(完整word版)高中数学必修二第一章测试题及答案.doc
高中数学必修二第一章测试题及答案

必修2空间几何体练习试卷班级————-—-———-——姓名--—-——————-—-座号—--—--—-—---—一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个().主视图左视图俯视图(第1题)A.棱台B.棱锥C.棱柱D.正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为的等腰梯形,那么原平面图形的面积是().A.2+B.C.D.3.棱长都是的三棱锥的表面积为().A.B.2 C.3 D.44.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().A.25πB.50πC.125πD.都不对5.正方体的棱长和外接球的半径之比为( ).A.∶1 B.∶2 C.2∶D.∶36.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线旋转一周,则所形成的几何体的体积是().A.πB.πC.πD.π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().A.130 B.140 C.150 D.1608.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=,且EF与平面ABCD的距离为2,则该多面体的体积为().A.B.5 C.6 D.9.下列关于用斜二测画法画直观图的说法中,错误..的是().A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是、、,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章空间几何体参考答案A组一、选择题1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S=(1++1)×2=2+.3.A解析:因为四个面是全等的正三角形,则S表面=4×=.4.B解析:长方体的对角线是球的直径,l==5,2R=5,R=,S=4πR2=50π.5.C解析:正方体的对角线是外接球的直径.6.D解析:V=V大-V小=πr2(1+1。
(完整版)高中数学必修二第一章同步练习(含答案)

.1.1.1 柱、锥、台、球的的构造特点练习一一、选择题1、以下命题中,正确命题的个数是()(1 )桌面是平面;( 2)一个平面长 2 米,宽 3 米;( 3)用平行四边形表示平面,只好画出平面的一部分;( 4)空间图形是由空间的点、线、面所组成。
A、1B、2C、3D、42、以下说法正确的选项是()A、水平搁置的平面是大小确立的平行四边形B、平面ABCD就是四边形ABCD 的四条边围来的部分C、100 个平面重叠在一同比10 个平面重叠在一同厚D、平面是圆滑的,向周围无穷延展的面3、以下说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、以下说法中正确的选项是()A、棱柱的面中,起码有两个面相互平行B、棱柱的两个相互平行的平面必定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面必定不是平行四边形5、长方体的三条棱长分别是AA /=1 , AB=2 ,AD=4 ,则从 A 点出发,沿长方体的表面到C/的最短距离是()A、5B、7C、29D、376、若正棱锥的底面边长与侧棱长相等,则该棱锥必定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、0 个或 1 个B、有且仅有 1 个C、无数个D、一个或无数个8、一个圆柱的母线长为 5 ,底面半径为2,则圆柱的轴截面的面积为()A、10B、20二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。
10、正三棱台的上、下底面边长及高分别为1、 2、 2,则它的斜高是------------。
11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。
12、若圆锥的侧面面积是其底面面积的 2 倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面睁开图扇形的圆心角为----------------。
高中数学必修二 第一章单元练习和详细答案

必修2第一章测试题一、选择题:1. 下图中的几何体是由哪个平面图形旋转得到的( )A B C 2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是( )A .圆锥B .正四棱锥C .正三棱锥D .正三棱台3.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A.1:2:3B.1:3:5C.1:2:4D.1:3:94.正方体的内切球和外接球的半径之比为( )A B 2 C . D5.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2D .2+16.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对7.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π 8.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29B .5C .6D .215 9.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).二、填空题:11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
12.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。
(典型题)高中数学必修二第一章《立体几何初步》检测(有答案解析)

