2015-2016学年四川省成都市树德中学高一下学期期末考试数学(解析版)

合集下载

2015-2016学年四川省成都市树德中学高三(下)入学数学试卷(文科)(解析版)(解析版)

2015-2016学年四川省成都市树德中学高三(下)入学数学试卷(文科)(解析版)(解析版)

2015-2016学年四川省成都市树德中学高三(下)入学数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知复数z满足z=,那么z的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(5分)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1}B.{0}C.{0,1}D.∅3.(5分)已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)4.(5分)最近,国家统计局公布:2015年我国经济增速为6.9%,创近25年新低.在当前经济增速放缓的情况下,转变经济发展方式,淘汰落后产能,寻找新的经济增长点是当务之急.为此,经济改革专家组到基层调研,由一幅反映某厂6年来这种产品的总产量C与时间t(年)的函数关系图初步了解到:某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则他们看到的图是()A.B.C.D.5.(5分)在单位圆x2+y2=1内随机均匀产生一点(x,y),使得成立的概率是()A.B.C.D.6.(5分)如图,一个封闭的长方体,它的六个表面各标出A、B、C、D、E、F这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已表明,则字母A、B、C对面的字母依次分别为()A.D、E、F B.F、D、E C.E、F、D D.E、D、F7.(5分)若a<b<0,则下列不等式中不能成立的是()A.>B.>C.|a|>|b|D.a2>b28.(5分)命题p:∃b∈R,使直线y=﹣x+b是曲线y=x3﹣3ax的切线.若¬p为真,则实数a的取值范围是()A.B.C.D.9.(5分)已知抛物线y2=12x的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则A点的横坐标为()A.2 B.2C.3 D.410.(5分)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则P﹣ABCD体积的最大值是()A.B.16 C.48 D.144二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)的值是.12.(5分)双曲线与椭圆的焦点相同,则双曲线的离心率是.13.(5分)已知sin(α+)=,则sin2α=.14.(5分)在△ABC中,若,则边AB的长等于.15.(5分)已知f(x)是定义在R上以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)数列{a n}的各项全为正数,且在如图所示的算法框图图中,已知输入k=2时,输出;输入k=5时,输出.(Ⅰ)求{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和T n.17.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,试证明AF⊥平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点M,使得EM⊥平面PCD?(直接给出结论,不需要说明理由)18.(12分)某个团购网站为了更好地满足消费者,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.(1)分别求第三,四,五组的频率;(2)该网站在得分较高的第三,四,五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的两个产品均来自第三组的概率.19.(12分)将函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象向右平移个单位后得到g(x)的图象,已知g(x)的部分图象如图所示,该图象与y轴相交于点F(0,1),与x轴相交于点P,Q,点M为最高点,且△MPQ的面积为.(Ⅰ)求函数g(x)的解析式;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,g(A)=1,且a=,求△ABC面积的最大值.20.(13分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.21.(14分)已知函数f(x)=(x∈(0,+∞)).(Ⅰ)求函数f(x)的极值;(Ⅱ)若对任意的x≥1,都有f(x)≥k(x+)+2,求实数k的取值范围.2015-2016学年四川省成都市树德中学高三(下)入学数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)(2016春•成都校级月考)已知复数z满足z=,那么z的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】利用复数的运算法则和几何意义即可得出【解答】解:∵z===1+i,∴=1﹣i,在复平面上对应的点(1,﹣1)位于第一象限.故选:D.【点评】本题考查了复数的运算法则和几何意义,属于基础题.2.(5分)(2014•河南模拟)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1}B.{0}C.{0,1}D.∅【分析】当a=0时,集合A={x|ax=1}=∅,满足A⊆B,当a≠0时,集合A={x|ax=1}={},则=0,或=1,解对应方程后,综合讨论结果,可得答案.【解答】解:当a=0时,集合A={x|ax=1}=∅,满足A⊆B;当a≠0时,集合A={x|ax=1}={},由A⊆B,B={0,1}得:=0,或=1,=0无解,解=1得:a=1,综上由a的取值构成的集合为{0,1}故选:C.【点评】本题考查的知识点是集合的包谷关系判断及应用,其中易忽略a=0时,集合A={x|ax=1}=∅,满足A⊆B,而错选A.3.(5分)(2013•揭阳二模)已知点A(﹣1,5)和向量=(2,3),若=3,则点B的坐标为()A.(7,4)B.(7,14) C.(5,4)D.(5,14)【分析】设B(x,y),由得(x+1,y﹣5)=(6,9),求得x、y的值,即可求得点B的坐标.【解答】解:设B(x,y),由得(x+1,y﹣5)=(6,9),故有,解得,故选D.【点评】本题主要考查两个向量的坐标形式的运算,属于基础题.4.(5分)(2016春•成都校级月考)最近,国家统计局公布:2015年我国经济增速为6.9%,创近25年新低.在当前经济增速放缓的情况下,转变经济发展方式,淘汰落后产能,寻找新的经济增长点是当务之急.为此,经济改革专家组到基层调研,由一幅反映某厂6年来这种产品的总产量C与时间t(年)的函数关系图初步了解到:某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则他们看到的图是()A.B.C.D.【分析】根据年产量的增速判断总产量的增速,根据曲线的切线斜率大小变化进行判断.【解答】解:由于前3年年产量的增长速度越来越快,故当t≤3时,曲线的切线斜率逐渐增大,由于后3年年产量保持不变,故当3<t<6时,曲线的切线斜率不变,且总产量在增大,故选:A.【点评】本题考查了函数图象的意义,属于基础题.5.(5分)(2016春•成都校级月考)在单位圆x2+y2=1内随机均匀产生一点(x,y),使得成立的概率是()A.B.C.D.【分析】在单位圆x2+y2=1内随机均匀产生一点(x,y),其面积为1,使得成立,其区域为单位圆的,即可得出结论.【解答】解:在单位圆x2+y2=1内随机均匀产生一点(x,y),其面积为1,使得成立,其区域为单位圆的,其面积为,∴所求概率为.故选A.【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=N(A)÷N求解.6.(5分)(2015•濮阳一模)如图,一个封闭的长方体,它的六个表面各标出A、B、C、D、E、F这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已表明,则字母A、B、C对面的字母依次分别为()A.D、E、F B.F、D、E C.E、F、D D.E、D、F【分析】本题可从图形进行分析,结合正方体的基本性质,得到各个面上的字母,即可求得结果.【解答】解:第一个正方体已知A,B,C,第二个正方体已知A,C,D,第三个正方体已知B,C,E,且不同的面上写的字母各不相同,则可知A对面标的是E,B对面标的是D,C对面标的是F.故选D.【点评】本题考查了正方体相对两个面上的字母问题,此类问题可以制作一个正方体,根据题意在各个面上标上字母,再确定对面上的字母,本题是一个基础题.7.(5分)(2015•芝罘区模拟)若a<b<0,则下列不等式中不能成立的是()A.>B.>C.|a|>|b|D.a2>b2【分析】由于a<b<0,利用函数单调性可以比较大小.【解答】解:∵a<b<0,f(x)=在(﹣∞,0)单调递减,所以>成立;∵a<b<0,0>a﹣b>a,f(x)=在(﹣∞,0)单调递减,所以<,故B不成立;∵f(x)=|x|在(﹣∞,0)单调递减,所以|a|>|b|成立;∵f(x)=x2在(﹣∞,0)单调递减,所以a2>b2成立;故选:B.【点评】本题考查了函数单调性与数值大小的比较,属于基础题.8.(5分)(2016春•成都校级月考)命题p:∃b∈R,使直线y=﹣x+b是曲线y=x3﹣3ax的切线.若¬p为真,则实数a的取值范围是()A.B.C.D.【分析】写出命题p的否定,求出f(x)=x3﹣3ax的导函数,得到导函数的范围,结合¬p为真可得关于a的不等式,则a的范围可求.【解答】解:由命题p:∃b∈R,使直线y=﹣x+b是曲线y=x3﹣3ax的切线,得¬p:对任意的实数b,直线y=﹣x+b都不是曲线y=x3﹣3ax的切线.由¬p为真.设f(x)=x3﹣3ax,求导函数,可得f′(x)=3x2﹣3a∈[﹣3a,+∞),对任意的实数b,直线y=﹣x+b都不是曲线y=x3﹣3ax的切线,∴﹣3a>﹣1,得a<.即实数a的取值范围为a.故选:A.【点评】本题考查命题的真假判断与应用,考查学生会利用导数求曲线上过某点切线方程,考查直线的斜率与函数的导数的关系,考查计算能力,是中档题.9.(5分)(2016春•成都校级月考)已知抛物线y2=12x的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则A点的横坐标为()A.2 B.2C.3 D.4【分析】确定抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(﹣3,y0),根据|AK|=|AF|,及AF=AB=x0﹣(﹣3)=x0+3,进而可求得A点坐标.