1)当0a =时,()ln f x x =,要证:212()()11x f x g x x x +<-- 即转化为:1[(1)ln 2(1)]01x x x x+--<-,即12(1)ln 011x x x x -⎡⎤-<⎢⎥-+⎣⎦ 即证:当1x >时,2(1)ln 1x x x ->+;当01x <<时,2(1)ln 1x x x -<+ 令2(1)()ln 1x x x x ϕ-=-+,则2214(1)()0(1)(1)x x x x x x ϕ'-=-=>++ 则()ϕx 在(0,1)上单调递增,在(1,)+∞上单调递增. 所以当01x <<时,()(1)0x ϕϕ<=,此时12(1)ln 011x x x x -⎡⎤-<⎢⎥-+⎣⎦当1x >时,()(1)0x ϕϕ>=,此时12(1)ln 011x x x x -⎡⎤-<⎢⎥-+⎣⎦故0a =,0x >且1x ≠时,212()()11x f x g x x x +<-- (2)1°当1x >时,()0>g x ,()()0h x g x ≥>,所以()h x 在(1,)+∞无零点; 2°当1x =时,(1)(1)0g f ==,则(1)0h =,所以1x =是()h x 的零点; 3°当01x <<时,()0<g x ,所以()g x 在(0,1)上无零点,()h x 在(0,)+∞上的零点个数即为()f x 在(0,)+∞上的零点个数.因为1()f x a x'=- ①若1a ≤时,1()0f x a x'=->,所以()f x 在(0,1)上单调递增,()(1)0f x f <=,此时()f x 无零点; ②若1a >时,则101a<<,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,1a ⎛⎫⎪⎝⎭上单调递减,由1()1ln max f x f a a a ⎛⎫==-- ⎪⎝⎭,令()1ln a a a ϕ=--,则1()10a aϕ'=->,当1a >时,1()1ln (1)0f a a a a ϕϕ⎛⎫==-->= ⎪⎝⎭,由1ln a a ->,可得1a e a a >+>,则10ae a-<<,又因为()()10a a f e a a e --=-+-<.由零点存在性定理可知,()f x 在(0,1)上存在唯一的零点0x ,且01,a x e a -⎛⎫∈ ⎪⎝⎭.综上:1a >时,()h x 有两个零点;1a ≤时,()h x 仅有一个零点.【点睛】本题主要考查利用导数证明不等式和求函数的最值,考查利用导数研究函数的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.(湖南省常德市部分重点中学2019-2020学年高三上学期10月联考文科数学试题)已知函数()2,()ln x f x e ax a g x x =--=.(1)讨论()f x 的单调性;(2)用max{,}m n 表示,m n 中的最大值,设函数()max{(),()}(0)h x f x g x x =>,讨论()h x 零点的个数. 【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在区间()(),ln 2a -∞上单调递减,在()()ln 2,a +∞单调递增;(2)当12a e <()h x 在()0,+∞上无零点;当12a e =1a ≥时,()h x 在()0,+∞1ea <<时,()h x 在()0,+∞上有两个零点. 【解析】 【分析】(1)对参数a 进行分类讨论,即可由导数的正负判断函数的单调性;(2)根据()h x 的定义,利用导数分区间讨论()h x 在()()0,1,1,+∞上的零点分布情况. 【详解】(1)()2x f x e ax a =--,故可得()2xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,故此时()f x 在R 上单调递增; 当0a >时,令()0f x '=,解得()ln 2x a =,故容易得()f x 在区间()(),ln 2a -∞上单调递减,在()()ln 2,a +∞单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在区间()(),ln 2a -∞上单调递减,在()()ln 2,a +∞单调递增. (2)①当1x >时,()0g x lnx =>,()()(){}()max ,0h x f x g x g x =≥>, 显然此时()h x 没有零点; ②当1x =时,()13f e a =-, 若3ea ≥,()()(){}()1max 1,110h f g g ===,故1x =是()h x 的零点; 若3ea <,()()(){}()1max 1,110h f g f ==>,故1x =不是()h x 的零点; ③当()0,1x ∈时,()0g x lnx =<,所以()h x 在()0,1上的零点个数, 即为()f x 在()0,1上的零点个数.()f x 在()0,1上的零点个数,等价于21x e a x =+在()0,1上实数根的个数. 令()(),0,121xe m x x x =∈+,故可得()()()221 21xx e m x x '-=+,故容易得()m x 在区间10,?2⎛⎫ ⎪⎝⎭单调递减,在1,12⎛⎫⎪⎝⎭单调递增.且()()1101,,1223e m m e m ⎛⎫=== ⎪⎝⎭. 故当12a e <1a >时,()fx 在()0,1没有零点; 当12a e =13e a ≤<,()fx 在()0,1有一个零点;123ee a <<时,()fx 在()0,1有2个零点.综上所述:当12a e <()h x 在()0,+∞上无零点;当12a e =1a ≥时,()h x 在()0,+∞上有一个零点;1ea <<时,()h x 在()0,+∞上有两个零点. 【点睛】本题考查利用导数研究含参函数的单调性,以及求解函数零点的个数,属综合困难题.4.(广西玉林市2022届高三上学期教学质量监测数学(理)试题)已知函数()2ln 1f x x ax =-+. (1)若()f x 存在零点,求实数a 的取值范围;(2)若0x 是()f x 的零点,求证:00220032e 1x x a x x --≤≤. 【答案】(1)2e ⎛-∞ ⎝⎦; (2)证明见解析. 【解析】 【分析】(1)分离参数得2ln 1x a x +=,构造函数()2ln 1x g x x+=利用导数研究其单调性和值域,结合题意,则问题得解;(2)根据(1)中所求,将所证不等式转化为证明()000022000322ln 1e 10x x x x x x x -+-≤<>,分别构造函数,利用导数研究函数单调性,进而证明不等式恒成立即可. (1)令()2ln 10f x x ax =-+=变形得2ln 1x a x+=, 令()2ln 1x g x x +=,问题转化成y a =与()g x 有交点. 令()212ln 0xg x x -'==,解得e x 则()g x 在(e x ∈上单调递增,在)e,x ∈+∞上单调递减,且()0lim x g x +→=-∞,()lim 0x g x →+∞= 故()(max e eg x g ==所以ea ≤故实数a 的取值范围2e ,e ⎛-∞ ⎝⎦; (2)证明:由题意可得,()0002ln 10f x x ax =-+=,得002ln 1x a x +=, 要证00220032e 1x x a x x --≤<,即证()000022000322ln 1e 10x x x x x x x -+-≤<>. .先证20000322ln 1x x x x -+≤,只需让001ln 1x x +≥, 令()1ln t x x x =+,()21x t x x -'=. 所以()t x 在()0,1∈x 上单调递减,在()1,x ∈+∞上单调递增, 故()()min 11t x t ==,所以()1t x ≥,左边证毕.再证002002ln 1e 1x x x x +-<,即证:000e 12ln 1x x x x x -+-<- 令()2ln 1h x x x =+-,()2xh x x-'=, 所以()h x 在()0,2x ∈上单调递增,在()2,x ∈+∞上单调递减, 故()()max 22ln 21h x h ==-;令()e 1x k x x x -=-,()()()221e 1e e 11x x x x x x k x x x ----+'=-=, 令()e 1xm x x =--,'()m x e 1x =-,令'()m x 0=,解得0x =,故()m x 在()0,+∞单调递增,()()00m x m >=. 