一、选择题1.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( )A .30B .45C .60D .902.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //3.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( )①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直;③在α内存在无数多条直线与直线AB 异面;④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个4.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π 5.下图中小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为( )A .64B .48C .32D .166.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4πC .3πD .2π 7.三棱锥P ABC -中,6AB =,8AC =,90BAC ∠=︒,若52PA PB PC ===,则点B 到平面PAC 的距离为( )A .32B .304141C .153417D .68.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A 263B 463C .4263D .22639.一个几何体的三视图如图所示,则该几何体的体积为( )A .4B .8C .12D .1410.在三棱锥S ABC -中,SA ⊥底面ABC ,且22AB AC ==,30C ∠=,2SA =,则该三棱锥外接球的表面积为( )A .20πB .12πC .8πD .4π11.已知四面体ABCD ,AB ⊥平面BCD ,1AB BC CD BD ====,若该四面体的四个顶点都在球O 的表面上,则球O 的表面积为( )A .73πB .7πC .712πD .79π 12.空间四边形PABC 的各边及对角线长度都相等,D 、E 、F 外别是AB 、BC 、CA 的中点,下列四个结论中不成立的是( )A .//BC 平面PDFB . DF ⊥平面PAEC .平面PDE ⊥平面ABCD .平面PAE ⊥平面ABC二、填空题13.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.14.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,四边形ABCD 为矩形,24AB AD ==,则四棱锥P ABCD -的外接球的表面积为________.15.已知正三棱锥A BCD -的四个顶点在球O 的球面上,2AB =,且π2BAC ∠=,则球O 的表面积为_______. 16.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;17.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.18.二面角a αβ--的大小为135A AE a E α︒∈⊥,,,为垂足,,B BF a F β∈⊥,为垂足,2,31AE BF EF P ===,,是棱上动点,则AP PB +的最小值为_______. 19.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.20.已知某几何体的三视图如图所示,则该几何体的体积是__________.三、解答题21.如图,三棱柱111ABC A B C -中,122AB BC AC BB ===,1B 在底面ABC 上的射影恰好是点A ,E 是11A C 的中点.(1)证明:1//A B 平面1B CE ;(2)求1A B 与平面11BCC B 所成角的正弦值.22.如图,正四棱锥P ABCD -中,底面ABCD 的边长为4,4PD =,E 为PA 的中点.(1)求证://PC 平面EBD .(2)求三棱锥E ABD -的体积.23.如图,在三棱锥P ABC -中,1,2,135AB AC BAC ︒==∠=,1cos ,3BAP AP BC ∠=-⊥.(1)若23BM MC =,求证:PM BC ⊥; (2)当3AP =,且N 为BC 中点时,求AN 与平面PBC 所成角的正弦值.24.如图,在三棱柱ABC -A 1B 1C 1中,F 为AC 中点.(1)若此三棱柱为正三棱柱,且1112A A AC =,求异面直线1AB 与BF 所成角的大小; (2)求证:1AB //平面1BFC .25.如图,在五面体ABCDEF 中,四边形ABCD 是平行四边形.(1)求证://AB EF ;(2)若CF AE ⊥,AB AE ⊥,求证:平面ABFE ⊥平面CDEF .26.如图,四边形ABCD 为矩形,且4=AD ,22AB =,PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果.【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===,所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D ,所以,异面直线EF 和BD 所成的角为1160AB D ∠=.故选:C.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.2.C解析:C【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误.【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误;对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴, 1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳. 3.