【解答】解:∵抛物线C:y2=12x,准线为x=﹣3,∴K(﹣3,0)设A(x0,y0),过A点向准线作垂线AB,则B(﹣3,y0)∵|AK|=|AF|,AF=AB=x0﹣(﹣3)=x0+3,∴由BK2=AK2﹣AB2得BK2=AB2,从而y02=(x0+3)2,即12x0=(x0+3)2,解得x0=3.故选C.【点评】本题主要考查了抛物线的简单性质.考查了学生对抛物线基础知识的熟练掌握.10.(5分)(2012•石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则P﹣ABCD体积的最大值是()A.B.16 C.48 D.144【分析】本题需要借助直二面角的相关知识研究三角形的几何特征,由题设条件知两个直角三角形△PAD 与△PBC是相似的直角三角形,可得出PB=2PA,作PD⊥AB,垂足为D,令AD=t,将四棱锥的体积用t 表示出来,由二次函数求最值可得出正确选项.【解答】解:由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA⊂β,CB⊂β,且DA⊥α,CB⊥α,∴△PAD与△PBC是直角三角形,又∠APD=∠BPC,∴△PAD∽△PBC,又AD=4,BC=8,∴PB=2PA.作PM⊥AB,垂足为M,则PM⊥β,令AM=t∈R,在两个Rt△PAM与Rt△PBM中,PM是公共边及PB=2PA,∴PA2﹣t2=4PA2﹣(6﹣t)2 ,解得PA2=12﹣4t.∴PM=,即四棱锥的高为,底面为直角梯形,S==36∴四棱锥P﹣ABCD的体积V==12=48,即四棱锥P﹣ABCD体积的最大值为48,故选C.【点评】本题考查与二面角有关的立体几何综合题,解答本题,关键是将由题设条件得出三角形的性质、:两邻边的值有2倍的关系,第三边长度为6,引入一个变量,从而利用函数的最值来研究体积的最值,是将几何问题转化为代数问题求解的思想,属中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016春•成都校级月考)的值是.【分析】根据=N和指数、对数的运算性质求出式子的值.【解答】解:∵=N(a>0且a≠1),∴====,故答案为:.【点评】本题考查了指数、对数的运算性质,以及=N的应用,属于基础题.12.(5分)(2016春•成都校级月考)双曲线与椭圆的焦点相同,则双曲线的离心率是2.【分析】求出椭圆的焦点坐标,然后求解双曲线的离心率即可.【解答】解:椭圆的一个焦点(2,0),双曲线与椭圆的焦点相同,c=2,a=1双曲线的离心率为:2.故答案为:2.【点评】本题考查双曲线的离心率与椭圆简单性质的应用,是基础题.13.(5分)(2016春•成都校级月考)已知sin(α+)=,则sin2α=.【分析】首先利用两角和与差公式将已知条件展开,然后两边平方和sin2α+cos2α=1,得出2sinαcosα的值,从而由二倍角公式得出答案.【解答】解:∵sin(α+)=(sinα+cosα)=∴两边平方得,=∴2sinαcosα=﹣故sin2α=故答案为:﹣【点评】本题主要考查了两角和与差公式和二倍角公式,熟练掌握相关公式是解题的关键.14.(5分)(2011秋•镇江期末)在△ABC中,若,则边AB的长等于2.【分析】利用向量的加法法则,可得==,结合,即可求得边AB的长.【解答】解:==∵∴2+2=∴||=2∴边AB的长等于2故答案为:2【点评】本题考查向量的加法,考查向量的数量积,解题的关键是利用向量的加法法则.15.(5分)(2016春•成都校级月考)已知f(x)是定义在R上以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为(﹣1,4).【分析】根据函数的奇偶性和周期性将条件进行转化,利用不等式的解法即可得到结论.【解答】解:∵f(x)是定义在R上的以3为周期的偶函数,∴f(5)=f(5﹣6)=f(﹣1)=f(1),∴由f(1)<1,f(5)=,得f(5)=<1,即﹣1=<0,解得:﹣1<a<4,∴实数a的取值范围为(﹣1,4).故答案为:(﹣1,4).【点评】本题主要考查不等式的解法,利用函数的奇偶性和周期性进行转化是解决本题的关键.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(12分)(2016春•成都校级月考)数列{a n}的各项全为正数,且在如图所示的算法框图图中,已知输入k=2时,输出;输入k=5时,输出.(Ⅰ)求{a n}的通项公式;(Ⅱ)若,求数列{b n}的前n项和T n.【分析】(Ⅰ)模拟程序框图的运行过程,得出该程序运行后输出的S是什么,然后由已知,利用S的表达式,列出方程组求出a1和d,即可求出a n.(Ⅱ)由(Ⅰ)可求b n,利用等比数列的求和公式即可得解.【解答】(本题满分12分)解:(Ⅰ)由框图知:当k=2时,⇒a1a2=3①;当k=5时,,即==,所以a1a5=9②由①②得,(4分)所以,可得:.(6分)(Ⅱ)由(Ⅰ)得,所以.(12分)【点评】本题考查了程序框图的应用问题,也考查了数列求和的应用问题,考查了方程组的解法与应用问题,是综合题.17.(12分)(2016•沈阳校级一模)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形.点E是棱PC 的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,试证明AF⊥平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点M,使得EM⊥平面PCD?(直接给出结论,不需要说明理由)【分析】(Ⅰ)证明:AB∥平面PCD,即可证明AB∥EF;(Ⅱ)利用平面PAD⊥平面ABCD,证明CD⊥AF,PA=AD,所以AF⊥PD,即可证明AF⊥平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上不存在点M,使得EM⊥平面PCD.【解答】(Ⅰ)证明:因为底面ABCD是正方形,所以AB∥CD.又因为AB⊄平面PCD,CD⊂平面PCD,所以AB∥平面PCD.又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,所以AB∥EF.…(5分)(Ⅱ)证明:在正方形ABCD中,CD⊥AD.又因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,所以CD⊥平面PAD.又AF⊂平面PAD所以CD⊥AF.由(Ⅰ)可知AB∥EF,又因为AB∥CD,所以CD∥EF.由点E是棱PC中点,所以点F是棱PD中点.在△PAD中,因为PA=AD,所以AF⊥PD.又因为PD∩CD=D,所以AF⊥平面PCD.…(11分)(Ⅲ)解:不存在.…(14分)【点评】本题考查线面平行的性质,平面与平面垂直的性质,考查线面垂直,考查学生分析解决问题的能力,属于中档题.18.(12分)(2016春•大庆校级月考)某个团购网站为了更好地满足消费者,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.(1)分别求第三,四,五组的频率;(2)该网站在得分较高的第三,四,五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的两个产品均来自第三组的概率.【分析】(1)利用频率分布直方图能分别求出第三,四,五组的频率.(2)列出所含基本事件总数,找到满足条件的基本事件,根据古典概率公式计算即可【解答】(1)解:第三组的频率是0.150×2=0.3;第四组的频率是0.100×2=0.2;第五组的频率是0.050×2=0.1(2)设“抽到的两个产品均来自第三组”为事件A,由题意可知,分别抽取3个,2个,1个.不妨设第三组抽到的是A1,A2,A3;第四组抽到的是B1,B2;第五组抽到的是C1,所含基本事件总数为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1}所以【点评】本题主要考查了频率分布直方图和古典概型的概率问题,关键是列举出基本事件,属于基础题19.(12分)(2016春•成都校级月考)将函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象向右平移个单位后得到g(x)的图象,已知g(x)的部分图象如图所示,该图象与y轴相交于点F(0,1),与x轴相交于点P,Q,点M为最高点,且△MPQ的面积为.(Ⅰ)求函数g(x)的解析式;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,g(A)=1,且a=,求△ABC面积的最大值.【分析】(Ⅰ)由题意可知g(x)=2sin[ω(x﹣)+φ],根据三角形的面积公式,即可求出T,再根据于g(0)=1,求出φ,问题得以解决,(Ⅱ)先根据g(A)=1,求出A,再根据余弦定理和三角形面积公式,即可求出答案.【解答】解:(Ⅰ)由题意可知g(x)=2sin[ω(x﹣)+φ],由于S△ABC=•2•|PQ|=,则|PQ|==,∴T=π,即ω=2,又由于g(0)=2sin(φ﹣)=1,且﹣<φ﹣<,则φ﹣=,∴φ=,即g(x)=2sin[2(x﹣)+]=2sin(2x+).(Ⅱ)g(A)=2sin(2A+)=1,2A+∈(,)则2A+=,∴A=,由余弦定理得b2+c2﹣2bccos A=a2=5,∴5=b2+c2﹣bc≥bc,∴S△ABC=bcsin A≤,当且仅当b=c=时,等号成立,故S△ABC的最大值为.【点评】本题考查了三角形函数的解析式的求法和余弦定理和三角形的面积公式,属于中档题.20.(13分)(2016•河南模拟)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x ﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.21.(14分)(2015秋•福州校级期中)已知函数f(x)=(x∈(0,+∞)).(Ⅰ)求函数f(x)的极值;(Ⅱ)若对任意的x≥1,都有f(x)≥k(x+)+2,求实数k的取值范围.【分析】(Ⅰ)求出导数,f'(x)=0解得x=e.再解f'(x)>0或<0,得到得到区间,即可得到极值;(Ⅱ)等价于lnx﹣kx2﹣2x﹣3k≥0,设函数g(x)=lnx﹣kx2﹣2x﹣3k(x≥1),求出导数,结合二次函数的图象,即可得到k的范围.【解答】解:(Ⅰ),f'(x)=0解得x=e.f'(x)>0解得0<x<e,此时f(x)为增函数,f'(x)<0解得e<x,此时f(x)为减函数.所以f(x)在x=e取极大值.(Ⅱ)等价于lnx﹣kx2﹣2x﹣3k≥0,设函数g(x)=lnx﹣kx2﹣2x﹣3k(x≥1),所以g(1)≥0..当时,设h(x)=﹣2kx2﹣2x+1,其开口向上,对称轴,h(1)=﹣2k﹣1≥0,所以h(x)≥0恒成立.所以g'(x)≥0恒成立,即g(x)在x≥1上为增函数,所以g(x)≥g(1)=0.所以实数k的取值范围为.【点评】本题考查导数的综合应用:求单调区间和求极值,考查不等式恒成立问题转化为求函数的单调性,运用单调性求解,属于中档题.2016年11月6日。

