第3章_基本几何体视图解析
空间几何体的直观图与三视图知识点归纳总结

变式2 利用斜二测画法, 一个平面图形的直观图时边长为1的正方形, 如图8-11所示,则该平面图形的面积为()
A. B.2 C. D. 4
题型2.直视图 三视图
思路提示
已知直观图描绘三视图的原则是:
先看俯视图, 观察几何体的摆放姿态, 再看正视图与侧视图同高, 正视图与俯视图同长, 侧视图与俯视图同宽.
A. B. C. D.
变式3 若几何体的三视图如图8-35所示, 则该几何体的体积是().
A. B. C. D.
例8.13一个几何体的三视图及其尺寸(单位:cm)如图8-36所示,
则该几何体的侧面积为cm2.
分析由三视图是2个三角形和1个矩形, 可知该几何体是正四棱锥.
解析先看俯视图定底面——正四棱锥的底面, 再结合正视图和俯视图, 将中心 “拔地而起”得直观图, 如图8-37所示, 再由口诀知数据, 且可知斜高 ,所以几何体的侧面积 .
故选C.
变式1 (2012湖北理4)已知某几何体的三视图如图8-54所示,则该几何体的体积为( ).
A. B. C. D.
例8.17 如图8-55所示为由长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块的块数为( ).
A.3块B4块C.5块D.6块
分析 先看俯视图,从下往上“拔地而起”.
解析 先看俯视图定底,再结合正视图和侧视图,从下往上堆积可知其直观图,如图8-56所示. 故选B.
变式2 将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体, 则该几何体的左视图为().
变式3 已知棱长为1的正方体的俯视图是一个面积为1的正方形, 则该正方体的正视图的面积面积不可能等于()
A. 1 B. C. D.
2021年高考数学高分套路 空间几何体三视图(解析版)

A. 3
【答案】B
B. 2 3
C. x1 x2
D.4
【解析】由题意可得,侧视图是个矩形,由已知,底面正三角形的边长为 2,所以其高为 3 ,即侧视图的 宽为 3 ,又三棱柱的高为 2,即侧视图的长为 2,所以三棱柱侧视图的面积为 2 3 .故选 B 2.如图,在长方体 ABCD-A1B1C1D1 中,点 P 是棱 CD 上一点,则三棱锥 P-A1B1A 的侧视图是( )
2
考向三 三视图知二选三 【例 3】 如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )
【答案】 B 【解析】 由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图 的直径可知其侧视图为 B,故选 B.
【套路总结】 三视图问题的常见类型及解题策略 (1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表 示. (2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结 合空间想象将三视图还原为实物图. (3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形 状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分 三视图是否符合. 【举一反三】 1、一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为( )
四.空间几何体的三视图 1.三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.具体包括: (1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度; (2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度; (3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度. 2.三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等
1.2.3空间几何体的直视图解析

△A’B’C’的面积为
6a 16
。
2、已知一个水平放置的平面图形的斜二测直观图是一
个底角为 45o,腰和上底均为1的等腰梯形,则这个平
面图形的面积为 2 2 。
3、已知△ABC的平面直观图△A’B’C’是边长为a的
正三角形,求△ABC的面积 。
2020年10月9日星期五1时13分53秒 云在漫步
课堂练习 : P19 1(2) P20 4
课后作业 : P21 4,5
2020年10月9日星期五1时13分53秒 云在漫步
斜二测画法的步骤(画平面图形直观图)
(1)在已知图形中取互相垂直的x轴和y轴,两轴 相交于O点.画直观图时,把它画成对应的x’轴、 y’轴,两轴交于O’,使 x'Oy' 45 (或135 ) , 它们确定的平面表示水平平面.
(2)已知图形中平行于x轴或y轴的线段,在直观 图中分别画成平行于x’轴或y’轴的线段.
X’,Y’ 轴,两轴相交于点 O’ ,使 x'oy' 45o
y
F
ME
y'
A
O
D
x
O
x'
B NC
2020年10月9日星期五1时13分50秒 云在漫步
(2)以O’为中点,在x’上取A’D’=AD,在y’轴上取 M’N’= 1 MN,以点N’为中点,画B’C’平行于x’轴, 并且等于2BC;再以M’为中点,画E’F’平行于x’轴, 并且等于EF. y
2020年10月9日星期五1时13分49秒 云在漫步
图片都是空间图形在平面上的反映,通过对图 片的研究可以了解空间图形的一些性质和特征.