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误;对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,则在平面α内过点C 一定可以作一条直线CD ,使得CD CM ⊥,所以CD AB ⊥,而在平面α内,与直线CD 平行的直线有无数条,所以在α内存在无数多条直线与直线AB 垂直,若直线AB 与平面α垂直,显然在α内存在无数多条直线与直线AB 垂直,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 垂直,正确;对于C ,若直线AB 与平面α相交,设AB M α=,根据异面直线的判定定理,在平面α内,不过点M 的直线与直线AB 异面,所以在α内存在无数多条直线与直线AB 异面,当直线AB 与平面α平行时,显然可知在α内存在无数多条直线与直线AB 异面,正确; 对于D ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,若直线AB 与平面α垂直,则过直线AB 的所有平面都与平面α垂直,当直线AB 与平面α平行时,在直线AB 上取一点P 作PC α⊥,垂足为C ,所以平面ABC 与平面α垂直,正确.故真命题的个数是3个.故选:C .【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.4.D解析:D【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm , 则2x OI =,62x IE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案.【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm , 则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍,所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-=所以()(22232R R =+,解得3R = 所以外接球的表面积为2100433S ππ==(2cm ). 故选:D .【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.5.C解析:C【分析】在长方体中还原三视图后,利用体积公式求体积.【详解】根据三视图还原后可知,该四棱锥为镶嵌在长方体中的四棱锥P -ABCD (补形法) 且该长方体的长、宽、高分别为6、4、4, 故该四棱锥的体积为1(64)4323V =⨯⨯⨯=. 故选C .【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整;(2)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 6.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=,所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.C解析:C 【分析】取BC 中点为O ,连接OP ,OA ,根据题中条件,由线面垂直的判断定理,证明PO ⊥平面ABC ;求出三棱锥P ABC -的体积;以及PAC △的面积,设点B 到平面PAC 的距离为d ,根据等体积法,由P ABC B PAC V V --=,即可求出结果. 【详解】取BC 中点为O ,连接OP ,OA ,因为6AB =,8AC =,90BAC ∠=︒,所以10BC ==,则152AO BC ==;又PA PB PC ===222100PB PC BC +==,则PB BC ⊥,152PO BC ==, 所以22250PO OA PA +==,所以PO AO ⊥; 因为PB PC =,O 为BC 中点,所以PO BC ⊥,又BC AO O ⋂=,BC ⊂平面ABC ,AO ⊂平面ABC ,所以PO ⊥平面ABC ; 此时三棱锥P ABC -的体积为11168540332P ABC ABCV S PO -=⋅=⨯⨯⨯⨯=, 因为在PAC △中,PA PC ==,8AC =,所以PAC △的面积为182PACS=⨯=, 设点B 到平面PAC 的距离为d , 由P ABC B PAC V V --=可得1403PACS d =⋅,所以17d ==. 故选:C. 【点睛】 方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解;(2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平面α的一条斜线PA 所对应的向量PA ,则点P 到面α的距离即为PA m d m⋅=.8.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A. 【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.9.C解析:C 【分析】根据三视图还原得其几何体为四棱锥,根据题意代入锥体体积公式计算即可. 【详解】解:根据三视图还原得其几何体为四棱锥,图像如下:根据图形可得ABCD 是直角梯形,PA ⊥平面ABCD ,2,4,2,6AB CD PA AD ==== 所以11246212332P ABCD ABCD V S PA -+=⋅=⨯⨯⨯= 故选:C 【点睛】 识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图; (3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线;对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.10.A解析:A 【分析】利用正弦定理求出ABC 的外接圆直径2r ,利用公式()2222R r SA =+可计算得出三棱锥S ABC -的外接球直径,然后利用球体的表面积公式可求得结果. 【详解】如下图所示,设圆柱的底面半径为r ,母线长为h ,圆柱的外接球半径为R ,取圆柱的轴截面,则该圆柱的轴截面矩形的对角线的中点O 到圆柱底面圆上每个点的距离都等于R ,则O 为圆柱的外接球球心,由勾股定理可得()()22222r h R +=.