-2016学年四川省成都高一下学期末考试试卷-数学-word版含答案

-2016学年四川省成都高一下学期末考试试卷-数学-word版含答案

成都九中2015—2016学年度下期期末考试高一数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)2.本堂考试120分钟,满分150分.3.答题前, 考生务必将自己的姓名、学号、填写在答题卡上,并使用2 B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题一、选择题:(本大题共12小题,每小题5分,共60分)1.()()()240x f x x x+=>函数的最小值为.2A .3B .22C .4D2.{}()1181,3,n n n a a a a a +=-=-在数列中,则等于.7A - .8B - .22C - .27D3.()5sin ABABC C∆=若外接圆的半经为,则.5A .10B .15C .20D21.2A a 21.2B a - 2.C a 2.D a -5.{}()()412155,cos n a a a π+=若等差数列的前项和为则1.2A -3.2B 1.2C 3.2D ±6.()1cos()sin244παα-==已知,则31.32A 31.32B - 7.8C - 7.8D7.O ABC k R ∆∈已知是所在平面内一点,若对任意,恒有....A B C D 直角三角形钝角三角形锐角三角形不确定8.在三视图如图的多面体中,最大的一()个面的面积为.22A .5B.3C .25D()32x y +则的最小值是 5.3A 8.3B .16C .8D10.P ABCD PAD ABCD -如图,在四棱锥中,侧面为正三角形,底面是边2,PAD ABCD M ⊥长为的为正方形,侧面底面为 ,ABCD MP MC =底面内的一个动点,且满足则点()M ABCD 在正方形内的轨迹的长度为.5A .22B .C π 2.3D π11.,,,,,,,,,,,p q a b c p q p a q p b c q ≠给定正数其中若是等比数列,是等差 ()220bx ax c -+=数列,则一元二次方程.A 有两个相等实根 .B 无实根.C 有两个同号相异实根 .D 有两个异号实根12.11111111,ABCD A B C D M N Q D C A D BC -正方体中,,,分别是棱,的 1P BD 中点,点在对角线上,给出以下命题:1//;P BD MN APC ①当在上运动时,恒有面12,,;3BP A P M BD =②若三点共线,则112//;3BP C Q APC BD =③若,则面 0111603P AB A C ④过点且与直线和所成的角都为的直线有且只有条.()其中正确命题的个数为.A 1 .B 2 .C 3 .D 4第Ⅱ卷 非选择题D 1C 1B 1A 1PQN MD C BAMDBP二、填空题:(本大题5个小题,每小题5分,共20分) 13.0cos1402sin130sin10+=____________14.如图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成,设 m m 36 m x y 每间虎笼的长为,宽为,现有长的钢筋 xy=网材料,为使每间虎笼面积最大,则____ 15.2,P ABCD -如图,正四棱锥的体积为底面积6,E PC PA 为为侧棱的中点,则异面直线与 ___________BE 所成的角为16.,,a b c 已知为正实数,给出以下结论:2230,3;b a b c ac-+=①若则的最小值为228,24;a b ab a b ++=+②若则的最小值为()4,2a a b c bc a b c +++=++③若则的最小为2224,a b c ab bc ++=+④若则的最大值为 其中正确结论的序号是________________三、解答题(本大题共6个小题,共70分)17.(10分),,,,,ABC A B C a b c ∆在中,角的对边分别为已知向量()(),,.m a c b n a c b a =+=--与向量互相垂直()()1;2sin sin C A B +求角求的取值范围.18.(12分)ABCD PQMN 如图,在四面体中,截面是平行四边形,()1://;PN BCD 求证平面()2PQMN 若截面是正方形,求异PM BD 面直线与所成的角.N MQPDCBA y y yy y x xxyx19.(12分){}()11.1,342n n n n a S a a S n -==+≥已知数列的前项和为若.(){}1n a 求数列的通项公式;(){}2212log ,,,72n n n n n n n a bb c n N c T +++==∈令其中记数列的前项和为. 2.2n nn T ++求的值20.(12分),4,3,P ABCD PA ABCD AB BC -⊥==如图,在四棱锥中,平面05,90,AD DAB ABC E CD =∠=∠=是的中点.()1CD PAE ⊥证明:平面;()2PB PAE 若直线与平面所成的角和PB ABCD 直线与平面所成的角相等, P CD A --求二面角的正切值.21.(12分)()2.f x ax bx c =++已知二次函数()(){}10|34f x x x x >-<<若的解集为,解关于的不等式()2230bx ax c b +-+<.()()2,2x R f x ax b ∈≥+若对任意不等式恒成立,()224a c a a c -+求的最大值.22.(12分)()()()(),,,f x R f f f αβαβαββα∈⋅=⋅+⋅函数满足:对任意都有(){}()()22,2.n n n f a a f n N +==∈且数列满足(){}1n a 求数列的通项公式;()()()121121.n n n n nn n n a a b b c T c c c n N n n b n ++⎛⎫=-==+++∈ ⎪⎝⎭令,,记 ,584n MM n N T +∈<问:是否存在正整数使得当时,不等式恒成立? ;M 若存在,求出的最小值若不存在,请说明理由.成都外国语学校2015—2016学年度下期期末考试高一数学试卷命题人:注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)2.本堂考试120分钟,满分150分.3.答题前, 考生务必将自己的姓名、学号、填写在答题卡上,并使用2 B 铅笔填涂.4.考试结束后,将答题卡交回.第Ⅰ卷 选择题一、选择题:(本大题共12小题,每小题5分,共60分)1.()()()240x f x x x+=>函数的最小值为D.2A .3B .22C .4D2.{}()1181,3,n n n a a a a a +=-=-在数列中,则等于C.7A - .8B - .22C - .27D3.()5sin ABABC C∆=若外接圆的半经为,则B .5A .10B .15C .20DB21.2A a 21.2B a - 2.C a 2.D a -5.{}()()412155,cos n a a a π+=若等差数列的前项和为则A1.2A -3.2B 1.2C 3.2D ±6.()1cos()sin244παα-==已知,则C31.32A 31.32B - 7.8C - 7.8D7.O ABC k R ∆∈已知是所在平面内一点,若对任意,恒有A....A B C D 直角三角形钝角三角形锐角三角形不确定8.在三视图如图的多面体中,最大的一()个面的面积为C.22A .5B.3C .25D()32x y +则的最小值是D 5.3A 8.3B .16C .8D10.P ABCD PAD ABCD -如图,在四棱锥中,侧面为正三角形,底面是边2,PAD ABCD M ⊥长为的为正方形,侧面底面为 ,ABCD MP MC =底面内的一个动点,且满足则点()M ABCD 在正方形内的轨迹的长度为A.5A .22B .C π 2.3D π11.,,,,,,,,,,,p q a b c p q p a q p b c q ≠给定正数其中若是等比数列,是等差 ()220bx ax c -+=数列,则一元二次方程B.A 有两个相等实根 .B 无实根.C 有两个同号相异实根 .D 有两个异号实根12.11111111,ABCD A B C D M N Q D C A D BC -正方体中,,,分别是棱,的 1P BD 中点,点在对角线上,给出以下命题: 1//;P BD MN APC ①当在上运动时,恒有面 12,,;3BP A P M BD =②若三点共线,则112//;3BP C Q APC BD =③若,则面 0111603P AB A C ④过点且与直线和所成的角都为的直线有且只有条.()其中正确命题的个数为C.A 1 .B 2 .C 3 .D 4D 1C 1B 1A 1PQN MD C BAMDBP第Ⅱ卷 非选择题二、填空题:(本大题5个小题,每小题5分,共20分)13.0cos1402sin130sin10+=____________12-14.如图,动物园要围成四间相同面积的长方形虎笼,一面可利用原有的墙,其他各面用钢筋网围成,设 m m 36 m x y 每间虎笼的长为,宽为,现有长的钢筋x y =网材料,为使每间虎笼面积最大,则____3215.2,P ABCD -如图,正四棱锥的体积为底面积6,E PC PA 为为侧棱的中点,则异面直线与 ___________BE 所成的角为06016.,,a b c 已知为正实数,给出以下结论:2230,3;ba b c ac-+=①若则的最小值为 228,24;a b ab a b ++=+②若则的最小值为()4,2a a b c bc a b c +++=++③若则的最小为2224,a b c ab bc ++=+④若则的最大值为 其中正确结论的序号是________________①②④三、解答题(本大题共6个小题,共70分)17.(10分),,,,,ABC A B C a b c ∆在中,角的对边分别为已知向量()(),,.m a c b n a c b a =+=--与向量互相垂直()()1;2sin sin C A B +求角求的取值范围.解:()()()()22210,a c a c b b a a b c ab ⇒+-+-=⇒+-=已知2221cos ,0,.223a b c C C C ab ππ+-∴==<<∴= ()22,,33C A B ππ=∴+=222sin sin sin sin sin sin cos cos sin 333A B A A A A A πππ⎛⎫+=+-=+- ⎪⎝⎭31sin cos 226A A A A A π⎫⎛⎫=+=+=+⎪ ⎪⎪⎝⎭⎭2510,sin 1366626A A A πππππ⎛⎫<<∴<+<⇒<+≤ ⎪⎝⎭sin sin .A B ∴+⎝的取值范围是y y yy y x xxyx18.(12分)ABCD PQMN 如图,在四面体中,截面是平行四边形,()1://;PN BCD 求证平面()2PQMN 若截面是正方形,求异PM BD 面直线与所成的角.解:()1//,PQMN PN QM ∴证明:截面是平行四边形,,//.PN BCD QM BCD PN BCD ⊄⊂⇒又平面平面平面()()21//,PN BCD 由知平面,,//.PN ABD ABD BCD BD PN BD ⊂=∴平面平面平面()NPM PM BD ∴∠或其补角是异面直线与所成的角.045.PQMN NPM ∴∠=截面是正方形, 045.PM BD ∴异面直线与所成的角是19.(12分){}()11.1,342n n n n a S a a S n -==+≥已知数列的前项和为若.(){}1n a 求数列的通项公式;(){}2212log ,,,72n n n n n n n a bb c n N c T +++==∈令其中记数列的前项和为. 2.2n nn T ++求的值 解:()21111347,34(2),3 4.n n n n a S a S n a S -+=+==+≥∴=+()221242474,n n n n n a a n a a --+=≥⇒=⨯=⨯两式相减得:21,(1)174,(2)n n n n a n -⎧=⎪=∴=⎨⨯≥⎪⎩此式对不成立,()22212log log 42,,722n n n n n n n a b nb nc ++===∴==231232222n n nT ∴=++++①231112122222n nn n nT +-=++++② 22111111121.2222222n n n n n n T +++-=+++-=-①②得,222 2.22n n n n n n T T ++∴=-⇒+=N MQPDCBA20.(12分),4,3,P ABCD PA ABCD AB BC -⊥==如图,在四棱锥中,平面05,90,AD DAB ABC E CD =∠=∠=是的中点.()1CD PAE ⊥证明:平面;()2PB PAE 若直线与平面所成的角和PB ABCD 直线与平面所成的角相等, P CD A --求二面角的正切值.解:()014,3,90 5.AC AB BC ABC AC ==∠==连接,由,得5,.AD E CD CD AE =∴⊥又是的中点,,,.PA ABCD CD ABCD PA CD ⊥⊂∴⊥平面平面 ,.PA AE A CD PAE =∴⊥而平面()2CD PAE PEA P CD A ⊥∴∠--平面;是二面角的平面角.,,,,.B BG CD AE AD F G PF //过点作分别与相交于连接 ()1.BG PAE ⊥由知,平面.BPF PB PAE BG AE ∴∠⊥为直线与平面所成的角.且PA ABCD PBA PB ABCD ⊥∠由平面知,为直线与平面所成的角. ,.PBA BPF Rt PBA Rt BPF PA BF ∠=∠∴∆≅∆⇒=由题意知090//,//.DAB ABC AD BC BG CD ∠=∠=知,又3, 2.BCDG GD BC AG ∴==∴=是平行四边形.4,,,AB BG AF BG =⊥∴==2AB BF PA BG ===∴=于是CD BG CE AE ==∴===又21.(12分)()2.f x ax bx c =++已知二次函数()(){}10|34f x x x x >-<<若的解集为,解关于的不等式()2230bx ax c b +-+<.()()2,2x R f x ax b ∈≥+若对任意不等式恒成立,()224a c a a c-+求的最大值. 解:(){}210|34ax bx c x x ++>-<<的解集为()0,34,34,120.b ca b a c a a a a∴<-+=--⨯=⇒=-=-<()()2223021500bx ax c b ax ax a a ∴+-+<⇔-++<<()221503,5.x x ⇔--<∴-,解集为()()()22220f x ax b ax b a x c b ≥+⇔+-+-≥恒成立FG44tan ..55PA PEA P CD A AE ∴∠==--即二面角的正切值是()()22200440240a a b a ac b a a c b >⎧>⎧⎪∴⇔⎨⎨+-≤∆=---≤⎪⎩⎩()()222241404,1c a c a a b a c a a c c a ⎛⎫- ⎪-⎝⎭∴≤≤-=+⎛⎫+ ⎪⎝⎭()21,40,010.c c t a c a b c a t a a =--≥≥∴≥>⇒≥⇒≥令()()()()222224444,0222211a c a t t t g t t a c t t t t t -===≥+++++++令 ()()4000;0222t g t g t t t==>=≤=++当时,当时, ()224 2.a c a a c-∴+的最大值为22.(12分)()()()(),,,f x R ff f αβαβαββα∈⋅=⋅+⋅函数满足:对任意都有(){}()()22,2.n n n f a a f n N +==∈且数列满足(){}1n a 求数列的通项公式;()()()121121.n n n n nn n n a a b b c T c c c n N n n b n ++⎛⎫=-==+++∈ ⎪⎝⎭令,,记,584n MM n N T +∈<问:是否存在正整数使得当时,不等式恒成立?;M 若存在,求出的最小值若不存在,请说明理由.解:()()()1112,22,n n a f a f =∴==()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅11111221,1,2222n n n n n n n n na a a a a a ++++⎧⎫∴=⋅+⇒-=∴=⎨⎬⎩⎭为等差数列,首项为1.2.2n nn n a n a n ∴=⇒=⋅公差为()()22,2221,n n n n n n n aa nb n=⋅∴=⇒=-()()()()1111112212211144221421421n n n n n n n n n n b c b ++++++--∴====-<---()121211.44n n n n c c c T c c c n ∴+++<⇒=+++<1146.5845844n M M T M ∴<⇔≥⇔≥不等式恒成立,146.M ∴存在满足条件的正整数其最小值为。