三视图是用平面图形表示空间图形的一种重要 方法,但三视图的直观性较差,因此有必要绘制空 间图形的直观图.
经典:高中数学(超全面的)-三视图课件

3.右图是由一些相同的小正方体构成的几何体的三视图,则
构成这个几何体的小正方体的个数是【 D 】
A.5
B.6
C.7
D.8
11
122 1
47
下列是一个物体的三视图,请描述出它的形 状
主视图 左视图
俯视图
48
我思我进步
(2).右图是由一些相同的小正方体构成的几何
体的三视图,则构成这个几何体的小正方体的
上部圆锥侧面积
下部圆柱侧面积
圆柱底面积
=πa· 2a+2πa·2a+πa2=(5+ 2)πa2.
84
10、
❖ (文)(2010·湖南文,13)如下图中的三个直 角三角形是一个体积20cm3的几何体的三 视图,则h=________ cm.
❖ [答案] 4
85
[解析] 该几何体是一个底面为直角三角形、一条侧 棱垂直于底面的三棱锥,如图,V=13×12×5×6×h=20, ∴h=4 cm.
(超全面) 三视 图
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。
1
猜 猜 他 们 是 什 么 关 系 ?
2
看 问 题 不 能 只 看 单 方 面
3
4
几种基本几何体三视图 1.圆柱、圆锥、球的三视图
知识
回顾
·
5
1、球的三视图 2、圆柱的三视图
3、圆锥的三视 图
6
柱、锥、台、球的三视图
26
解法二:
不用摆出这个几何体,你能画出 这个几何体的主视图与侧视图吗?
21
思考方法
12
先根据俯视图确定正视图有 列,再根据数字确定每列的方块 有 个。(取最多个数)
正视图
中考数学 题型02 简单几何体的三视图(解析版)

备考2020年中考一轮复习点对点必考题型题型02 简单几何体的三视图考点解析1.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:2.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.五年中考1.(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( )A.B.C.D.【点拨】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.2.(2018•成都)如图所示的正六棱柱的主视图是( )A.B.C.D.【点拨】根据主视图是从正面看到的图象判定则可.【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.3.(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看一层三个小正方形,故选:C.4.(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )A.B.C.D.【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】解:从上面看易得横着的“”字,故选:C.5.(2015•成都)如图所示的三视图是主视图是( )A.B.C.D.【点拨】根据原图形得出其主视图,解答即可.【解析】解:A、是左视图,错误;B、是主视图,正确;C、是俯视图,错误;D、不是主视图,错误;故选:B.一年模拟1.(2019·锦江一诊)有一透明实物如图,它的主视图是( )A.B.C.D.【点拨】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解析】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.2.(2019·成华一诊)如图所示的几何体,它的左视图是( )A .B .C .D .【点拨】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解析】解:如图所示的几何体的左视图为:.故选:D .3.(2019·武侯一诊)如图所示的支架(一种小零件)的两个台阶的高度和宽度分别相等,则它的主视图为( )A .B .C .D .【点拨】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解析】解:从正面看去,是两个有公共边的矩形,如图所示:故选:D .4.(2019·成华二诊)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.(2019·青羊一诊)观察下列几何体,主视图、左视图和俯视图都是矩形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.6.(2019·青羊二诊)图中三视图对应的正三棱柱是( )A.B.C.D.【点拨】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解析】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.7.(2019·武侯二诊)下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解析】解:A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选:C.8.