本题中,SA ⊥平面ABC ,设ABC 的外接圆为圆1O ,可将三棱锥S ABC -内接于圆柱12O O ,如下图所示:设ABC 的外接圆直径为2r ,2SA h ==, 由正弦定理可得24sin ABr C==∠,,该三棱锥的外接球直径为2R ,则()222225R r h =+=.因此,三棱锥S ABC -的外接球的表面积为()224220R R πππ=⨯=. 故选:A. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.11.A解析:A 【分析】本题首先可根据题意将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,然后求出直三棱柱的外接球的半径,最后根据球的表面积计算公式即可得出结果. 【详解】因为AB ⊥平面BCD ,1AB BC CD BD ====,所以可将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分,如图所示:则四面体ABCD 的外接球即直三棱柱的外接球,因为底面三角形BCD 的外心到三角形BCD 的顶点的长度为222131323, 所以直三棱柱的外接球的半径221372312r, 则球O 的表面积2277π4π4π123S r ,故选:A. 【点睛】关键点点睛:本题考查四面体的外接球的表面积的计算,能否将四面体ABCD 看作底面是等边三角形的直三棱柱的一部分是解决本题的关键,考查直三棱柱的外接球的半径的计算,是中档题.12.C解析:C 【分析】由线面平行的判定定理可判断A ;由线面垂直的判定定理可判断B ;反证法可说明C ;由面面垂直的判定定理可判断D. 【详解】 对于A ,D ,F 外别是AB ,CA 的中点,//BC DF ∴,DF ⊂平面PDF ,∴//BC 平面PDF ,故A 正确,不符合题意;对于B ,各棱长相等,E 为BC 中点,,BC AE BC PE ∴⊥⊥,PEAE E =,BC ∴⊥平面PAE ,//BC DF ,∴DF ⊥平面PAE ,故B 正确,不符合题意;对于C ,假设平面PDE ⊥平面ABC ,设DE BF O ⋂=,连接PO ,则O 是DE 中点,PO DE ∴⊥,平面PDE平面ABC DE =,PO ∴⊥平面ABC ,BF ⊂平面ABC ,PO BF ∴⊥,则PB PF =,与PB PF ≠矛盾,故C 错误,符合题意;对于D ,由B 选项 DF ⊥平面PAE , DF ⊂平面ABC ,∴平面PAE ⊥平面ABC ,故D 正确,不符合题意. 故选:C. 【点睛】本题考查线面关系和面面关系的判定,解题的关键是正确理解判断定理,正确理解垂直平行关系.二、填空题13.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PAAB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=,AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由23,2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===, 由3PE =,23PA =,得23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.14.【分析】先根据面面垂直取平面的外接圆圆心G 平面的外接圆圆心H 分别过两点作对应平面的垂线找到交点为外接球球心再通过边长关系计算半径代入球的表面积公式即得结果【详解】如图取的中点的中点连在上取点使得取的 解析:643π【分析】先根据面面垂直,取平面PAD 的外接圆圆心G ,平面ABCD 的外接圆圆心H ,分别过两点作对应平面的垂线,找到交点为外接球球心O ,再通过边长关系计算半径,代入球的表面积公式即得结果. 【详解】如图,取AD 的中点E ,BC 的中点F ,连EF ,PE ,在PE 上取点G ,使得2PG GE =,取EF 的中点H ,分别过点G 、H 作平面PAD 、平面ABCD 的垂线,两垂线相交于点O ,显然点O 为四棱锥P ABCD -外接球的球心,由2AD =,4AB =,可得3PE =33GE OH ==,2222125AH AE EH =+=+=,则半径22343(5)3r OA ⎛⎫==+= ⎪ ⎪⎝⎭, 故四棱锥P ABCD -外接球的表面积为24364433ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 故答案为:643π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.15.【分析】经分析正三棱锥是以△BCD 底面的三棱锥可以把看出以AB 为边长的正方体切割下来的可借助于正方体的外接球求解【详解】正三棱锥中所以△BCD 为底面且所以正三棱锥是以AB 为边长的正方体切割下来的所以 解析:6π【分析】经分析,正三棱锥A BCD -是以△BCD 底面的三棱锥,可以把看出以AB 为边长的正方体切割下来的,可借助于正方体的外接球求解. 【详解】正三棱锥A BCD -中,π2BAC ∠=, 所以△BCD 为底面,且π2BAD DAC BAC ∠=∠=∠=, 所以正三棱锥A BCD -是以AB 为边长的正方体切割下来的, 所以正三棱锥A BCD -的外接球就是正方体的外接球.设外接球的半径为R ,所以232R =⨯,所以外接球的表面积为246S R ππ==. 故答案为:6π 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.16.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认解析:22. 【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案. 【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==, 所以DE AB ⊥,DE A E ⊥',3DE =,30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED'平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力..17.