精品:【全国百强校】四川省成都市树德中学2015-2016学年高一下学期期末考试化学试题(解析版)

精品:【全国百强校】四川省成都市树德中学2015-2016学年高一下学期期末考试化学试题(解析版)

可能用到的元素的相对原子质量:H-1 Cu-64 Cl-35.5 O-16 Br-80 C-12 Na-23 N-14第Ⅰ卷选择题(75分)一、选择题。

(每小题只有一个正确选项。

每小题3分,共75分)1.下列说法不正确的是()A.pH<5.6降水通常称为酸雨;CO2的大量排放能破坏臭氧层,形成“臭氧空洞”B.总质量一定时,乙酸和葡萄糖无论以何种比例混合,完全燃烧消耗氧气的量相等C.燃煤时加入适量石灰石,可减少废气中SO2的量D.有机高分子化合物称为聚合物或高聚物,是因为他们大部分是由小分子通过聚合反应制得的【答案】A考点:考查了化学与环境、有机物燃烧的规律等相关知识。

2.氯的原子序数为17,37Cl和35Cl是氯的两种同位素,下列说法正确的是()A.35Cl原子所含质子数为18B.118mol的H35Cl分子所含中子数约为6.02×1023C.3.5 g的35Cl2气体的体积为2.24 LD.35Cl2气体的摩尔质量为70【答案】B【解析】试题分析:A、35Cl是氯的一种同位素,质子数等于原子序数,所以35Cl质子数为17,故A错误;B、H35Cl分子所含中子为18,118mol的H35Cl分子所含中子的物质的量为1mol,所以中子数约为6.02×1023,故B正确;C、氯气不一定处于标准状况,不能使用气体摩尔体积22.4L/mol,故C错误;D、35Cl2气体的摩尔质量为70g/mol,故D错误;故选B。

【考点定位】考查同位素及其应用【名师点晴】本题考查原子符号、物质的量的有关计算、摩尔质量、气体摩尔体积等,注意气体摩尔体积使用条件与范围。

根据同位素的概念,质子数相同中子数不同的同一元素互称同位素,同位素是不同的原子,但是属于同一种元素;元素符号的左下角数字表示质子数,左上角数字表示质量数,中子数=质量数-质子数。

3.X、Y是周期表中的两种元素,X原子的半径比Y的半径小,且具有相同的电子层数,(选项中m、n均为正整数)下列有关叙述正确的是()A.若X、Y原子序数相差l,Y为IIA族,则X一定是IIIA族B.若Y(OH)m易溶于水,则X(OH)n一定不溶于水C.若H n XO m为强酸,则X的氢化物溶液于水一定显酸性D.若Y元素形成的单质是气体,则X元素形成的单质一定也是气体【答案】D考点:考查了元素周期律与元素周期表的相关知识。