即e 10x x -->在()0,+∞恒成立.令()0k x '=,解得1x =,所以()k x 在()0,1∈x 上单调递减,在()1,x ∈+∞上单调递增, 故()()min 1e 2k x k ==-.因为e 22ln21->-,所以()()h x k x <,即e 12ln 1x x x x x-+-<-,故000e 12ln 1x x x -+<,右边证毕. 综上所述:00220032e 1x x a x x --≤≤. 【点睛】本题考察利用导数研究函数单调性和恒成立问题;其中第一问中,对函数进行分离参数是解决问题的关键;第二问中,在证明002002ln 1e 1x x x x +-<时,将其转化为证明000e 12ln 1x x x x x -+-<-,是较好的一种处理手段;本题综合考察学生的计算能力,对导数的综合使用能力,属压轴题.5.(江西省景德镇市2022届高三第二次质检数学(文)试题)已知函数24e ()ln 214e xxf x x =+++.(1)求函数()y f x =在(0,(0))f 处切线的斜率;(2)求证:()y f x =有且只有一个零点0x ,且满足0112e e 2x<<. 参考数据:ln20.693≈ 【答案】(1)1325(2)见解析 【解析】 【分析】(1)求出函数的导函数,再根据导数的几何意义即可得出答案;(2)要证0112e e 2x<<,只需证明011ln ln 24x e <<即可,利用导数判断函数的单调性,再根据零点的存在性定理即可得出结论. (1)解:由24e ()ln 214exxf x x =+++, 得()()()2243222224e 14e 4e e 16e 16e 8e 4e 1()114e148e x x x xx x x x x x f x +--++'++⋅++==,则()16168411302525f -+++'==,即函数()y f x =在(0,(0))f 处切线的斜率为1325; (2)证明:由(1)得:()4322216e 16e 8e 4e 1()14e x x x x x f x -++++'=,令()e ,0x t t =>,()4321616841,(0)g t t t t t t =-+++>, 则()326448164g t t t t '=-++,令()()326448164,0h t t t t t =-++>,则()()2161261h t t t '=-+,因为36480-<,所以212610t t -+>在()0,t ∈+∞上恒成立, 所以()0h t '>,所以函数()h t 在()0,∞+上递增, 所以()()040g t g ''>=>, 所以函数()g t 在()0,∞+上递增, 所以()()010g t g >=>, 即43216e 16e 8e 4e 10x x x x -+++>, 所以()4322216e 16e 8e 4e 1()014e x x x x x f x -++=++'>,所以函数()f x 是R 上的增函数, 又()1ln 2e1ln2e222222e 14e2eeln 2ln 21ln 2101e 1e 1114e11ln ln2e e e2f =⎛⎫=--++--++=-+ +⎪⎝=⎭<+++, 1ln41ln 424e 14ln 2ln 2ln 20111ln ln 454e 4114f ⎝++=-+=- +⎛=⎪+⎫>+⎭, 所以()y f x =有且只有一个零点0x ,且011lnln 24x e <<, 所以()y f x =有且只有一个零点0x ,且满足0112e e2x<<. 【点睛】本题考查了导数的几何意义,考查了利用导数求函数的单调区间,考查了利用导数解决跟零点有关的问题,及不等式的证明问题,考查了数据分析能力,有一定的难度.6.(北京市密云区2022届高三上学期期末考试数学试题)已知函数()e x f x x k =+,R k ∈.(1)求曲线()y f x =在点()()2,2M f 处的切线方程; (2)求函数()f x 的单调区间;(3)若函数()e x f x x k =+有两个不同的零点,记较大的零点为0x ,证明:当()01,2x ∈时,()2201e e 0k x k +->.【答案】(1)()221e e y k x k =+-;(2)答案见解析; (3)证明见解析. 【解析】 【分析】(1)求出()2f 、()2f ',利用导数的几何意义可求得所求切线的方程;(2)求得()1e xf x k '=+,分0k ≥、0k <两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间; (3)分析可得00ex x k =-,将所证不等式等价变形为020e 1x x ->-对任意的()01,2x ∈恒成立,构造函数()2e 1x g x x -=-+,利用导数分析函数()g x 在()1,2上的单调性,可得出()0g x >,即可证得结论成立.(1)解:因为()e x f x x k =+,则()1e x f x k '=+,所以,()222e f k =+,()221e f k '=+,因此,曲线()y f x =在点()()2,2M f 处的切线方程()()()222e 1e2y k k x -+=+-,即()221e e y k x k =+-.(2)解:函数()e x f x x k =+的定义域为R ,且()1e xf x k '=+.当0k ≥时,对任意的R x ∈,()0f x '>,此时函数()f x 的单调递增区间为(),-∞+∞,无递减区间; 当0k <时,由()0f x '=,可得()ln x k =--.当()ln x k <--时,()0f x '>;当()ln x k >--时,()0f x '<.此时,函数()f x 的单调递增区间为()(),ln k -∞--,单调递减区间为()()ln ,k --+∞. 综上所述,当0k ≥时,函数()f x 的单调递增区间为(),-∞+∞,无递减区间;当0k <时,函数()f x 的单调递增区间为()(),ln k -∞--,单调递减区间为()()ln ,k --+∞. (3)证明:由()0e xf x x k =+=可得e xx k =-, 因为函数()e xf x x k =+有两个不同的零点,且较大的零点为0x ,则0e x x k =-, 要证()()()0002220000211e e e 10ex x x k x k x k x x --+-=+-=->对任意的()01,2x ∈恒成立, 即证020e1x x ->-对任意的()01,2x ∈恒成立,构造函数()2e 1x g x x -=-+,其中()1,2x ∈,则()2e 10x g x -'=-<,所以,函数()g x 在()1,2上单调递减,所以,()()20g x g >=, 因为()01,2x ∈,则()()020g x g >=,即020e 1x x ->-,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.7.(辽宁省大连市2021-2022学年高三上学期期末数学试题)已知函数()()e ,ln x f x ax g x ax x =-=-,其中a ∈R .(1)若0x >时,()()0f x g x ⋅>恒成立,求实数a 的取值范围;(2)若函数()()()F x f x g x =+的最小值为m ,试证明:函数()e ln x m G x x -=-有且仅有一个零点. 【答案】(1)1e ea << (2)证明见解析 【解析】 【分析】(1)分析可得e ln x ax x >>,分别求得e x y =与y ax =相切时和ln y x =与y ax =相切时,a 的值,综合分析,即可得答案.