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,33⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 1117827477tan tan()1637117O HN O HO NHO ---∠=∠-∠====++ 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====- 所以tan θ的取值范围是4747,33⎡+⎢⎣⎦,故答案为:4747,⎡⎤-+⎢⎥⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.18.【分析】首先将二面角展平根据两点距离线段最短求最小值【详解】如图将二面角沿棱展成平角连结根据两点之间线段最短可知就是的最小值以为邻边作矩形由可知三点共线则故答案为:【点睛】思路点睛:本题考查立体几何 解析:26【分析】首先将二面角展平,根据两点距离线段最短,求AP PB +最小值. 【详解】如图,将二面角沿棱a 展成平角,连结AB ,根据两点之间线段最短,可知AB 就是AP PB +的最小值,以,AE EF 为邻边,作矩形AEFC ,由,CF a BF a ⊥⊥可知,,C F B 三点共线, 则()222213226AB AC BC =+=++=26【点睛】思路点睛:本题考查立体几何中的折线段和的最小值,一般都是沿交线展成平面,利用折线段中,两点间距离最短求解,本题与二面角的大小无关.19.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角MBC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHNPGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值. 【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角MBC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MNMHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MNPGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHNPGO MHN PGO MHN MHNα∠-∠∠=∠-∠==+∠⋅∠+∠,令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】 关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.20.【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥再根据锥体的体积计算公式求解即可【详解】利用正方体法还原三视图如图所示根据三视图可知该几何体是底面直角边为2的等腰直角三角形高为2的三棱锥解析:43. 【分析】先根据三视图得到几何体是底面是直角三角形的一个三棱锥,再根据锥体的体积计算公式求解即可. 【详解】利用正方体法还原三视图,如图所示,根据三视图,可知该几何体是底面直角边为2的等腰直角三角形,高为2的三棱锥S-ABC ,故其体积114222323V =⨯⨯⨯⨯=. 故答案为:43. 【点睛】本题主要考查三视图还原几何体,锥体的体积公式,考查考生的观察分析能力与空间想象能力及运算能力,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)连接1BC 与1B C 相交于M ,连接EM ,证明1//EM A B ,再由线面平行的判定定理证明即可;(2)证明平面1AB F ⊥平面11BCC B ,得出NO ⊥平面11BCC B ,结合线面角的定义得出OBN ∠即为1A B 与平面11BCC B 所成角,再由相似三角形、勾股定理、直角三角形边角关系得出1A B 与平面11BCC B 所成角的正弦值. 【详解】(1)连接1BC 与1B C 相交于M ,连接EM由于E ,M 分别是11A C ,1BC 的中点,则1//EM A B因为EM ⊂平面1B CE ,1A B ⊄平面1B CE ,所以1//A B 平面1B CE .(2)取BC 中点F ,连接AF ,1B F ,则AF BC ⊥ 因为1B A ⊥平面ABC ,所以1B A BC ⊥又1,AF B A ⊂平面1AB F ,1AF B A A ⋂=,所以BC ⊥平面1AB F又BC ⊂平面11BCC B ,所以平面1AB F ⊥平面11BCC B ,过N 作1NO B F ⊥于O 因为NO ⊂平面1AB F ,平面1AB F ⋂平面111BCC B B F =所以NO ⊥平面11BCC B ,连接OB ,则OBN ∠即为1A B 与平面11BCC B 所成角 设12BB =,易知22110222BN AN AB =+=+=,62AF =,1142B F = 由11ONB AFB △△,114214B N ON AF B F =⋅= 所以105sin ON OBN BN ∠==.。
人教版高中数学必修二第一章测试题及答案

人教版高中数学必修二第一章测试题及答案高一数学人教版必修二第一章测试题及答案一、选择题1.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是().答案:C.2+2/22.棱长都是1的三棱锥的表面积为().答案:B.2√23.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().答案:B.50π4.正方体的棱长和外接球的半径之比为().答案:B.3∶25.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是().答案:A.π/96.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().答案:D.1607.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=3/2,且EF与平面ABCD的距离为2,则该多面体的体积为().答案:B.58.下列关于用斜二测画法画直观图的说法中,错误的是().答案:D.水平放置的圆的直观图是椭圆二、填空题9.若三个球的表面积之比是1∶2∶3,则它们的体积之比是1∶2∶3.10.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-A1BD1的体积为a^3/6.11.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是√29,它的体积为√108.12.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为4厘米.三、解答题暂无。