《解析》四川省成都市树德中学2014-2015学年高一下学期期末数学试卷Word版含解析

《解析》四川省成都市树德中学2014-2015学年高一下学期期末数学试卷Word版含解析

四川省成都市树德中学2014-2015学年高一下学期期末数学试卷一、选择题(每小题5分,共60分)1.若且,则sin(π﹣α)()A.B.C.D.2.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项3.函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)4.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.5.已知数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项的和为()A.3n﹣1 B.3(3n﹣1)C.D.6.设tanα、tanβ是方程x2+3x+4=0的两根,且α、β∈(﹣,),则α+β的值为()A.﹣B.C.或﹣D.﹣或7.已知某几何体的三视图如图所示,正视图与侧视图都是上底为2,下底为4,底角为60°的等腰梯形,俯视图是直径分别为2和4的同心圆,则该几何体的表面积为()A.6πB.9πC.11πD.8.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣9.已知数列2 008,2 009,1,﹣2 008,﹣2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 015项之和S2015等于()A.1B.2 010 C.4 018 D.010.在锐角三角形ABC中,BC=2,AB=3,则AC的取值范围是()A.(1,)B.(,)C.(,5)D.(,5)11.{a n}为等差数列,若,且它的前n项和S n有最大值,那么当S n取得最小正值时,n=()A.11 B.17 C.19 D.2112.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若对于任意的实数x,都有f(x﹣1)≤f(x)成立,则实数a的取值范围是()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题(每小题5分,共20分)13.设正数a,b满足:a+4b=2,则的最小值为.14.若数列{a n}是正项数列,且++…+=n2+3n(n∈N*),则++…+=.15.关于函数f(x)=cos(2x﹣)+cos(2x+),有下列命题:①y=f(x)的最大值为;②y=f(x)是以π为最小正周期的周期函数;③y=f(x)在区间(,)上单调递减;④将函数y=cos2x的图象向左平移个单位后,将与已知函数的图象重合.其中正确命题的序号是.(注:把你认为正确的命题的序号都填上)16.已知侧棱长为2的正三棱锥S﹣ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行两周后又回到点A,则蚂蚁爬行的最短路程为.三、解答题17.已知定义在R上的函数f(x)=|x+1|﹣|x﹣2|的最小值为a.(1)求a的值;(2)若实数p,q,r满足p﹣2q+3r=a,求p2+q2+r2的最小值及取得最小值时对应的p,q,r的值.18.已知向量=(cosx,﹣),=(sinx,cos2x),x∈R,设函数f(x)=.(Ⅰ)求f(x)的最小正周期.(Ⅱ)求f(x)在[0,]上的最大值和最小值.19.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.20.数列{a n}的前n项和记为S n,a1=1,a n+1=2S n+1(n≥1).(1)求{a n}的通项公式;(2)等差数列{b n}的各项为正,其前n项和为T n,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求T n.21.等差数列{a n}的各项均为正数,a1=3,前n项和为S n,{b n}为等比数列,b1=2,且b2S2=32,b3S3=120.(1)求a n与b n;(2)求数列{a n b n}的前n项和T n.(3)若对任意正整数n和任意x∈R恒成立,求实数a的取值范围.22.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.四川省成都市树德中学2014-2015学年高一下学期期末数学试卷一、选择题(每小题5分,共60分)1.若且,则sin(π﹣α)()A.B.C.D.考点:诱导公式的作用;同角三角函数间的基本关系.专题:计算题.分析:已知等式利用诱导公式化简求出cosα的值,由α的范围,利用同角三角函数间的基本关系求出sinα的值,所求式子利用诱导公式化简后,将sinα的值代入计算即可求出值.解答:解:∵cos(2π﹣α)=cosα=,α∈(﹣,0),∴sinα=﹣=﹣,则sin(π﹣α)=sinα=﹣.故选B点评:此题考查了诱导公式的作用,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键.2.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项考点:等差数列的性质.专题:计算题;压轴题.分析:先根据题意求出a1+a n的值,再把这个值代入求和公式,进而求出数列的项数n.解答:解:依题意a1+a2+a3=34,a n+a n﹣1+a n﹣2=146∴a1+a2+a3+a n+a n﹣1+a n﹣2=34+146=180又∵a1+a n=a2+a n﹣1=a3+a n﹣2∴a1+a n==60∴S n===390∴n=13故选A点评:本题主要考查了等差数列中的求和公式的应用.注意对Sn═和Sn=a1•n+这两个公式的灵活运用.3.函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数出来的条件,建立不等式即可求出函数的定义域.解答:解:要使函数有意义,则,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函数的定义域为(0,)∪(2,+∞),故选:C点评:本题主要考查函数定义域的求法,根据对数函数的性质是解决本题的关键,比较基础.4.一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.考点:简单空间图形的三视图.专题:计算题;作图题.分析:由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.解答:解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选A.点评:本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.5.已知数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项的和为()A.3n﹣1 B.3(3n﹣1)C.D.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:由已知可知,数列{a n}是以2为首项以3为公比的等比数列,从而可得由此数列的偶数项所组成的新数列是以6为首项,以9为公比的等比数列,代入求等比数列的求和公式即可求解解答:解:∵,则数列{a n}是以2为首项以3为公比的等比数列由此数列的偶数项所组成的新数列是以6为首项,以9为公比的等比数列前n项的和为S n=故选D点评:本题主要考查了等比数列的性质及求和公式的简单应用,解题的关键是确定新数列是等比数列6.设tanα、tanβ是方程x2+3x+4=0的两根,且α、β∈(﹣,),则α+β的值为()A.﹣B.C.或﹣D.﹣或考点:两角和与差的正切函数.专题:计算题.分析:由tanα,tanβ是方程x2+3x+4=0的两个根,根据韦达定理表示出两根之和与两根之积,表示出所求角度的正切值,利用两角和的正切函数公式化简后,将表示出的两根之和与两根之积代入即可求出tan(α+β)的值,然后根据两根之和小于0,两根之积大于0,得到两根都为负数,根据α与β的范围,求出α+β的范围,再根据特殊角的三角函数值,由求出的tan(α+β)的值即可求出α+β的值.解答:解:依题意得tanα+tanβ=﹣3<0,tanα•tanβ=4>0,∴tan(α+β)===.易知tanα<0,tanβ<0,又α,β∈(﹣,),∴α∈(﹣,0),β∈(﹣,0),∴α+β∈(﹣π,0),∴α+β=﹣.故选A.点评:此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值,是一道中档题.本题的关键是找出α+β的范围.7.已知某几何体的三视图如图所示,正视图与侧视图都是上底为2,下底为4,底角为60°的等腰梯形,俯视图是直径分别为2和4的同心圆,则该几何体的表面积为()A.6πB.9πC.11πD.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可以看出,本题中的几何体是一个圆台去掉一个圆柱,根据圆柱和圆台的表面积公式进行求解即可.解答:解:由三视图知此几何体是一个圆台去掉一个圆柱,圆台的上底面半径为1,下底半径为2,高为,母线l=2,圆柱的底面半径为1,高为,则圆柱的侧面积为2=2π,圆台的侧面积S=π(1+2)×2=6π,底面面积S=4π﹣π=3π,则该几何体的表面积为2π+6π+3π=(9+2)π,故选:D点评:本题主要考查几何体的表面积的计算,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据是解决本题的关键.8.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣考点:三角函数的恒等变换及化简求值.专题:三角函数的求值.分析:先利用同角三角函数的基本关系分别求得sin(+α)和sin(﹣)的值,进而利用cos(α+)=cos[(+α)﹣(﹣)]通过余弦的两角和公式求得答案.解答:解:∵0<α<,﹣<β<0,∴<+α<,<﹣<∴sin(+α)==,sin(﹣)==∴cos(α+)=cos[(+α)﹣(﹣)]=cos(+α)cos(﹣)+sin(+α)sin(﹣)=故选C点评:本题主要考查了三角函数的恒等变换及化简求值.关键是根据cos(α+)=cos[(+α)﹣(﹣)],巧妙利用两角和公式进行求解.9.已知数列2 008,2 009,1,﹣2 008,﹣2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 015项之和S2015等于()A.1B.2 010 C.4 018 D.0考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过写出数列{a n}的前几项的值,找出数列的周期,进而可得结论.解答:解:记该数列的通项为a n,由题可知:a1=2008,a2=2009,a3=1,a4=﹣2008,a5=﹣2009,a6=﹣1,a7=2008,a8=2009,a9=1,…∴数列{a n}是以6为周期的周期数列,且前6项和为:2008+2009+1﹣2008﹣2009﹣1=0,∵2015=335×6+5,∴S2015=335×0+=1,故选:A.点评:本题考查数列的前n项和,找出数列的周期是解决本题的关键,注意解题方法的积累,属于中档题.10.在锐角三角形ABC中,BC=2,AB=3,则AC的取值范围是()A.(1,)B.(,)C.(,5)D.(,5)考点:余弦定理.专题:解三角形.分析:根据题意判断出那个是最大角,再由余弦定理列出不等式组,即可求出AC的取值范围.解答:解:∵BC=2,AB=3,∴∠ABC或∠ACB可能是最大角,要使△ABC是一个锐角三角形,则,∴32+22>AC2,22+AC2>32,解得5<AC2<13,则<AC<,∴AC的取值范围是,故选:B.点评:本题考查余弦定理的灵活应用,以及边角关系,属于中档题.11.{a n}为等差数列,若,且它的前n项和S n有最大值,那么当S n取得最小正值时,n=()A.11 B.17 C.19 D.21考点:等差数列的性质.专题:计算题;压轴题.分析:本题考查的是等差数列的性质,要求S n取得最小正值时n的值,关键是要找出什么时候a n大于0,而a n+1小于0,由,我们不难得到a11<0<a10,根据等差数列的性质,我们易求出当S n取得最小正值时,n的值.解答:解:∵S n有最大值,∴d<0则a10>a11,又,∴a11<0<a10∴a10+a11<0,S20=10(a1+a20)=10(a10+a11)<0,S19=19a10>0又a1>a2>…>a10>0>a11>a12∴S10>S9>…>S2>S1>0,S10>S11>…>S19>0>S20>S21又∵S19﹣S1=a2+a3+…+a19=9(a10+a11)<0∴S19为最小正值故选C点评:{a n}为等差数列,若它的前n项和S n有最大值,则数列的公差d小于0;{a n}为等差数列,若它的前n项和S n有最小值,则数列的公差d大于0.12.