(2)利用导数,求得()F x 的单调区间和极值,即可得m 的表达式和范围,()G x 的零点等价于求()e e ln x m H x x =-的零点,利用导数,求得()H x 的单调区间和极值,计算化简,可得000011e ln ln x m x x x =-=+,分析可得101x x =,分析即可得证. (1)由题意得()()e ln 0xax ax x -->,因为当0x >时e ln x x >,所以原不等式等价于e ln x ax x >>, 当e x y =与y ax =相切时,设切点00(,)x y , 则e x y '=,所以切线的斜率0e x k a ==,又00e xy =,00y ax =,联立解得01x =,所以切线斜率e a =,同理当ln y x =与y ax =相切时,可求得切线斜率1ea =, 因为e ln x ax x >>, 所以1e ea << (2)()()()e ln x F x f x g x x =+=-,则1()e x F x x '=-,21()e 0xF x x'+'=>, 所以()F x '在(0,)+∞上为增函数, 又1(1)e 10,e 202F F '⎛⎫=->=< ⎪'⎝⎭,所以()F x '在(0,)+∞上存在唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭,此时0001()e 0x F x x '=-=,即001e xx =,当()00,x x ∈时,()0F x '<,则()F x 为减函数, 当()0,x x ∈+∞时,()0F x '>,则()F x 为增函数,所以()F x 的最小值为000000011()e ln e ln2e x x xx m F x x x ==-=-=+>, 令()eln 0x mG x x -=-=,整理得e e ln 0xm x -=,令()e e ln xmH x x =-,则e ()e mxH x x='-,在(0,)+∞上为增函数,因为2m >,所以e 1(1)e e0,()e e 10m mmm H H m m m ⎛⎫=-=-=- ⎝'⎪⎭',所以()H x '在(0,)+∞上存在唯一零点1x ,且()11,x m ∈,111e ()e 0mx H x x -'==当()10,x x ∈时,()0H x '<,()H x 为减函数, 当()1,x x ∈+∞时,()0H x '>,()H x 为增函数,所以111()e e ln x mH x x =-,因为11e e mx x =,所以11ln x m x =-,即11ln m x x =+,又000011e ln ln x m x x x =-=+,所以110011ln ln x x x x +=+, 又函数ln y x x =+在(0,)+∞上为增函数, 所以101x x =, 所以0000001111111100001111()e e ln e e ln e e ln e e ln x x x x x x x m m H x x x x x x ⎛⎫+ ⎪⎝⎭=-=-=-⋅=-⋅⋅=()0011000000111e ln e ln x x x x x x x x ⎛⎫⋅⋅-=⋅⋅+ ⎪⎝⎭因为00ln 0x x +=,所以1()0H x =,则1()0H x ≥在(0,)+∞上恒成立, 所以()0H x =有且仅有一个根1x x =, 所以函数()e ln x mG x x -=-有且仅有一个零点.【点睛】解题的关键是熟练掌握利用导数求函数单调区间、极(最)值的方法,并灵活应用,难点在于,需将()G x 求零点问题,转化为求()e e ln x m H x x =-的零点问题,进而可求得m 的表达式,考查计算化简,分析求值的能力,属中档题.8.(广东省揭阳市2022届高三上学期期末数学试题)已知函数()e ln .xf x x ax a x a =--+(1)若e a =,判断函数()f x 的单调性,并求出函数()f x 的最值. (2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)在()0,1上单调递减,在()1,+∞上单调递增,最小值为()1e f =,无最大值(2)()2e ,+∞【解析】 【分析】(1)把e a =的值代入函数()f x 的解析式,从而根据导数判断函数的单调性,进而可求函数()f x 的最值; (2)利用导数判断函数的单调性,根据单调性可求函数的最小值;根据题意列出满足条件的a 的不等式,从而求出a 的范围,然后验证即可. (1)易知函数的定义域为()0,∞+,当e a =时,()e e eln e xf x x x x =--+,所以()()()e e 1e e 1e xx f x x x x x ⎛⎫=+--=+- ⎝'⎪⎭, 当()0,1x ∈时,()0f x '<;当()1,x ∈+∞,()0f x '>; 所以()f x 在()0,1上单调递减,在()1,+∞上单调递增;由此可得,()f x 的最小值为()1e e eln1e e f =--+=,无最大值. (2)因为()e ln xf x x ax a x a =--+,所以()()()1e 1e x x a a f x x a x x x ⎛⎫=+--=+- ⎝'⎪⎭. 当0a ≤时,()0f x '>在()0,∞+上恒成立,所以()f x 在()0,∞+上单调递增, 故可得函数()f x 至多只有一个零点,不符合题意;当0a >时,令e 0xax-=,设该方程的解为0x , 则在()00,x 上,()0f x '<;在()0,x +∞上,()0f x '>, 所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增;为了满足()f x 有两个零点,则有()00000e ln 0xf x x ax a x a =--+<①因为0x 是方程e 0xax-=的解,所以00e x x a =,两边取对数可得00ln ln x x a +=②, 将②式代入①式可得()()02ln 0f x a a =-<,所以a 的取值范围为()2e ,a ∞∈+.且当()2e ,a ∞∈+时,由②式得()01,1e e 0xf a a >=-+=>,所以()f x 在()00,x 上仅有1个零点;当x →+∞时,()f x →+∞,故可得()f x 在()0,x +∞上仅有1个零点;综上,若函数()f x 存在两个零点,则实数a 的取值范围是()2e ,+∞.。
导数零点问题

函数零点问题知识点:1、零点的定义:函数的零点方程的根(解) 与轴的交点的横坐标(注意函数的零点就是一个实数)2、零点的推广:函数的零点方程的根(解)方程的根(解)函数与函数图像交点的横坐标、3、我们通常利用导数来研究函数的零点,注意导函数的零点与原函数的极值点之前的关系、1、 已知函数x a x x f ln 21)(2-=)(R a ∈, 若函数)(x f 在),1(+∞为增函数,求a 的取值范围;讨论方程0)(=x f 解的个数,并说明理由、2、 已知函数()()ln ()x f x e a a =+为常数就是R 上的奇函数,函数()()sin g x f x x λ=+就是区间[一1,1]上的减函数.(I)求a 的值;(II) 若()21g x t t λ≤++在x ∈[一1,1]上恒成立,求t 的取值范围. (Ⅲ) 讨论关于x 的方程2ln 2()x x ex m f x =-+的根的个数。
3、 若,ln 6)(m x x g +=问就是否存在实数m,使得y= f(x)=28x x -+的图象与的图象有且只有两个不同的交点?若存在,求出m 的值;若不存在,说明理由、4、 已知函数, 求在区间上的最大值就是否存在实数m ,使得的图象与的图象有且只有三个不同的交点?若存在,求出m 的取值范围;,若不存在,说明理由。
5、 已知函数在处取得极值、求函数的解析式;求证:对于区间上任意两个自变量的值x 1,x 2,都有; 若过点可作曲线的三条切线,求实数m 的取值范围、6.奇函数cx bx ax x f ++=23)(的图象E 过点)210,22(),2,2(B A -两点、求)(x f 的表达式;求)(x f 的单调区间;若方程0)(=+m x f 有三个不同的实根,求m 的取值范围、7.已知()f x 就是二次函数,不等式()0f x <的解集就是(0,5),且()f x 在区间[]1,4-上的最大值就是12。
导数零点问题总结