(2019·锦江二诊)如图,该立体图形的俯视图是( )A.B.C.D.【点拨】根据几何体的三视图,即可解答.【解析】解:如图所示的立体图形的俯视图是C.故选:C.9.(2019·高新一诊)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.10.(2019·武侯二诊)如图所示的几何体的左视图是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看,得到的视图是A.故选:A.精准预测1.如图所示几何体的左视图正确的是( )A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从几何体的左面看所得到的图形是:故选:A.2.下列立体图形中,主视图是三角形的是( )A.B.C.D.【点拨】根据从正面看得到的图形是主视图,可得图形的主视图.【解析】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.3.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .【点拨】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B .4.如图所示几何体,从左面看是( )A .B .C .D .【点拨】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.【解析】解:左面位置上下两个正方形,右面的下方一个正方形的图形是.故选:B .5.下列几何体中,从正面看(主视图)是长方形的是( )A .B .C .D .【点拨】主视图是分别从物体正面看,所得到的图形.【解析】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B .6.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有( )A.7盒B.8盒C.9盒D.10盒【点拨】由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,进而求出答案,做出选择.【解析】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.7.如图是由小立方块搭成的几何体,则从左面看到的几何体的形状图是( )A.B.C.D.【点拨】从左面看到的图形是两列,其中第一列有两个正方形,第二列有1个正方形,做出判断即可.【解析】解:从左面正投影所得到的图形为选项B.故选:B.8.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的( )A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变【点拨】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.10.如图,下列选项中不是正六棱柱三视图的是( )A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.11.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A.B.C.D.【点拨】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.12.如图,下列水平放置的几何体中,左视图不是矩形的是( )A.B.C.D.【点拨】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解析】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.13.如图所示的支架是由两个长方体构成的组合体,则它的左视图是( )A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:从左边看下边是一个中间为虚线的矩形,故选:A.14.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为( )A.B.C.D.【点拨】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解析】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.15.如图所示的几何体,从上面看得到的图形是( )A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个六边形,中间为圆.故选:D.。
湘教版九年级下册数学精品教学课件 第3章 投影与视图 小结与复习 (2)

例8 由一些大小相同的小正方体组成的几何体 三视图如图所示,那么,组成这个几何体的小正方体 的个数是( )
A.7
B.6
C.5
D.4
【解析】C 由主视图和俯视图可知,俯视图右边 两个方格的位置上各放置了一个正方体,所以在这两 个方格里分别填入数字 1 (如图);