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若对于任意的实数x,都有f(x﹣1)≤f(x)成立,则实数a的取值范围是()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣,]考点:绝对值不等式的解法.分析:把x≥0时的f(x)改写成分段函数,求出其最小值,由函数的奇偶性可得x<0时的函数的最大值,由对∀x∈R,都有f(x﹣1)≤f(x),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.解答:解:当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2.∴当x>0时,f(x)min=﹣a2.∵函数f(x)为奇函数,∴当x<0时,f(x)ma x=a2.∵对∀x∈R,都有f(x﹣1)≤f(x),∴2a2﹣(﹣4a2)≤1,解得:﹣≤a≤.故选:B.点评:本题考查了恒成立问题,考查了函数奇偶性的性质,运用了转化思想,对任意的实数x,都有f(x﹣1)≤f(x)成立的理解与应用是关键,也是难点,属于难题.二、填空题(每小题5分,共20分)13.设正数a,b满足:a+4b=2,则的最小值为.考点:基本不等式.专题:不等式的解法及应用.分析:由题意可得=(a+4b)()=(5++),由基本不等式可得.解答:解:∵正数a,b满足a+4b=2,∴=(a+4b)()=(5++)≥(5+2)=,当且仅当=即a=且b=时取等号,∴所求的最小值为,故答案为:点评:本题考查基本不等式求最值,属基础题.14.若数列{a n}是正项数列,且++…+=n2+3n(n∈N*),则++…+=2n2+6n.考点:数列的求和.专题:计算题.分析:根据题意先可求的a 1,进而根据题设中的数列递推式求得++…+=(n﹣1)2+3(n﹣1)与已知式相减即可求得数列{a n}的通项公式,进而求得数列{}的通项公式,可知是等差数列,进而根据等差数列的求和公式求得答案.解答:解:令n=1,得=4,∴a 1=16.当n≥2时,++…+=(n﹣1)2+3(n﹣1).与已知式相减,得=(n2+3n)﹣(n﹣1)2﹣3(n﹣1)=2n+2,∴a n=4(n+1)2,n=1时,a1适合a n.∴a n=4(n+1)2,∴=4n+4,∴+++==2n2+6n.故答案为2n2+6n点评:本题主要考查了利用数列递推式求数列的前n项和.解题的关键是求得数列{a n}的通项公式.15.关于函数f(x)=cos(2x﹣)+cos(2x+),有下列命题:①y=f(x)的最大值为;②y=f(x)是以π为最小正周期的周期函数;③y=f(x)在区间(,)上单调递减;④将函数y=cos2x的图象向左平移个单位后,将与已知函数的图象重合.其中正确命题的序号是①②③.(注:把你认为正确的命题的序号都填上)考点:命题的真假判断与应用.专题:三角函数的图像与性质.分析:利用两角和差的正余弦公式可把f(x)化为,进而利用正弦函数的性质即可判断出答案.解答:解:函数f(x)=cos(2x﹣)+cos(2x+)====.∴函数f(x)的最大值为,因此①正确;周期T=,因此②正确;当时,,因此y=f(x)在区间(,)上单调递减,因此③正确;将函数y=cos2x的图象向左平移个单位后,得到y====,因此④不正确.综上可知:①②③.故答案为①②③.点评:熟练掌握两角和差的正余弦公式、正弦函数的性质是解题的关键.16.已知侧棱长为2的正三棱锥S﹣ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行两周后又回到点A,则蚂蚁爬行的最短路程为.考点:多面体和旋转体表面上的最短距离问题.专题:计算题;空间位置关系与距离.分析:由题意,利用侧面展开图两次,则顶角为120°,利用余弦定理可得蚂蚁爬行的最短路程.解答:解:由题意,利用侧面展开图两次,则顶角为120°,利用余弦定理可得蚂蚁爬行的最短路程为=.故答案为:.点评:本题考查利用侧面展开图求最短路程,考查余弦定理的运用,比较基础.三、解答题17.已知定义在R上的函数f(x)=|x+1|﹣|x﹣2|的最小值为a.(1)求a的值;(2)若实数p,q,r满足p﹣2q+3r=a,求p2+q2+r2的最小值及取得最小值时对应的p,q,r的值.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)由条件利用绝对值三角不等式,求得数f(x)=|x+1|﹣|x﹣2|的最小值,即可求得a的值.(2)由条件利用柯西不等式,求得p2+q2+r2的最小值及取得最小值时对应的p,q,r的值.解答:解:(1)∵||x+1|﹣|x﹣2||≤|(x+1)﹣(x﹣2)|=3,∴﹣3≤|x+1|﹣|x﹣2|≤3,从而可得数f(x)=|x+1|﹣|x﹣2|的最小值为a=﹣3.(2)由(1)知:p﹣2q+3r=﹣3,又(p2+q2+r2)•[12+(﹣2)2+32]≥(p﹣2q+3r)2 =9,∴,当且仅当,故p2+q2+r2的最小值为,此时.点评:本题主要考查绝对值三角不等式,柯西不等式的应用,属于基础题.18.已知向量=(cosx,﹣),=(sinx,cos2x),x∈R,设函数f(x)=.(Ⅰ)求f(x)的最小正周期.(Ⅱ)求f(x)在[0,]上的最大值和最小值.考点:平面向量数量积的运算;两角和与差的正弦函数;三角函数的周期性及其求法;三角函数的最值.专题:计算题;三角函数的图像与性质;平面向量及应用.分析:(Ⅰ)通过向量的数量积以及二倍角的正弦函数两角和的正弦函数,化简函数为一个角的一个三角函数的形式,通过周期公式,求f (x)的最小正周期.(Ⅱ)通过x在[0,],求出f(x)的相位的范围,利用正弦函数的最值求解所求函数的最大值和最小值.解答:解:(Ⅰ)函数f(x)==(cosx,﹣)•(sinx,cos2x)=sinxcosx=sin(2x﹣)最小正周期为:T==π.(Ⅱ)当x∈[0,]时,2x﹣∈,由正弦函数y=sinx在的性质可知,sinx,∴sin(2x﹣),∴f(x)∈[﹣,1],所以函数f (x)在[0,]上的最大值和最小值分别为:1,﹣.点评:本题考查向量的数量积以及两角和的三角函数,二倍角公式的应用,三角函数的值域的应用,考查计算能力.19.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.解答:解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,∵sinA=sin(B+C)=sinBcosC+cosBsinC②,∴sinB=cosB,即tanB=1,∵B为三角形的内角,∴B=;(Ⅱ)S△ABC=acsinB=ac,由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.点评:此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.20.数列{a n}的前n项和记为S n,a1=1,a n+1=2S n+1(n≥1).(1)求{a n}的通项公式;(2)等差数列{b n}的各项为正,其前n项和为T n,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求T n.考点:等比数列的通项公式;等差数列的前n项和.专题:计算题;综合题.分析:(1)由题意可得:a n=2S n﹣1+1(n≥2),所以a n+1﹣a n=2a n,即a n+1=3a n(n≥2),又因为a2=3a1,故{a n}是等比数列,进而得到答案.(2)根据题意可得b2=5,故可设b1=5﹣d,b3=5+d,所以结合题意可得(5﹣d+1)(5+d+9)=(5+3)2,进而求出公差得到等差数列的前n项和为T n.解答:解:(1)因为a n+1=2S n+1,…①所以a n=2S n﹣1+1(n≥2),…②所以①②两式相减得a n+1﹣a n=2a n,即a n+1=3a n(n≥2)又因为a2=2S1+1=3,所以a2=3a1,故{a n}是首项为1,公比为3的等比数列∴a n=3n﹣1.(2)设{b n}的公差为d,由T3=15得,可得b1+b2+b3=15,可得b2=5,故可设b1=5﹣d,b3=5+d,又因为a1=1,a2=3,a3=9,并且a1+b1,a2+b2,a3+b3成等比数列,所以可得(5﹣d+1)(5+d+9)=(5+3)2,解得d1=2,d2=﹣10∵等差数列{b n}的各项为正,∴d>0,∴d=2,∴.点评:本题主要考查求数列通项公式的方法,以及等比数列与等差数列的有关性质与求和.21.等差数列{a n}的各项均为正数,a1=3,前n项和为S n,{b n}为等比数列,b1=2,且b2S2=32,b3S3=120.(1)求a n与b n;(2)求数列{a n b n}的前n项和T n.(3)若对任意正整数n和任意x∈R恒成立,求实数a的取值范围.考点:等差数列的通项公式;等比数列的通项公式;数列的求和;不等式的证明.专题:计算题.分析:(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,利用等差数列和等比数列的通项公式,根据b2S2=32,b3S3=120建立方程组求得d和q,进而根据数列的首项求得a n与b n.(2)根据(1)中求得的a n与b n,利用错位相减法求得数列{a n b n}的前n项和T n.(3)利用裂项法求得=,进而可知问题等价于f(x)=x2+ax+1的最小值大于或等于,进而求得a的范围.解答:解:(1)设{a n}的公差为d,{b n}的公比为q,则d为正整数,a n=3+(n﹣1)d,b n=2q n﹣1依题意有,即,解得,或者(舍去),故a n=3+2(n﹣1)=2n+1,b n=2n.(2)a n b n=(2n+1)•2n.T n=3•2+5•22++(2n﹣1)•2n﹣1+(2n+1)•2n,2T n=3•22+5•23++(2n﹣1)•2n+(2n+1)•2n+1,两式相减得﹣T n=3•2+2•22+2•23++2•2n﹣(2n+1)2n+1=2+22+23++2n+1﹣(2n+1)2n+1=2n+2﹣2﹣(2n+1)2n+1=(1﹣2n)2n+1﹣2,所以T n=(2n﹣1)•2n+1+2.(3)S n=3+5+…+(2n+1)=n(n+2),∴===,问题等价于f(x)=x2+ax+1的最小值大于或等于,即,即a2≤1,解得﹣1≤a≤1.点评:本题主要考查了等差数列的性质和数列的求和.数列由等差数列和等比数列构成求和时常用裂项法求和.22.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.考点:数列的应用;数列的求和.专题:计算题;证明题;压轴题.分析:(Ⅰ)解法一:由题设条件可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.然后用数学归纳法证明.解法二:由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可知为等数列,其公差为1,首项为0.由此可求出数列{a n}的通项公式.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn,λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n ﹣1)λn+1.然后用错位相减法进行求解.(Ⅲ)证明:通过分析,推测数列的第一项最大.然后用分析法进行证明.解答:解:(Ⅰ)解法一:a2=2λ+λ2+(2﹣λ)×2=λ2+22,a3=λ(λ2+22)+λ3+(2﹣λ)×22=2λ3+23,a4=λ(2λ3+23)+λ4+(2﹣λ)×23=3λ4+24.由此可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.以下用数学归纳法证明.(1)当n=1时,a1=2,等式成立.(2)假设当n=k时等式成立,即a k=(k﹣1)λk+2k,那么,a k+1=λa k+λk+1+(2﹣λ)2k=λ(k﹣1)λk+λ2k+λk+1+2k+1﹣λ2k=[(k+1)﹣1]λk+1+2k+1.这就是说,当n=k+1时等式也成立.根据(1)和(2)可知,等式a n=(n﹣1)λn+2n对任何n∈N*都成立.解法二:由a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得,所以为等差数列,其公差为1,首项为0.故,所以数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)解:设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,.这时数列{a n}的前n项和.当λ=1时,.这时数列{a n}的前n项和.(Ⅲ)证明:通过分析,推测数列的第一项最大.下面证明:.③由λ>0知a n>0.要使③式成立,只要2a n+1<(λ2+4)a n(n≥2).因为(λ2+4)a n=(λ2+4)(n﹣1)λn+(λ2+4)2n>4λ.(n﹣1)λn+4×2n=4(n﹣1)λn+1+2n+2≥2nλn+1+2n+2=2a n+1,n>2.所以③式成立.因此,存在k=1,使得对任意n∈N*均成立.点评:本题以数列的递推关系式为载体,主要考查等比数列的前n项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.。