导数零点问题导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢?猜——猜出方程f ′(x )=0的根[典例] 设f (x )=1+ln xx.(1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围. [方法演示]解:(1)因为f ′(x )=-ln xx 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以a <1<a +1,即0<a <1,故所求实数a 的取值范围是(0,1).(2)方程f (x )=x 2-2x +k 有实数解,即f (x )-x 2+2x =k 有实数解.设g (x )=f (x )-x 2+2x ,则g ′(x )=2(1-x )-ln xx 2. 接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0. 但此方程不易求解,所以我们可以先猜后解.可得g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2].[解题师说]当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0或x =ln x .[应用体验]1.函数f (x )=e x +12x 2-(2+ln 2)x 的最小值为________.答案:2-2ln 2-12ln 22解析:f ′(x )=e x +x -(2+ln 2).接下来,需求函数f (x )的单调区间,所以需解不等式f ′(x )≥0及f ′(x )≤0,因而需解方程f ′(x )=0.但此方程不易求解,所以我们可以先猜后解.易知f ′(x )是增函数,所以方程f ′(x )=0至多有一个实数根,且可观察出此实数根就是ln 2,所以函数f (x )在(-∞,ln 2)上是减函数,在(ln 2,+∞)上是增函数,所以f (x )min =f (ln 2)=2-2ln 2-12ln 22.设——设出f ′(x )=0的根[典例] (2015·(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .[方法演示]解:(1)法一:f ′(x )=2e 2x -ax (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-ax 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,所以当a >0时,f ′(x )存在唯一零点.法二:f ′(x )=2e 2x -ax (x >0).令方程f ′(x )=0,得a =2x e 2x (x >0).因为函数g (x )=2x (x >0),h (x )=e 2x (x >0)均是函数值为正值的增函数,所以由增函数的定义可证得函数u (x )=2x e 2x (x >0)也是增函数,其值域是(0,+∞).由此可得,当a ≤0时,f ′(x )无零点;当a >0时,f ′(x )有唯一零点.(2)证明:由(1)可设f ′(x )在(0,+∞)上的唯一零点为x 0. 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 所以f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,当且仅当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a(基本不等式).所以当a >0时,f (x )≥2a +a ln 2a .[解题师说]本题第(2)问的解题思路是求函数f (x )的最小值.因此需要求f ′(x )=0的根.但是f ′(x )=2e 2x-ax =0的根无法求解.故设出f ′(x )=0的根为x 0,通过证明f (x )在(0,x 0)和(x 0,+∞)上的单调性知f (x )min =f (x 0)=a 2x 0+2ax 0+a ln 2a,进而利用基本不等式证得结论,其解法类似解析几何中的设而不求.[应用体验]2.设函数f (x )=e x -ax -2.(1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增.若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1. 故当x >0时,(x -k )f ′(x )+x +1>0等价于k <x +1e x -1+x (x >0).①令g (x )=x +1e x -1+x ,则g ′(x )=-x e x -1(e x -1)2+1=e x (e x -x -2)(e x -1)2.由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点.故g ′(x )在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α). 又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2.证——证明方程f ′(x )=0无根[典例] 已知m ∈R ,函数f (x )=mx -m -1x -ln x ,g (x )=1x+ln x .(1)求函数g (x )的极小值;(2)若函数y =f (x )-g (x )在[1,+∞)上是增函数,求实数m 的取值范围; (3)设h (x )=2ex ,若∃x 0∈[1,e]使得f (x 0)-g (x 0)>h (x 0),求实数m 的取值范围.[方法演示]解:(1)函数g (x )的定义域为(0,+∞),g ′(x )=-1x 2+1x =x -1x 2.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0. ∴x =1为g (x )的极小值点,极小值g (1)=1.(2)∵y =mx -m -1x -1x -2ln x =mx -m x -2ln x . ∴y ′=m +m x 2-2x ≥0在[1,+∞)上恒成立,即m ≥2x x 2+1在x ∈[1,+∞)上恒成立.又2x x 2+1=2x +1x ≤1,所以m ≥1.所以实数m 的取值范围为[1,+∞).(3)由题意知,关于x 的不等式f (x )-g (x )>h (x )在[1,e]上有解,即关于x 的不等式2e +2x ln x x 2-1<m (1<x ≤e)有解.设u (x )=2e +2x ln x x 2-1(1<x ≤e),则u ′(x )=2x 2-4e x -2-(2x 2+2)ln x(x 2-1)2(1<x ≤e),但不易求解方程u ′(x )=0. 可大胆猜测方程u ′(x )=0无解,证明如下:由1<x ≤e ,可得-(2x 2+2)ln x <0,2x 2-4e x -2=2(x -e)2-2e 2-2<0, 所以u ′(x )<0,u (x )在(1,e]上是减函数,所以函数u (x )的值域是4ee 2-1,+∞,故所求实数m 的取值范围是⎝⎛⎭⎫4ee 2-1,+∞.[解题师说]当利用导函数求函数f (x )在区间[a ,b ],[a ,b )或(a ,b ]上的最值时,可首先考虑函数f (x )在该区间上是否具有单调性,若具有单调性,则f (x )在区间的端点处取得最值(此时若求f ′(x )=0的根,则此方程是无解的).[应用体验]3.(理)若存在x 使不等式x -mex >x 成立,则实数m 的取值范围为________.答案:(-∞,0)解析:法一:(理)由题意,知存在x 使不等式-m >x e x -x 成立.设x =t (t ≥0),则存在t ≥0使不等式-m >t e t 2-t 2成立.设f (t )=t e t 2-t 2(t ≥0),则f ′(t )=e t 2(2t 2+1)-2t (t ≥0),需解方程f ′(t )=0,但此方程不易求解.可大胆猜测方程f ′(t )=0无解(若方程f ′(t )=0无解,则f ′(t )的值恒正或恒负(否则由零点存在性定理知方程f ′(t )=0有解),得f (t )是增函数或减函数,此时研究函数f (t )就很方便),证明如下:f ′(t )=e t 2(2t 2+1)-2t ≥22t e t 2-2t ≥0(t ≥0),所以f ′(t )>0(t ≥0),所以函数f (t )是增函数,故其最小值为f (0)=0. 所以-m >0,即m <0.(文)由题意,知存在x 使不等式-m >x e x -x 成立,当x =0时,m <0,当x >0时,令f (x )=x e x-x ,则f ′(x )=⎝⎛⎭⎫12x +x e x -1,不易求方程f ′(x )=0的根,故可大胆猜测方程f ′(x )=0无解,即f ′(x )的值恒正或恒负.证明如下:f ′(x )=⎝⎛⎭⎫12x +x e x -1≥212x ·x e x -1=2e x -1,∵x >0,∴2e x >2,∴2e x -1>0,∴f ′(x )>0,∴f (x )在(0,+∞)上为增函数,∴f (x )>f (0)=0,∴-m >0,即m <0.综上可知m 的取值范围为(-∞,0).法二:不等式x -m e x >x 成立,等价于m <x -x ·e x . 故存在x 使不等式x -mex >x 成立,等价于m <(x -x ·e x )max . 令f (x )=x -x e x ,则f ′(x )=1-⎝⎛⎭⎫12x +x e x <0. ∴f (x )=x -x e x 在[0,+∞)上是单调递减函数,故(x -x ·e x )max =0,∴m <0.1.已知函数f (x )=ln x +k e x (k 为常数,e =2.718 28……是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数.