解析:V = Sh = πr²h = πR³,其中R = 364 × 27 = 12.三、解答题13.参考答案:V = (S + SS' + S')h,其中h =14.参考答案:V = 1/3( S + SS' + S')h = 1/3 × × 75 = xxxxxxx/3.S表面积 = S下底面积 + S台侧面积 + S锥侧面积 = π×5² + π×(2+5)×5 + π×2²×2 = (60+42)π.V台= 1/3πr₁²h = 1/3π(5²+5×2+2²)×5 = 148π/3.V锥 = 1/3πr₁²h = 1/3π5²×5 = 25π/3.V = V台 - V锥= 148π/3 - 25π/3 = 123π/3 = 41π.。
数学必修二第一章练习题及答案

(数学2必修)第一章空间几何体[基础训练A组]一、选择题1.有一个几何体得三视图如下图所示,这个几何体应就是一个( )A、棱台B、棱锥C、棱柱D、都不对主视图左视图俯视图2.棱长都就是得三棱锥得表面积为( )A、B、C、D、3.长方体得一个顶点上三条棱长分别就是,且它得个顶点都在同一球面上,则这个球得表面积就是( )A. B. C. D.都不对4.正方体得内切球与外接球得半径之比为()A. B. C. D.5.在△ABC中,,若使之绕直线旋转一周,则所形成得几何体得体积就是( )A、B、C、D、6.底面就是菱形得棱柱其侧棱垂直于底面,且侧棱长为,它得对角线得长分别就是与,则这个棱柱得侧面积就是( )A. B. C. D.二、填空题1.一个棱柱至少有_____个面,面数最少得一个棱锥有________个顶点,顶点最少得一个棱台有________条侧棱。
2.若三个球得表面积之比就是,则它们得体积之比就是_____________。
3.正方体中,就是上底面中心,若正方体得棱长为,则三棱锥得体积为_____________。
4.如图,分别为正方体得面、面得中心,则四边形在该正方体得面上得射影可能就是____________。
5.已知一个长方体共一顶点得三个面得面积分别就是、、,这个长方体得对角线长就是___________;若长方体得共顶点得三个侧面面积分别为,则它得体积为___________、三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上得积雪之用),已建得仓库得底面直径为,高,养路处拟建一个更大得圆锥形仓库,以存放更多食盐,现有两种方案:一就是新建得仓库得底面直径比原来大(高不变);二就是高度增加(底面直径不变)。
ABDC E F(1) 分别计算按这两种方案所建得仓库得体积; (2) 分别计算按这两种方案所建得仓库得表面积; (3) 哪个方案更经济些?2.将圆心角为,面积为得扇形,作为圆锥得侧面,求圆锥得表面积与体积、(数学2必修)第一章 空间几何体 [综合训练B 组]一、选择题1.如果一个水平放置得图形得斜二测直观图就是一个底面为, 腰与上底均为得等腰梯形,那么原平面图形得面积就是( ) A. B. C. D.2.半径为得半圆卷成一个圆锥,则它得体积为( ) A. B. C. D.3.一个正方体得顶点都在球面上,它得棱长为, 则球得表面积就是( )A. B.C. D.4.圆台得一个底面周长就是另一个底面周长得倍,母线长为,圆台得侧面积为,则圆台较小底面得半径为( ) A. B. C. D.5.棱台上、下底面面积之比为,则棱台得中截面分棱台成两部分得体积之比就是( )A. B. C. D.6.如图,在多面体中,已知平面就是边长为得正方形,,,且与平面得距离为,则该多面体得体积为( ) A. B. C. D.二、填空题1.圆台得较小底面半径为,母线长为,一条母线与底面得一条半径有交点且成,则圆台得侧面积为____________。
高中数学必修二第一章经典测试题及答案

一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图A .棱台B .棱柱C . 棱锥D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .22+2 C .221+ D .2+13.棱长都是1的三棱锥的表面积为( ). A .3B . 43C .33D . 234.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A . 125πB .50πC .25πD .全不对5.正方体的棱长和外接球的半径之比为( ). A .3∶3B .3∶2C .2∶3D . 3∶16.在△ABC 中,AB =2,BC =,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29π B .27π C .25π D .23π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A.29B.5 C.2 D.2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ).A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第8题)(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD =2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)参考答案一、选择题1.A2.A3.A4.B5.C6.D7.D8.D9.B10.D 二、填空题11.参考答案:5,4,3. 12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 14.参考答案:平行四边形或线段.15.参考答案:6,6. 解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6.16.参考答案:12. 解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2, 即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥=31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.:CO A。