【全国百强校】四川省成都市树德中学、雅安中学2015-2016学年高一10月阶段性考试数学试题(原卷版)

【全国百强校】四川省成都市树德中学、雅安中学2015-2016学年高一10月阶段性考试数学试题(原卷版)

四川省成都市树德中学、雅安中学2015-2016学年高一10月阶段性考试数学试题一、选择题(每题5分,共60分)1、设全集{}1,2,3,4,5,6U =,{}1,2A =,{}2,3,4B =,则图中阴影部分表示的集合为( )A.{}1,2,5,6B. {}1C. {}2D.{}1,2,3,4 2、函数1()2f x x=-的定义域为( ) A. [)()1,22,-⋃+∞ B. ()1,-+∞C.[)1,2-D.[)1,-+∞3、若集合20x A x N x ⎧-⎫=∈≤⎨⎬⎩⎭,{}2B x =≤,则满足条件A C ⊆⊂≠B 的集合C 的个数为( ) A. 3 B. 4 C. 7 D.84、函数y =的单调减区间是( )A. (),1-∞-B.()1,-+∞C. ()3,1--D.()1,1-5、设{}220A x x px q =-+=,(){}26250B x x p x q =++++=,若12A B ⎧⎫⋂=⎨⎬⎩⎭,则A B ⋃=( ) A. 11,,423⎧⎫-⎨⎬⎩⎭ B.1,42⎧⎫-⎨⎬⎩⎭ C.11,23⎧⎫⎨⎬⎩⎭ D.12⎧⎫⎨⎬⎩⎭6、设()2()6x f x f f x -⎧⎪=⎨+⎡⎤⎪⎣⎦⎩(10)(10)x x ≥<,则(5)f 的值为( ) A.10 B.11 C.12 D.137、()y f x =是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()f x 在R 上的表达式为( )A.()2y x x =-B. ()2y x x =+C.()2y x x =-D.()2y x x =-8、已知两个函数()f x 和()g x 的定义域和值域都是集合{}1,2,3,其定义如下表:则方程()g f x x =⎡⎤⎣⎦的解集为( )A. {}1B. {}2C. {}3D.∅9、汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油10、对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∈⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足条件a b c d +=+,0ab cd <<,则M N ⊕=( )A. ()(),,a d b c ⋃B.(][),,c a b d ⋃C. (][),,a c d b ⋃D.()(),,c a d b ⋃11、已知符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,若函数()f x 在R 上单调递增,()()()(1)g x f x f ax a =->,则( )A. ()sgn sgn g x x =⎡⎤⎣⎦B.()()sgn sgn g x f x =⎡⎤⎡⎤⎣⎦⎣⎦C. ()sgn sgn g x x =-⎡⎤⎣⎦D.()()sgn sgn g x f x =-⎡⎤⎡⎤⎣⎦⎣⎦12、已知函数()22,2()2,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()(2)g x b f x =--,其中b R ∈,若方程()()f x g x =恰有4个不同的根,则b 的取值范围是( ) A. 7,4⎛⎫+∞⎪⎝⎭ B.7,4⎛⎫-∞ ⎪⎝⎭ C. 70,4⎛⎫ ⎪⎝⎭ D.7,24⎛⎫ ⎪⎝⎭二、填空题(每题5分,共20分)13、已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的取值集合为________.14、函数1()3ax f x x -=+在(),3-∞-上是减函数,则a 的取值范围是__________. 15、若函数()12f x x x a =++-的最小值为5,则实数a =____________.16、设a ,0b >,5a b +=的取值范围为____________.三、解答题(共70分)17、(本题满分10分)解下列关于x 不等式.(1)210x x +-< (2)1121x x ≥-18、(本题满分12分)已知全集U R =,集合{}260A x x x =--<,{}2280B x x x =+->, {}22430C x x ax a =-+<,若()U C A B ⊆ð,求实数a 的取值范围.19、(本题满分12分)设函数21()11f x x x =-++. (1)证明:函数()f x 在[)0,+∞上单调递增;(2)解不等式()(21)f x f x >-.20、(本题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ)写出图一表示的市场售价与时间的函数关系式()P f t =;写出图二表示的种植成本与时间的函数关系式()Q g t =;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)21、(本题满分12分)定义域为R 的函数()f x 满足:对任意的,m n R ∈有()()()f m n f m f n +=⋅,且当0x >时,有0()1f x <<,1(4)16f =. (1)证明:()0f x >在R 上恒成立;(2)证明:()f x 在R 上是减函数;(3)若0x >时,不等式24()()()f x f ax f x >恒成立,求实数a 的取值范围.22、(本题满分12分)设二次函数2()()f x x ax b a b R =++∈、. (1)当214a b =+时,求函数()f x 在[]1,1-上的最小值()g a 的表达式; (2)若方程()0f x =有两个非整数实根,且这两实数根在相邻两整数之间,试证明存在整数k ,使得1()4f k ≤.:。

四川省成都树德中学2014-2015学年高一下学期期末考试

四川省成都树德中学2014-2015学年高一下学期期末考试

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()()cos 2,0,sin 2ππααπα⎛⎫-=∈-- ⎪⎝⎭则=( ) A..23- C .13- D .23±【答案】B 【解析】试题分析:因为()cos 2cos ,02ππααα⎛⎫-==∈- ⎪⎝⎭,2sin 3α∴==-,则()2sin sin 3παα-==-,故选B 。

考点:(1)诱导公式(2)同角三角函数的基本关系2.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项 【答案】A 【解析】试题分析:根据题意1231234,146n n n a a a a a a --++=++=,1231234146180n n n a a a a a a --∴+++++=+=,又12132n n n a a a a a a --+=+=+,1180603n a a ∴+== ()160390,1322n na a n n S n +∴===∴=。

故选A 。

考点:等差数列的性质 3.函数()f x =)A.⎪⎭⎫ ⎝⎛21,0 B.()+∞,2 C.()+∞⋃⎪⎭⎫ ⎝⎛,221,0 D.[)+∞⋃⎥⎦⎤ ⎝⎛,221,0【解析】试题分析:要使函数有意义,则()22log 10x ->即22log 1log 1x x ><-或,解得1202x x ><<或,即函数的定义域为()+∞⋃⎪⎭⎫⎝⎛,221,0。

考点:函数的定义域及其求法4.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()()()()1,0,1,1,1,0,0,1,1,0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )【答案】A 【解析】试题分析:因为一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()()()()1,0,1,1,1,0,0,1,1,0,0,0,几何的直观图如图,是正方体的顶点为顶点的一个正四面体,所以zOx 平面为投影面。

树德数学试卷期末答案高一

树德数学试卷期末答案高一

一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()A. √2B. πC. -1/3D. √-1答案:C2. 已知函数f(x) = 2x - 1,则f(-3)的值为()A. -7B. -5C. 1D. 3答案:A3. 在等差数列{an}中,a1 = 3,d = 2,则第10项an的值为()A. 19B. 21C. 23D. 25答案:B4. 若等比数列{bn}的公比q = 1/2,首项b1 = 4,则第5项bn的值为()A. 1/4B. 1/8C. 1/16D. 1/32答案:D5. 函数y = x^2 - 4x + 4的图像是()A. 开口向上的抛物线B. 开口向下的抛物线C. 双曲线D. 线性函数答案:A6. 已知直线l的方程为2x + 3y - 6 = 0,则直线l的斜率为()A. -2/3B. 2/3C. 3/2D. -3/2答案:A7. 在三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 120°C. 135°D. 150°答案:B8. 已知圆的方程为x^2 + y^2 = 25,则圆心坐标为()A. (5, 0)B. (-5, 0)C. (0, 5)D. (0, -5)答案:A9. 函数y = sin(x)的周期为()A. πB. 2πC. 3πD. 4π答案:B10. 若复数z = a + bi(a,b∈R),则|z| = ()A. √(a^2 + b^2)B. √(a^2 - b^2)C. a^2 + b^2D. a^2 - b^2答案:A二、填空题(每题5分,共25分)11. 若函数f(x) = ax^2 + bx + c的图像开口向上,则a > ()答案:012. 已知等差数列{an}的公差d = 3,则第5项an = ()答案:a1 + 4d13. 等比数列{bn}的公比q = 2,首项b1 = 1,则第4项bn = ()答案:b1 q^314. 若直线l的斜率为-1/2,则其方程为y = ()答案:-1/2x + b15. 在三角形ABC中,若AB = AC,则∠B = ()答案:60°三、解答题(每题10分,共30分)16. 已知函数f(x) = x^3 - 3x + 2,求f'(x)。

四川省成都树德中学2014-2015学年高一下学期期末考试数学试题 含解析

四川省成都树德中学2014-2015学年高一下学期期末考试数学试题 含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若()()5cos 2,0,sin 32ππααπα⎛⎫-=∈-- ⎪⎝⎭则=( )A .5B .23- C .13- D .23±【答案】B 【解析】试题分析:因为()5cos 2cos ,032ππααα⎛⎫-==∈- ⎪⎝⎭,22sin 1cos 3αα∴=-=-,则()2sin sin 3παα-==-,故选B 。

考点:(1)诱导公式(2)同角三角函数的基本关系2。

若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项 【答案】A 【解析】试题分析:根据题意1231234,146n n n a aa a a a --++=++=,1231234146180n n n a a a a a a --∴+++++=+=,又12132n n n a a a a a a --+=+=+,1180603n a a ∴+== ()160390,1322n n a a n n S n +∴===∴=。