证明:对任意x >0,g (x )<1+e -2. 解:(1)f ′(x )=1x-ln x -k e x,因为f ′(1)=0,所以1-k =0,即k =1.(2)由(1)知,f ′(x )=1x -ln x -1e x. 易知h (x )=1x -ln x -1在(0,+∞)上是减函数,且h (1)=0,所以当0<x <1时,f ′(x )>0,当x >1时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).(3)证明:由(2)可知,当x ≥1时,g (x )=xf ′(x )≤0<1+e -2,故只需证明g (x )<1+e -2在0<x <1时成立.当0<x <1时,e x >1,且g (x )>0,∴g (x )=1-x ln x -xe x<1-x ln x -x .设F (x )=1-x ln x -x ,x ∈(0,1),则F ′(x )=-(ln x +2),当x ∈(0,e -2)时,F ′(x )>0,当x ∈(e-2,1)时,F ′(x )<0,所以当x =e-2时,F (x )取得最大值F (e -2)=1+e -2. 所以g (x )<F (x )≤1+e -2.综上,对任意x >0,g (x )<1+e -2.2.已知函数f (x )=k e x -x 2有两个极值点x 1,x 2(x 1<x 2).(1)求k 的取值范围; (2)求f (x 1),f (x 2)的取值范围.解:(1)因为f ′(x )=k e x -2x ,所以由f ′(x )=0,得k =2x e x . 设φ(x )=2x e x ,则φ′(x )=2e x (1-x ).当x <1时,φ′(x )>0,当x >1时,φ′(x )<0,所以φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.所以当x =1时,φ(x )max =2e . 作出函数φ(x )的图象如图所示.因为函数f (x )有两个极值点,所以y =k 与y =φ(x )的图象有两个交点,所以由图可得k 的取值范围是⎝⎛⎭⎫0,2e . (2)由f ′(x 1)=k e x 1-2x 1=0,得k e x 1=2x 1,所以f (x 1)=k e x 1-x 21=2x 1-x 21=1-(1-x 1)2由图可得x 1的取值范围是(0,1),所以f (x 1)的取值范围是(0,1).同理,可得f (x 2)=k e x 2-x 22=2x 2-x 22=1-(x 2-1)2,由图可得x 2的取值范围是(1,+∞),所以f (x 2)的取值范围是(-∞,1). 3.设函数f (x )=(x -1)e x -kx 2(k ∈R).(1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝⎛⎦⎤12,1时,求函数f (x )在[0,k ]上的最大值M .解:(1)当k =1时,f (x )=(x -1)e x -x 2,所以f ′(x )=x e x -2x =x (e x -2).由f ′(x )>0,得x >ln 2或x <0;由f ′(x )<0,得0<x <ln 2,所以函数f (x )的递增区间是(-∞,0),(ln 2,+∞),递减区间是(0,ln 2).(2)f ′(x )=x (e x -2k ).由f ′(x )=0,得x =0或x =ln 2k .事实上,可证ln 2k <k ,设g (k )=ln 2k -k ⎝⎛⎭⎫12<k ≤1,则g ′(k )=1-k k ≥0⎝⎛⎭⎫12<k ≤1, 所以g (k )在⎝⎛⎦⎤12,1上是增函数,所以g (k )≤g (1)=ln 2-1<0,即ln 2k <k .所以f (x )在(0,ln 2k )上是减函数,在(ln 2k,1]上是增函数,所以M =max{f (0),f (k )}. 设h (k )=f (k )-f (0)=(k -1)e k -k 3+1⎝⎛⎭⎫12<k ≤1,则h ′(k )=k (e k -3k )⎝⎛⎭⎫12<k ≤1. 又令φ(k )=e k -3k ⎝⎛⎭⎫12<k ≤1,则φ′(k )=e k -3≤e -3<0⎝⎛⎭⎫12<k ≤1,所以函数φ(k )在⎝⎛⎦⎤12,1上是减函数.又因为φ⎝⎛⎭⎫12>0,φ(1)<0,所以函数φ(k )在⎝⎛⎭⎫12,1上存在唯一的零点k 0(该零点就是函数φ(k )的隐零点).所以当12<k <k 0时,φ(k )>0,即h ′(k )>0,当k 0<k ≤1时,φ(k )<0,即h ′(k )<0,所以函数h (k )在12,1上是先增后减.又因为h ⎝⎛⎭⎫12=78-e 2>0,h (1)=0,所以h (k )=f (k )-f (0)≥0,f (k )≥f (0)⎝⎛⎭⎫12<k ≤1, 故M =f (k )=(k -1)e k -k 3.4.(2015·山东高考)设函数f (x )=(x +a )ln x ,g (x )=x 2e x .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解:(1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2.又f ′(x )=ln x +ax +1,所以a =1. 当a =1时,曲线y =f (x )在点(1,f (1))处的切线2x -y -2=0与直线2x -y =0平行,所以所求a 的值为1.(2)当k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0. 又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈(2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以当k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知,方程f (x )=g (x )在(1,2)内存在唯一的根x 0(x 0就是函数f (x )-g (x )的隐零点),且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2ex ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0;若x ∈(1,x 0),由m ′(x )=ln x +1x +1>0,可知0<m (x )≤m (x 0);故m (x )≤m (x 0). 当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减. 可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e2.。
导数中的零点问题

导数中的零点问题题型一:零点的基本解法1、已知函数$f(x)=2\ln x-x+mx,x\in[2e,+\infty)$,求实数$m$的取值范围。
2、已知函数$f(x)=x\mathrm e^x-a(x+1)^2/2,x\in[0,+\infty)$有两个零点,求实数$a$的取值范围。
1) 若$a=\mathrm e$,求函数$f(x)$的极值。
2) 若函数$f(x)$有两个零点,求实数$a$的取值范围。
3、已知函数$f(x)=a\mathrm e^{2x}+(a-2)\mathrm e^x-x$。
1)讨论$f(x)$的单调性。
2)若$f(x)$有两个零点,求$a$的取值范围。
4、已知函数$f(x)=-(2ax+ax+(x-2)\mathrm e^x)/2,a>0$。
1)求函数$f(x)$的单调区间。
2)若函数$f(x)$存在$3$个零点,求$a$的取值范围。
题型二:切线与零点关系1、曲线在点$(1,1)$处的切线方程为;过点$(1,1)$处的切线方程为。
2、已知函数$f(x)=\frac{1}{2}x^3+mx+n(m,n\in\mathbb{R})$。
1)若$f(x)$在$x=1$处取得极大值,求实数$m$的取值范围。
2)若$f(1)=\frac{1}{2}$,且过点$p(2,1)$有且只有两条直线与曲线$y=f(x)$相切,求实数$m$的值。
3、已知函数$f(x)=ax^2+bx-3x$在$x=\pm 1$处取得极值。
1)求函数$f(x)$的解析式。
2)若过点$A(1,m)$可作曲线$y=f(x)$的三条切线,求实数$m$的取值范围。
题型三:极值与零点关系1、已知函数$f(x)=x^3-6x^2+3x+t(t\in\mathbb{R})$。
1)求函数$f(x)$的单调区间。