由主视图和俯视图又知,俯视图左边一列上两个方
MO OP
即 MA 1.6 , 解得 MA = 5. 20+MA 8
同理,由 △NBD ∽ △NOP,
可得 NB = 1.5.
所以小明的身影变短了 5-1.5 = 3.5 (米).
考点三 圆锥的相关计算 例3 圆锥的侧面积为 6π cm2,底面圆的半径为 2 cm, 则这个圆锥的母线长为___3____cm.
1. 如图,小明与同学合作利用太阳光测量旗杆的高度, 身高 1.6 m 的小明落在地面上的影长为 BC = 2.4 m.
(1) 请你在图中画出旗杆在同一时刻阳光照射下落在地 面上的影子 EG;
(2) 若小明测得此刻旗杆
落在地面的影长 EG = 16 m,
请求出旗杆 DE 的高度.
解: (1) 影子 EG 如图所示. (2) ∵ DG∥AC, ∴∠G =∠C. ∴ Rt△ABC ∽ △Rt△DGE. ∴ AB BC ,即 1.6 2.4, DE EG DE 16
发出的,像这样的光线所形成的投影称为中心投影.
4. 平行投影与中心投影的区别与联系:
平行投影 中心投影
区别
投影线互相平行, 形成平行投影
投影线发自一点, 形成中心投影
联系
都是物体在光线的 照射下,在某个平 面内形成的影子. (即都是投影)
正投影
(1) 概念:投影线垂直于投影面产生的投影叫做正投影. (2) 性质:当物体的某个面平行于投影面时,这个面的
三视图全解

《立体图形》三视图知识点及解题思维全解知识点及解题思维:三视图:①理解三视图中包含立体图形的行、列、层②能从俯视图反推立体图形,并画出其他视图一.基础:画三视图(观察能力、空间想像力)主视图(从前往后看)看到的是列(每行个数的最大数)和层(每列上的最大层数),与行无关。
层,每列上的层数列数左视图(从左往右看)看到的是行(每列个数的最大数)和层(每行上的最大层数),与列无关。
从后往前排列层(每行层数的最大值)行(每列个数中最大值)俯视图(从上往下看)看到的是最底层的每行和每列的数字,与层无关。
最底层每行的个数最底层每列的个数二.题型(一)简单题:根据俯视图,画主视图与左视图(抓住三种视图的特点即可) 例:如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字 表示该位置的小立方块的个数。
画出它的主视图与左视图。
解题思路:俯视图能确定立体图的底面的行、列,可知这个几何体有三行三列。
上面的数字表示该列每个上面的层数。
那么从前往后看(主视图),最左边的是三个,中间是2个,最右边是4个,即从左往右看(左视图),最左边的是2个,中间的是3个,右边的是4个层行列24132(二)根据两种视图,判别立体图形的形状及组成数目。
1.中等题(空间想像力+逆向推理能力):题目告诉俯视图。
解题思路:在俯视图上标上表示每个方块位置上的层数的数字。
例:下面是几何体的主视图和俯视图,请求出这个几何体最多要向个小立方体块?最少要几个小立方体块?俯视图主视图11131131133333最多块数最少块数解题思路:从俯视图开始分析,可以几何体最底层有三行三列;结合主视图看,第一列的层数最多是3层,第二列的层数最多是3层,最三列的层数最多是1层。
所以要想组成的小方块数最多,可以让每列中的任一层数都是最大值;要想组成的小方块数最少,必须让每一列层数中最多出现一个最大值,而其余每列上的层数都为1。
即:2.高难题(空间想像力+逆向推理能力+分类讨论):题目未告诉俯视图 解题思路:先根据其它两种视图,画出俯视图,再标上表示层数的数字。
立体几何和三视图

立体几何和三视图一、知识点回顾1、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
▲长对正,高平齐 ,宽相等2、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V S h r h π==圆柱 13V S h=锥 h r V 231π=圆锥'1()3V S S h =+台'2211()()33V S S h r rR R h π=++=++圆台二、专题讲解1、空间角问题(1)直线与直线所成的角 ①两平行直线所成的角:规定为 0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为 0。
②平面的垂线与平面所成的角:规定为90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年10月15日
3.1 几类基本几何体的投影
柱、锥、球、环等简单的形体称为基本几何体,简称基本体。 如图3-1所示的是由基本体组成的简单零件。
2020年10月15日
图3-1 由基本体组成的机件
3.1 几类基本几何体的投影
❖ 3.1.1 平面立体的投影
➢ 1.棱柱
▪ (1)形体分析
常见的棱柱为直棱柱, 它的上底面和下底面是两个 全等且互相平行的多边形, 称为特征面,各棱面为矩形, 侧棱垂直于底面,如图3-2 (a)所示。
线。
图3-2 正六棱柱的投影
2020年10月15日
3.1 几类基本几何体的投影
❖ 3.1.1 平面立体的投影
➢ 1.棱柱 ▪ (3)投影特性
① 在底面平行的投影面上的投影是多边形,反映底面的真实形状,各 棱面积聚成多边形的边,这个视图就是棱柱体的特征视图。