故选A 。

考点:等差数列的性质 3。

函数()()22log 1f x x =-的定义域为( )A 。

⎪⎭⎫ ⎝⎛21,0 B 。

()+∞,2 C 。

()+∞⋃⎪⎭⎫ ⎝⎛,221,0 D 。

[)+∞⋃⎥⎦⎤⎝⎛,221,0【答案】C 【解析】试题分析:要使函数有意义,则()22log 10x ->即22log 1log 1x x ><-或,解得1202x x ><<或,即函数的定义域为()+∞⋃⎪⎭⎫⎝⎛,221,0。

考点:函数的定义域及其求法4。

一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()()()()1,0,1,1,1,0,0,1,1,0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )【答案】A 【解析】试题分析:因为一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()()()()1,0,1,1,1,0,0,1,1,0,0,0,几何的直观图如图,是正方体的顶点为顶点的一个正四面体,所以zOx 平面为投影面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市树德中学2015-2016学年高一下学期期末考试数学
一、选择题:共12题
1.设a,b∈R,若b-|a|>0,则下列不等式中正确的是
A.a-b>0
B.a+b>0
C.a2-b2>0
D.a3+b3<0
【答案】B
【解析】由b>|a|,可得-b<a<b.由a<b,可得a-b<0,所以选项A错误.由-b<a,可得a+b>0,所以选项B正确.由b>|a|,两边平方得b2>a2,则a2-b2<0,所以选项C错误.由-b<a,可得-b3<a3,则a3+b3>0,所以选项D错误.故选B.
2.已知,,则
A. B. C. D.
【答案】D
【解析】本题考查平面向量的数量积.由题意
知,===.选
D.
【备注】若,,则.
3.已知数列满足,,则
A.1
B.2
C.
D.
【答案】C
【解析】本题考查递推公式.由题意知,,,所以
,,,,,所以该数列是以6为周期的
周期数列,所以.选C.
4.给出下列关于互不重合的三条直线、、和两个平面、的四个命题:
①若,,点,则与不共面;
②若、是异面直线,,,且,,则;
③若,,,则;
④若,,,,,则,
其中为真命题的是
A.①③④
B.②③④
C.①②④
D.①②③
【答案】C
【解析】本题考查点线面之间的位置关系.对①,若,,点,则与不共面, ①正确;对②,若、是异面直线,,,且,,则,②正确;对③,若,,,则或与相交或与异面,③错;对④,若,,,,,则,④正确.所以真命题有①②④.选C.
5.规定记号“”表示一种运算,定义:为正实数),若,则的取值范围是
A. B. C. D.
【答案】A
【解析】本题考查新定义问题.因为,所以可化为,即
,所以.选A.
6.棱长为的正方体被一平面截得的几何体的三视图如图所示,那么被截去的几何体的体积是
A. B. C. D.
【答案】B
【解析】本题考查三视图、空间几何体的体积.还原出空间几何体(如图所示);被截去的与剩下的几何体体积相同;所以被截去的几何体的体积.选B.
7.如图,已知,,且,任意点关于点的对称点为,点关于点的对称点为,则
A. B. C. D.
【答案】A
【解析】本题考查平面向量的线性运算与数量积.因为为的中点,所以
=;所以
====6.选A.
8.已知是内一点,且,,若、、的面积分别为、、,则的最小值是
A.18
B.16
C.9
D.4
【答案】A
【解析】本题考查平面向量的数量积,基本不等式,三角形的面积公式.,可得;而++=,即+=;所以
+.即的最小值是18.选A.
【备注】; 三角形的面积公式:.
9.在中,内角的对边分别为,若的面积为,且, 则等于
A. B. C. D.
【答案】C
【解析】本题考查正弦定理和余弦定理,三角形的面积公式.由三角形的面积公式知,,因为,所以;由余弦定理知,所以
,整理得,所以,所以
,所以,解得.选C.
10.如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为
A.是正三棱锥(底面为正三角形,顶点在底面的投影为底面的中心)
B.直线∥平面.
C.平面.
D.直线与平面所成的角的正弦值为.
【答案】B
【解析】本题考查线面平行与垂直.两两垂直且相等,所以是正三棱锥,A正确;将正四面体放入正方体中(如图所示),显然,而与平面相交,所以直线与平面相交,B错误,选B.
11.已知关于的不等式的解集为空集,则的最小值为
A. B.2 C. D.4
【答案】D
【解析】本题考查一元二次不等式,基本不等式.因为的解集为空集,所以恒成立,即,即;所以
===4(当且仅当
时等号成立).即的最小值为4.选D.
12.设等差数列满足,公差,当且仅当时,数列的前项和取得最大值,求该数列首项的取值范围
A. B. C. D.
【答案】C
【解析】本题考查等差数列,和角差角公式.因为为等差数列,所以,即
=,;=
====1,而,所以;所以
=;由题意得对称轴满足,解得.选C.
【备注】等差数列中,.
二、填空题:共4题
13.已知的顶点坐标分别为,,,则
【答案】
【解析】本题考查空间中两点间的距离公式和余弦定理.由题意
知,,,,所以,由余弦定理知,.所以.
14.如图所示,四边形是上底为2,下底为6,底角为的等腰梯形,由斜二测画法,画出这个梯形的直观图,在直观图中梯形的高为
【答案】
【解析】本题考查直观图.由题意得;而,所以=,解得.即在直观图中梯形的高为.
【备注】.
15.设是等比数列的前项和,,若,则的最小值为 .
【答案】
【解析】本题考查等比数列和均值不等式.因为为等比数列,所以亦为等比数列,即=,所以;而,所以;所以
(当且仅当时等号成立).即的最小值为
20.
16.已知是锐角的外接圆圆心,,是边上一点(与不重合),且,若,则 .
【答案】
【解析】本题考查平面向量的数量积,诱导公式,和角公式,正弦定理.作,在直角三角形
中,;在直角三角形中,;而=;即
,即,即,
所以,即为的中点,所以三角形为等腰三角形,而,可得;取的中点
,;代入等式得,等式两边同乘得
,即,即;
由正弦定理得======.
三、解答题:共6题
17.已知关于的不等式的解集为.
(1)求实数的值;
(2)解关于的不等式:为常数).
【答案】(1)由题知为关于的方程的两根,即;
∴.
(2)不等式等价于,所以:当时解集为;
当时解集为;当时解集为.
【解析】本题考查一元二次不等式、分式不等式.(1)转化为方程的根,解得.(2)将分式不等式转化为一元二次不等式,即可求得.
18.如图,在三棱柱中,侧棱与底面成角为,.
(1)若,求证:;
(2)若为的中点,问:上是否存在点,使得∥平面?若存在,求出的值,并给出证明;若不存在,请说明理由.
【答案】(1)因为侧棱与底面成角,即;
而在内,所以;
而=,,所以;
所以.
(2)上存在点(为上的中点),即,使得∥平面. 因为为的中点,为上的中点,所以为中位线,即; 而内,所以∥平面,此时.
【解析】本题考查线面平行与垂直.(1),所以,所以,所以.(2),∥平面,为上的中点.
19.已知数列的前项和是,且.
(1)求数列的通项公式;
(2)设,求适合方程的正整数的值.
【答案】(1)时,,
时,,,.
是以为首项,为公比的等比数列,.
(2),.
.
.
由解得.
【解析】本题考查数列的通项与求和.(1)由的关系得.所以是等比数列,所以.(2)裂项相消得.
20.如图,中,,,点为线段上一点,过作垂直于与,作垂直于BC与.
(1)若,则,求的长.
(2)在(1)的结论下,若点为线段上运动,求面积的最大值.
【答案】(1)因为sin∠ABC=,所以cos∠ABC=1-2×=.
△ABC中,设BC=a,AC=3b,则由余弦定理可得9b2=a2+4-①
在△ABD和△DBC中,由余弦定理可得cos∠ADB=,cos∠BDC=.
因为cos∠ADB=-cos∠BDC,所以有=-,所以3b2-a2=-6,②
由①②可得a=3,b=1,即BC=3.
(2)令,则△ABC的面积为×2×3×=,
从而可得. 而△DEF的面积为(当且仅当时取等)
即面积的最大值为.
【解析】本题考查余弦定理,三角形的面积公式,基本不等式.(1)由同角三角函数的基本关系及余弦定理得BC =3.(2)由三角形的面积公式及基本不等式得.即面积的最大值为.
21.在直角梯形中,,,(如图1).把沿翻折,使得二面角的平面角为(如图2),、分别是和中点.
(1)若为线段上任意一点,求证:
(2)若,求与平面所成角的正弦值.
(3)、分别为线段与上一点,使得.令与和所成的角分别为和.求
的取值范围.
【答案】(1)又⇒.
(2)由(1)知,从而为等边三角形,从而易得答案为
(3)在BN线段取点R使得.
从而易得且,.
另一方面,易证,从而.
又,,所以,所以;
又有PR//AN且RQ//BDA, 所以.从而有
∴.
.
【解析】本题考查线面垂直与平行,三角恒等变换.(1)线线垂直线面垂直线线垂直.(2)为等边三角形,得答案为;(3)证得∴.
22.数列满足,,令.
(1)证明:数列为等比数列;
(2)设,求数列的前项和;
(3)数列的前项和为.求证:对任意的,.
【答案】(1),,
又,数列是首项为,公比为的等比数列.
(2),.
.
∴S n=1×2+2×22+3×23+…+n×2n,①
2S n=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1.②
①-②,得—S n=2+22+23+…+2n-n·2n+1=-n·2n+1=2n+1-n·2n+1-2.
∴S n=(n-1)2n+1+2.
(3)当时,则
=

,对任意的,.
【解析】本题考查等比数列,数列的通项与求和.(1)求得,数列是首项为,公比为的等比数列.(2),错位相减得S n=(n-1)2n+1+2.(3)放缩法得
.。

相关文档
最新文档