2)设函数$g(x)=f(x)$有三个不同的极值点,求$t$的取值范围。
3)设函数$g(x)=\mathrm e^{f(x)}$有三个不同的极值点,求$t$的取值范围。
导数与函数零点问题解题方法归纳

导函数零点问题一.方法综述导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题.二.解题策略类型一 察“言”观“色”,“猜”出零点【例1】【2020·福建南平期末】已知函数()()21e x f x x ax =++. (1)讨论()f x 的单调性;(2)若函数()()21e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e xf x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()21e xg x m x =+'-,当0m 函数在定义域上单调递增,不满足条件;当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m ,01m <<三种情况讨论可得.【解析】(1)因为()()21x f x x ax e =++,所以()()221e xf x x a x a ⎡⎤=+++⎣⎦'+, 即()()()11e xf x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-.①当0a =时,()()21e 0x f x x =+',当且仅当1x =-时,等号成立.故()f x 在(),-∞+∞为增函数.②当0a >时,()11a -+<-,由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-;所以()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数.③当0a <时,()11a -+>-,由()0f x >′得()1x a >-+或1x <-,由()0f x <′得()11x a -<<-+;所以()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.综上,当0a =时,()f x 在为(),-∞+∞增函数;当0a >时,()f x 在()(),1a -∞-+,()1,-+∞为增函数,在()()1,1a -+-为减函数;当0a <时,()f x 在(),1-∞-,()()1,a -++∞为增函数,在()()1,1a --+为减函数.(2)因为()()21e 1x g x x mx =+--,所以()()21e x g x m x =+'-, ①当0m 时,()0g x ',()g x 在[)1,-+∞为增函数,所以()g x 在[)1,-+∞至多一个零点.②当0m >时,由(1)得()g x '在[)1,-+∞为增函数.因为()01g m '=-,()00g =.(ⅰ)当1m =时,()00g '=,0x >时,()0g x '>,10x -<<时,()0g x '<;所以()g x 在[)1,0-为减函数,在[)0,+∞为增函数,()()min 00g x g ==.故()g x 在[)1,-+∞有且只有一个零点.(ⅱ)当1m 时,()00g '<,()()210m g m e m m '=+->,()00,x m ∃∈,使得()00g x '=, 且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.所以()()000g x g <=,又()()()22221e 1110m g m m m m m =+-->+--=, 根据零点存在性定理,()g x 在()0,x m 有且只有一个零点.又()g x 在[)01,x -上有且只有一个零点0.故当1m 时,()g x 在[)1,-+∞有两个零点.(ⅲ)当01m <<时,()01g m -'=-<,()00g '>,()01,0x ∃∈-,使得()00g x '=,且()g x 在[)01,x -为减函数,在()0,x +∞为增函数.因为()g x 在()0,x +∞有且只有一个零点0,若()g x 在[)1,-+∞有两个零点,则()g x 在[)01,x -有且只有一个零点.又()()000g x g <=,所以()10g -即()2110e g m -=+-,所以21e m -, 即当211em -<时()g x 在[)1,-+∞有两个零点. 综上,m 的取值范围为211em -< 【指点迷津】1.由于导函数为超越函数,无法利用解方程的方法,可以在观察方程结构的基础上大胆猜测.一般地,当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x时,常猜x =0或x =ln x .2.例题解析中灵活应用了分离参数法、构造函数法【举一反三】 【2020·山西吕梁期末】已知函数221()ln ()x f x a x a R x-=-∈. (1)讨论()f x 的单调性;(2)设()sin x g x e x =-,若()()()()2h x g x f x x =-且()y h x =有两个零点,求a 的取值范围. 【解析】(1)()f x 的定义域为(0,)+∞,1()2ln f x x a x x =--, 21()2f x x '=+2221a x ax x x-+-=, 对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<,得44a a x <<,所以()f x 在,)+∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在(44a a 上是减函数. (2)由已知可得()cos x g x e x '=-, 因为0x >,所以e 1x >,而c o s 1x ≤,所以cos 0x e x ->,所以()0g x '>,所以()sin xg x e x =-在()0+∞,上单调递增. 所以()()00g x g >=.故()h x 有两个零点,等价于()2y f x x =-=1aInx x--在()0+∞,内有两个零点. 等价于1ln 0a x x--=有两根, 显然1x =不是方程的根, 因此原方程可化为()1ln 01x x x x a-=>≠且, 设()ln x x x φ=,()ln 1x x φ='+,由()0x φ'>解得11x e<<,或1x > 由()0x φ'<解得10x e <<, 故()ln x x x φ=在10e ⎛⎫ ⎪⎝⎭,上单调递减,在()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.其图像如下所示:所以()min 11x e eφφ⎛⎫==- ⎪⎝⎭, 所以110e a-<-<, 所以a e >. 类型二 设而不求,巧“借”零点 【例2】【2015高考新课标1,文21】设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 【解析】(I )()f x 的定义域为0+,,2()=20x a f x e x x . 当0a时,()0f x ,()f x 没有零点; 当0a 时,因为2x e 单调递增,a x 单调递增,所以()f x 在0+,单调递增.又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点. (II )由(I ),可设()f x 在0+,的唯一零点为0x ,当00x x ,时,()0f x ;当0+x x ,时,()0f x .故()f x 在00x ,单调递减,在0+x ,单调递增,所以当0x x 时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x ,所以00022()=2ln 2ln 2a f x ax a a a x a a . 故当0a 时,2()2ln f x a a a. 【指点迷津】本例第(2)问的解题思路是求函数()f x 的最值.因此需要求()0f x '=的根.但是2()=20x af x e x 的根无法求解.故设出()0f x '=的根为0x ,通过证明f (x )在(0,0x )和(0x ,+∞)上的单调性知()min f x =()000222a f x ax aln x a=++,进而利用基本不等式证得结论,其解法类似解析几何中的“设而不求”.【举一反三】 【2020·江西赣州期末】已知函数2()x f x e ax x =--(e 为自然对数的底数)在点(1,(1))f 的切线方程为(3)y e x b =-+.