高中数学必修二第一章经典测试题及答案

精品文档空间几何体高中数学必修二第一章一、选择题 ).1.有一个几何体的三视图如下图所示,这个几何体可能是一个(左视图主视图俯视图A.棱台B.棱柱C.棱锥D.正八面体1的,腰和上底均为.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°2等腰梯形,那么原平面图形的面积是().2+21+2 .D.C.A.2+B212+221的三棱锥的表面积为()3.棱长都是.3333 2 DC .3.A.B.44.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().A.125πB.50πC.25πD.全不对5.正方体的棱长和外接球的半径之比为( ).3333∶1..∶2 C2∶DA.B∶3 .BC旋转一周,ABC绕直线ABC=120°,若使△AB=2,BC=1.5,∠ABC6.在△中,则所形成的几何体的体积是().9753πD.πB.πC.π.A22227.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().A.130 B.140 C.150 D.1608.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF3,且EF 与平面ABCD的距离为2,则该多面体的体积为(=).2.精品文档)第8题(915 B.5 C.2 D.A.22 .)9.下列关于用斜二测画法画直观图的说法中,错误的是(..A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-ABCD中,O是上底面ABCD的中心,若正方体的棱长为a,则1 111三棱锥O -ABD的体积为_____________.1114.如图,E,F分别为正方体的面ADDA、面BCCB的中心,则四边形BFDE在11111该正方体的面上的射影可能是___________..精品文档)(第14题63,则这个长方体的、.已知一个长方体共一顶点的三个面的面积分别是15、2对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面].精品文档19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,2AD =2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.)19题(第.精品文档参考答案一、选择题D ..D8.D9.B10C61.A2.A3.A4.B5..D7二、填空题,4,3.511.参考答案:3 2∶3.12.参考答案:1∶2333333333 32∶∶(.rr∶∶r=1∶)∶=,∶1∶=1∶∶)(rrr2223123211 参考答案:..133a 6 的交点是对角线的三等分点,D与对角线ACAB解析:画出正方体,平面11133311132=2×的高三棱锥O-ABDh×=aa.×aVa,=Sh=11343633 .参考答案:平行四边形或线段.1463666,=V = 15.=参考答案:abc,,.解析:设ab=,bc则=ac,2+2163+3=l 1,=.c=,a=,b=24332Rπ2764×=Shh=.=,=πrR12=解析:.16参考答案:12.V3三、解答题17.参考答案:0001903×1V3′SS.===+S)h,=V(S+h753′′600+1+36002400SS+S+S.参考答案:18,=CC'a,正方体的棱长为如图是过正方体对角面作的截面.设半球的半径为Ra,则2a,OC'==OCR.2.精品文档AC'CA O)题(第18222在Rt中,由勾股定理,得CC' OC' +OC,=C'CO△2222(R.aa+)=即26633a πa.,V=∴RV==a,∴正方体半球226 ∶∶∴VV2=.π正方体半球19.参考答案:+SS =S+S锥侧面下底面表面台侧面2×π×225+π×(2+)×55=π×+2 π.4)+=(602 V=V-V锥台11222rπ(π-=r+r+)hhrr1212133148π.= 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体可能是一个().
主视图
左视图
俯视图
(
第1题)
A.棱台
B.棱锥
C.棱柱
D.正八面体
2.如果一个水平放置的平面图形的斜二测直观图是一个底角为
45°,腰和上底均为
1的等腰梯形, 那么原平面图形的面
积是( ).
A.2+2
B.1+2
C.2+2
S表面=S下底面+S台侧面+S锥侧面
=π×52+π×(2+5)×5+π×2×22
=(60+42 )π.
OC
(第14题)
V=V台-V锥
=1π( r12+r1r2+r22)h-1πr2h1
33
=148π.
3
14.证明: 连结CM,设Q为CM的中点,连结QN则QN∥SM
∴∠QNB是SM与BN所成的角或其补角
且ASB BSCCSA
,M、N分别是AB和SC的中点.
S
2
求异面直线SM与BN所成的角的余弦值.
N
C
B
M
A
第2页 共4页
第一章空间几何体
参考答案
一、选择题
1.A
解析: 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.
2.A
解析: 原图形为一直角梯形,其面积
S=1(1+
2+1)×2=2+2.