② 另两个投影都是由粗实线或粗实线和虚线组成的矩形线框,它们是 棱柱体的一般视图。
① 求点M:求点M 的作图方法和步骤 如图3-7(a)所示。 由于点M所属棱面 △SAC的V面投影 看不见,所以其正 面投影不可见,写 成(m')。
2020年10月15日
图3-7 求作三棱锥上的点
3.1 几类基本几何体的投影
② 求点N:求点N有两种作辅助线的方法,具体作图方法和步骤如图37(b)、(c)所示。由于点N所属棱面△SAB在H面和W面上的投影是 可见的,所以点n和n"也是可见的。
图3-3 不 同方位的 棱柱体及 其三视图
2020年10月15日
3.1 几类基本几何体的投影
❖ 3.1.1 平面立体的投影
➢ 1.棱柱 ▪ (4)绘制视图
一般先画反映底面真实形状的特征视图,然后再画各棱面的投 影,并判断可见性。可见的棱线画粗实线,不可见的则画虚线。
▪ (5)棱柱表面取点、取线
由于直棱柱的表面都处于特殊位置,所以棱柱表面上点、线的 投影均可利用平面的积聚性来作图。在判别可见性时,若平面处于 可见位置,则该面上点、线的同名投影也是可见的;反之,则为不 可见。在平面积聚投影上的点、线的投影,可以不必判别其可见性。
2020年10月15日
机械制图
主 编:白大茹
第3章 基本几何体视图
1 几类基本几何体的投影 2 立体表面的交线 3 基本几何体轴测图的画法
2020年10月15日
3.1 几类基本几何体的投影
❖目的:掌握平面立体、回转体的投影规 律及三视图特征。
❖重点:棱柱、棱锥的投影;圆柱、圆锥、 圆球和圆环的投影。
2020年10月15日
图3-6 棱锥体及其三视图
3.1 几类基本几何体的投影
❖3.1.1 平面立体的投影
➢ 2.棱锥
▪ (4)绘制视图
一般先画反映底面真实形状的特征视图,其次画出底面的其他 两个投影,然后定出锥顶的位置,最后将锥顶和多边形的各顶点连 成棱线,并判断可见性。
▪ (5)棱锥表面取点、取线
凡属于特殊位置表面上的点,可利用投影的积聚性直接求得; 属于一般位置表面上的点可通过在该面上作辅助线的方法求得。
2020年10月15日
3.1 几类基本几何体的投影
【例3-2】如图3-7所示,已知三棱锥的棱面△SAC上点M的水平 面投影m和棱面△SAB上点N的正面投影n',求作M、N两点 的其余投影。
2020年10月15日
3.1 几类基本几何体的投影
【例3-1】已知正六棱柱上A、B、C、D四点的一个投影如图3-4(a)所示, 求这四个点的另两个投影。
作图:由于点A、 B的正面投影为可 见,其水平投影在 六边形的前面;点 C的水平投影为可 见,所以它应在六 棱柱的顶面上;点 D的侧面投影为可 见,因此,它应在 正六棱柱的左面。 具体作图步骤如图 3-4(b)、(c) 所示。
图3-5 正三棱锥的投影
Байду номын сангаас
2020年10月15日
3.1 几类基本几何体的投影
❖3.1.1 平面立体的投影
➢ 2.棱锥
▪ (2)投影分析 ▪ 侧棱面△SAB和△SBC是一
般位置直线。
▪ 后棱面△SAC是侧垂面。 ▪ 底面△ABC是水平面。 ▪ SB是侧平线,它在侧面上的
投影反映棱线的实长;SA、 SC倾斜于三个投影面,它在 三个投影面上的投影均为缩 短了的直线。
上底面和下底面为正多 边形的直棱柱,称为正棱柱。
图3-2 正六棱柱的投影
2020年10月15日
3.1 几类基本几何体的投影
❖ 3.1.1 平面立体的投影
➢ 1.棱柱 ▪ (2)投影分析
如图3-2(b)所示,将 正六棱柱放在三投影面体系 中,使其底面平行于H面,并 使其一个棱面平行于V面,然 后向三个投影面投影。
图3-5 正三棱锥的投影
2020年10月15日
3.1 几类基本几何体的投影
❖3.1.1 平面立体的投影
➢ 2.棱锥
▪ (3)投影特性
① 在底面平行的投影面上的投影是多边形,反映底面的真实形状,并 用棱线分成多个三角形,这是棱锥的特征视图。
② 另两个投影都是由粗实线或粗实线和虚线组成的三角形线框,它们 是棱锥的一般视图。
图3-4 求正六棱柱表面上的点
2020年10月15日
3.1 几类基本几何体的投影
【例3-1】已知正六棱柱上A、B、C、D四点的一个投影如图3-4(a)所示, 求这四个点的另两个投影。
判断可见性:由于 点A、B在正六棱 柱的左面和前面, 所以它们的侧面投 影为可见;又由于 点D在正六棱柱的 左面和后面,所以 它的正面投影d'为 不可见,加括号表 示为(d')。
图3-4 求正六棱柱表面上的点
2020年10月15日
3.1 几类基本几何体的投影
❖ 3.1.1 平面立体的投影
➢ 2.棱锥
▪ (1)形体分析
棱锥的底面为多边形,各 侧面为若干具有公共顶点的三 角形,该点称为锥顶。从锥顶 到底面的距离叫做锥高。当棱 锥底面为正多边形,各侧面是 全等的等腰三角形时,称为正 棱锥。如图3-5(a)所示是一 个正三棱锥的立体图
图3-2 正六棱柱的投影
2020年10月15日
3.1 几类基本几何体的投影
❖ 3.1.1 平面立体的投影
➢ 1.棱柱
▪ (2)投影分析 投影后得到三个视图如图3-2
(c)所示。 P面是正平面。同理,可分析后面。 Q面是铅垂面。同理,可分析其余三
个侧棱面。
R面是水平面。同理,可分析下面。 AB是铅垂线。同理,可分析其他棱