(1)求实数,a b 的值;(2)若关于x 的不等式4()5f x m >+对于任意(0,)x ∈+∞恒成立,求整数m 的最大值. 【解析】(1)令2()x f x e ax x =--,则()21x f x e ax '=--,得:(1)e 1f a =--,(1)e 21f a '=--,由题得:(1)e 21e 31(1)e 1e 31f a a f a b b ⎧=--=-=⎧⇒⎨⎨=--=-+=⎩'⎩(2)根据题意,要证不等式4()5f x m >+对于任意恒成立,即证(0,)x ∈+∞时,4()5f x -的最小值大于m , 令244()()()2155x x g x f x e x x g x e x '=-=---⇒=--, 记()()21()2x xh x g x e x h x e ''==--⇒=-,当(0,ln 2)x ∈时,()0h x '<;当x (ln 2,)∈+∞时,()0h x '>,故()h x 即()g x '在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增, 又(0)0g '=,(ln 2)12ln 20g '=-<,且(1)30g e '=-<,323402g e ⎛⎫'=-> ⎪⎝⎭, 故存在唯一031,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=, 故当()00,x x ∈时,0g x ;当()0,x x ∈+∞时,()0g x '>;故()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()02min 0004()5x g x g x e x x ==--- 一方面:()014(1)5g x g e <=- 另一方面:由()00g x '=,即00210x e x --=,得()022*********x g x e x x x x =---=-++ 由031,2x ⎛⎫∈ ⎪⎝⎭得:()0111205g x -<<,进而()011140205g x e -<<-<, 所以1120m <- ,又因为m 是整数,所以1m -,即max 1m =-. 类型三 二次构造(求导),避免求根 【例3】【2020重庆巴蜀中学月考】已知函数()()21ln 12f x x a x =+-.(1)当1a =-时,求()f x 的单调增区间;(2)若4a >,且()f x 在()0,1上有唯一的零点0x ,求证:210e x e --<<.【分析】(1)求出()'f x ,令()'0f x ≥,解不等式可得单调递增区间;(2)通过求()f x 的导函数,可得()f x 在()0,1上有两个极值点,设为1x ,2x ,又由()f x 在()0,1上有唯一的零点0x 可得0110,2x x ⎛⎫=∈ ⎪⎝⎭,所以有()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,消去a ,可得0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭,研究其单调性,利用零点存在性定理可得结果.【解析】(1)由已知()f x 的定义域为0x >,当1a =-时,()()21ln 12f x x x =--, 则()()2111'x x x xf x x -++=--=, 令()'0f x ≥且0x >,则102x +<≤, 故()f x在10,2⎛ ⎝⎦上单调递增;(2)由()()21ln 12f x x a x =+-, 有()()2111'ax f x ax a x x x-+=+-=,记()21g x ax ax =-+,由4a >,有()()001011110242110a g g a a g >⎧⎪=>⎪⎪⎪⎛⎫=-+<⎨ ⎪⎝⎭⎪⎪=>⎪⎪⎩, 即()f x 在()0,1上有两个极值点,设为1x ,2x ,不妨设12x x <,且1x ,2x 是210ax ax -+=的两个根, 则121012x x <<<<, 又()f x 在()0,1上有唯一的零点0x ,且当0x +→时,()f x →-∞,当1x =时,()10f =, 所以得0110,2x x ⎛⎫=∈ ⎪⎝⎭, 所以()()()200020001ln 10210f x x a x g x ax ax ⎧=+-=⎪⎨⎪=-+=⎩,两式结合消去a ,得0001ln 02x x x --=, 即0002ln 10x x x -+=,记()00002ln 1t x x x x =-+,010,2x ⎛⎫∈ ⎪⎝⎭, 有()00'2ln 1t x x =+,其在10,2⎛⎫ ⎪⎝⎭上单调递增,所以()001'2ln 12ln 11ln 402t x x =+<+=-< 则()00'2ln 10t x x =+<在10,2⎛⎫⎪⎝⎭上恒成立, 即()0t x 在10,2⎛⎫ ⎪⎝⎭上单调递减,又222212*********e t e e e e e t e e e ⎧-⎛⎫=--+=< ⎪⎪⎝⎭⎪⎨-⎛⎫⎪=-=> ⎪⎪⎝⎭⎩, 由零点存在定理,210ex e --<<. 【指点迷津】当导函数的零点不易求时,可以通过进一步构造函数,求其导数,即通过“二次求导”,避免解方程而使问题得解.如上面例题,从题目形式来看,是极其常规的一道导数考题,第(3)问要求参数b 的范围问题,实际上是求g (x )=x (ln x +x -x 2)极值问题,问题是g ′(x )=ln x +1+2x -3x 2=0这个方程求解不易,这时我们可以尝试对h (x )=g ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.这种方法适用于研究函数的单调性、确定极(最)值及其相关参数范围、证明不等式等.【举一反三】【2020·云南昆明一中期末】已知函数2()(1)x x f x eax e =-+⋅,且()0f x . (1)求a ;(2)证明:()f x 存在唯一极大值点0x ,且()0316f x <. 【解析】(1)因为()()ee 10x xf x ax =--≥,且e 0x >,所以e 10x ax --≥, 构造函数()e 1x u x ax =--,则()'e xu x a =-,又()00u =, 若0a ≤,则()'0u x >,则()u x 在R 上单调递增,则当0x <时,()0u x <矛盾,舍去;若01a <<,则ln 0a <,则当ln 0a x <<时,'()0u x >,则()u x 在(ln ,0)a 上单调递增,则()()ln 00u a u <=矛盾,舍去;若1a >,则ln 0a >,则当0ln x a <<时,'()0u x <,则()u x 在(0,ln )a 上单调递减,则()()ln 00u a u <=矛盾,舍去;若1a =,则当0x <时,'()0u x <,当0x >时,'()0u x >,则()u x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,故()()00u x u ≥=,则()()e 0xf x u x =⋅≥,满足题意;综上所述,1a =.(2)证明:由(1)可知()()2e 1e x xf x x =-+⋅,则()()'e2e 2xxf x x =--,构造函数()2e 2xg x x =--,则()'2e 1xg x =-,又()'g x 在R 上单调递增,且()'ln20g -=,故当ln2x <-时,)'(0g x <,当ln 2x >-时,'()0g x >, 则()g x 在(,ln 2)-∞-上单调递减,在(ln 2,)-+∞上单调递增,又()00g =,()2220e g -=>,又33233332223214e 16e 022e 2e 8e 2e g --⎛⎫-=-==< ⎪⎝⎭+, 结合零点存在性定理知,在区间3(2,)2--存在唯一实数0x ,使得()00g x =, 当0x x <时,()'0f x >,当00x x <<时,()'0f x <,当0x >时,()'0f x >, 故()f x 在()0,x -∞单调递增,在()0,0x 单调递减,在()0,∞+单调递增,故()f x 存在唯一极大值点0x ,因为()0002e 20xg x x =--=,所以00e 12xx =+, 故()()()()0022200000011e 1e 11112244x x x x f x x x x ⎛⎫⎛⎫=-+=+-++=-+ ⎪ ⎪⎝⎭⎝⎭,因为0322x -<<-,所以()201133144216f x ⎛⎫<--+< ⎪⎝⎭.三.强化训练1.【2020·安徽合肥二中月考】已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】0x ≤时,()xf x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()xx f x x e x e x x'=+--=+-,显然10x +>, 由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=, 0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点.故选B . 2.【2020江苏盐城期中】已知函数,若函数存在三个单调区间,则实数的取值范围是__________. 【答案】【解析】函数,若函数存在三个单调区间即0有两个不等实根,即有两个不等实根,转化为y=a 与y=的图像有两个不同的交点令,即x=,即y=在(0,)上单调递减,在(,+∞)上单调递增。