D.1+2
2
2
3.棱长都是
的三棱锥的表面积为
(
)
.
1
A.3
B.2 3
C.3 3
D.4 3
4.长方体的一个顶点上三条棱长分别是
3,4,5,且它的
8个顶点都在同一球面上,则这个球的表面积是( )
.
A.25π
B.50π
C.125π
D.都不对
5.正方体的棱长和外接球的半径之比为
(
).
A.3∶1
B.3∶2
C.2∶3
9.A
二、填空题
10.参考答案:1∶22∶33.
r1∶r2∶r3=1∶2∶3,r13∶r23∶r33=13∶(2 )3∶(3 )3=1∶22∶33.
11.参考答案:1a3.
6
解析: 画出正方体,平面AB1D1与对角线A1C的交点是对角线的三等分点,
三棱锥 -
1 1的高
=
3
, =1
=1
×
3
×22×
3
=1
三、解答题
12.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.
13.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周
所成几何体的表面积及体积.
(第13题)
15.S是正三角形ABC所在平面外的一点,如图
SA=SB=SC,
如图是过正方体对角面作的截面.设半球的半径为R,正方体的棱长为a,则CC'=a,OC=2a,OC'=R.
2
A'C'
A
在Rt△C'CO中,由勾股定理,得
2
2
2
CC'+OC=OC',
即a2+(2a)2=R2.
2
∴R=6a,∴V半球=6πa3,V正方体=a3.
22
∴V半球∶V正方体=6π∶2.
14.参考答案:
连结BQ,设SC=a,在△BQN中
BNБайду номын сангаас5
aNQ=1
SM=2a
BQ=14
a
2
2
4
4
∴COS∠QNB=BN2
NQ2
BQ2
10
2BN NQ
5
第4页 共4页
=
15
2-52,l2
=
2-52
,
1
2
9
而l12+l22=4a2,即152-52+92-52=4a2,a=8,S侧面=4×8×5=160.
7.D
解析: 过点E,F作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,
V=2×1×3×3×2+1×3×2×3=15.
34222
8.D
解析: 从三视图看底面为圆,且为组合体,所以选D.
10.正方体
-1
1 1 1中, 是上底面
的中心,若正方体的棱长为
a
,则三棱锥
-
1 1的体积为_____________.
ABCD A B CD
O
ABCD
O
ABD
11.已知一个长方体共一顶点的三个面的面积分别是
2、3、6,则这个长方体的对角线长是
___________,它的体
积为___________.
D.3∶3
6.若底面是菱形的棱柱其侧棱垂直于底面,
且侧棱长为
5,它的对角线的长分别是
9和15,则这个棱柱的侧面积是
( ).
A.130
B.140
C.150
D.160
7.如图是一个物体的三视图,则此物体的直观图是(
)
.
(第7题)
8.已知a、b、c是直线,是平面,给出下列命题:
①若ab, bc,则a // c;
3.
O
ABD
h
3
a V
Sh
4
a
3
a
a
3
3
6
第3页 共4页
另法:三棱锥O-AB1D1也可以看成三棱锥A-OB1D1,它的高为AO,等腰三角形OB1D1为底面.
12.参考答案:
6,6.
解析: 设ab=
2,bc=3,ac=
6,则V=abc=
6,c=
3,a=
2,b=1,
l=3+2+1=6.
三、解答题
13.参考答案:
②若a // b,bc,则ac;
第1页 共4页
③若a // , b
,则a // b;
④若a与b异面,且a //
,则b与相交;
⑤若a与b异面,则至多有一条直线与
a,b都垂直.
其中真命题的个数是
A.1
B.2
C.3
D.4
二、填空题
9.若三个球的表面积之比是
1∶2∶3,则它们的体积之比是_____________.
2
3.A
解析: 因为四个面是全等的正三角形,则
S表面=4×
3
=3.
4
4.B
解析: 长方体的对角线是球的直径,
l
=
3
2
+4
2
+5
2
=
2,
=
2
, =
5 2, =4π
2=50π.
5
5
S
R
2R
R
2
5.C
解析: 正方体的对角线是外接球的直径.
6.D
解析: 设底面边长是
a,底面的两条对角线分别为
l1,l2,而l2