导数零点问题方法归纳

导数零点问题方法归纳导数零点问题啊,这可真是个有趣的家伙!你想想看,它就像是数学世界里的一个神秘宝藏,等待着我们去挖掘。
在面对导数零点问题时,咱得有耐心,就像钓鱼一样,不能着急。
有时候,那零点就像狡猾的小鱼,藏得可深了,得慢慢找。
咱先来说说怎么找这些零点吧。
就好像在一个大迷宫里找出口,得仔细观察那些线索。
咱得看看函数的单调性,这就像是给迷宫画出了几条路,顺着走,也许就能找到零点的大致位置。
然后呢,再用各种方法去试探,看看到底是不是零点。
这过程不就跟探险家在荒山野岭里找宝贝一样嘛!有时候啊,我们可能一下子就找到了零点,那感觉,就像是瞎猫碰上死耗子,哈哈,可高兴了。
但有时候呢,怎么找都找不到,急得人抓耳挠腮的。
这时候可不能泄气啊,得换个思路,换个方法,说不定就柳暗花明又一村了呢!还有啊,在解决导数零点问题时,可别死脑筋。
就像走路一样,不能只知道走直路,有时候得拐拐弯,说不定就能发现新的风景。
比如说,我们可以试着把问题转化一下,也许就会变得简单很多呢。
再说说计算吧,那可得细心细心再细心,就跟绣花似的,不能有一点马虎。
要是不小心算错了,那可就前功尽弃啦,就像好不容易快挖到宝藏了,结果一锄头下去,把宝藏给弄坏了,那多可惜呀!遇到难题的时候,也别害怕。
你想想,那些厉害的数学家不也是从一个一个难题中走过来的嘛。
咱就把难题当成是一个挑战,挑战成功了,那得多有成就感呀!总之呢,导数零点问题虽然有时候会让人头疼,但只要我们有耐心,有方法,有勇气,就一定能把它拿下!就像那句话说的,世上无难事,只怕有心人!咱可不能被这点小困难给吓住了,要勇往直前,去探索数学世界的奥秘!你说是不是呢?。
导数与函数零点问题解题方法归纳

导数与函数零点问题解题方法归纳导函数零点问题一、方法综述导数是研究函数性质的有力工具,其核心是由导数值的正负确定函数的单调性。
应用导数研究函数的性质或研究不等式问题时,绕不开研究$f(x)$的单调性,往往需要解方程$f'(x)=0$。
若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题。
二、解题策略类型一:察“言”观“色”,“猜”出零点例1】【2020·福建南平期末】已知函数$f(x)=x+ax+\frac{1}{e^{2x}}$1)讨论$f(x)$的单调性;2)若函数$g(x)=x+\frac{1}{e^{-mx}-1}$在$[-1,+\infty)$有两个零点,求$m$的取值范围。
分析】1)首先求出函数的导函数因式分解为$f'(x)=(x+a+1)(x+1)e^{-2x}$,再对参数$a$分类讨论可得:①当$a=0$时,$f'(x)=(x+1)e^{-2x}$,当且仅当$x=-1$时,等号成立。
故$f(x)$在$(-\infty,+\infty)$为增函数。
②当$a>0$时,$-10$得$x-1$,由$f'(x)<0$得$-a-1<x<-1$;所以$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数。
③当$aa+1$,由$f'(x)>0$得$x>-a-1$或$x<-1$,由$f'(x)<0$得$-1<x<-a-1$;所以$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。
综上,当$a=0$时,$f(x)$在$(-\infty,+\infty)$为增函数;当$a>0$时,$f(x)$在$(-\infty,-a-1)$,$(-1,+\infty)$为增函数,在$-a-1,-1$为减函数;当$a<0$时,$f(x)$在$(-\infty,-1)$,$-a-1,+\infty$为增函数,在$-1,-a-1$为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.已知函数f(x)=axsinx- (a>0),且在 上的最大值为 .
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.
13.已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
(1)求a的取值范围;
(Ⅱ)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.
例2.设函数f(x)=(x+1)ln(x+1).若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.
零点存在问题
例1.设 ,函数 .求证: 在 上仅有一个零点.
例2.设函数 ( 为常数, 是自然对数的底数).
A.f(a)<f(1)<f(b)B.f(a)<f(b)<f(1)
C.f(1)<f(a)<f(b)D.f(b)<f(1)<f(a)
二、填空题
6.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.
7.函数f(x)= x3-x2-3x-1的图象与x轴的交点个数是________.
导数的零点问题
1.若函数 在 上单调递增,则 的取值范围是().
A. B. C. D.
2若函数 在其定义域的一个子区间 内不是单调函数,则实数 的取值范围是()
A. B. C. D.
含参函数的单调性
【例题精讲】
例1.已知函数f(x)=ax﹣lnx,g(x)=eax+3x,其中a∈R.
(Ⅰ)求f(x)的极值;
(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.
8.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.
三、解答题
9.(武汉模拟)已知函数f(x)=2lnx-x2+ax(a∈R).
(1)当a=2时,求f(x)的图象在x=1处的切线方程;
(2)若函数g(x)=f(x)-ax+m在 上有两个零点,求实数m的取值范围.
课后巩固
1.已知函数 在区间 上有最大值,则实数 的取值范围是()
A. B. C. D.
2.若函数 在 上是增函数,则实数 的取值范围是()
A. B. C. D.
3.设点P在曲线 上,点Q在曲线 上,则 的最小值为()
A. B. C. D.
4.若直线 是曲线 的切线,也是曲线 的切线,则b=
5.已知 为偶函数,当 时, ,则曲线 在点(1,2)处的切线方程是
6.曲线 +2在点(0,3)处的切线方程为:
7.设函数 上可导,且 ,则 =
8.已知 为偶函数,当x<0时, ,则曲线 在点(1,-3)处的切线方程是
9.若曲线 上点P处的切线平行于直线 ,则点P的坐标是
10.在平面直角坐标系xOy中,若曲线 ,过点P(2,-5),且该曲线在点P出的切线方程与直线 平行,则a+b值是
(Ⅰ)当 时,求函数 的单调区间;
(Ⅱ)若函数 在 内存在两个极值点,求 的取值范围.
1.曲线y=xex+1在点(0,1)处的切线方程是()
A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0
2.曲线y=e-2x+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为()
A. B. C. D.1
3.曲线y=xlnx在点(e,e)处的切线与直线x+ay=1垂直,则实数a的值为()
A.2 B.-2C. D.-
4.已知y=f(x)为R上的可导函数,当x≠0时,f′(x)+ >0,若g(x)=f(x)+ ,.0D.0或2
5.已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)=lnx+x-2的零点为b,则下列不等式中成立的是()