1.4.1正弦函数、余弦函数的图像
1.4.1正弦函数、余弦函数的图像

y 1
7 6
描图:用光滑曲线 将这些正弦线的终 点连结起来
3 2 11 6
O1
A O
-1
6
3
2
2 3
5 6
4 3
5 3
2
x
y=sinx ( x [0, 2 ] )
问题2:如何画函数y =sinx(x∈R)的图象?
f ( x 2k ) f ( x)
利用图象平移
(1)写出满足不等式cos x 0, x 0,2 的x的取值集合;
1 (2)写出满足不等式 sin x , x 0,2 的x的取值集合; 2
练习讲解: (1)写出满足不等式cos x 0, x 0,2 的x的取值集合;
y 1
2
o -1
2
3 2
y
1
2
o
-1
2
3 2
2
x
y cos x
y 1
2
o -1
2
3 2
2
x
例2.画出函数
x
0
y 1
y cos x,x [0,2 ] 的简图: 3
2
0 0
cosx - cosx
1 -1
-1 1
2 0 0
2
1 -1
y=cosx,x[0, 2]
2
几何画法
五点描图法
2.注意与诱导公式、三角函数线等知识的联系
y 1
2
y=cosx,x [0, 2π]
2
o -1
3 2
2
x
y=sinx,x [0, 2π]
1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案
教学目标:
1. 理解正弦函数和余弦函数的定义;
2. 掌握正弦函数和余弦函数的图像特点;
3. 能够在不借助计算工具的情况下,大致画出正弦函数和余弦函数的图像。
教学准备:
1. 黑板、粉笔;
2. 教学PPT;
3. 活动板书。
教学过程:
Step 1: 引入新课
(1)通过问题引入新课:大家知道什么是正弦函数和余弦函数吗?它们有什么特点呢?
(2)通过学生回答引入新课。
Step 2: 讲解正弦函数和余弦函数的定义
(1)通过PPT展示正弦函数和余弦函数的定义公式。
(2)对正弦函数和余弦函数的定义公式进行解释和讲解。
Step 4: 画出正弦函数和余弦函数的图像
(1)通过活动板书,讲解如何画出正弦函数和余弦函数的图像。
(2)例题演示:画出函数 y = sin(x) 的图像。
(3)学生练习:画出函数 y = cos(x) 的图像。
Step 6: 课堂小结
(1)对本节课的主要内容进行小结。
(2)对学生提出的问题进行解答。
Step 7: 课后作业
(1)完成课后习题;
(2)预习下一课时内容。
教学反思:
本节课通过讲解正弦函数和余弦函数的定义,以及讲解它们的图像特点,帮助学生理解正弦函数和余弦函数的意义和作用。
通过画出正弦函数和余弦函数的图像,培养学生观察和绘图的能力。
在课堂上只是大致画出了图像,没有精确到每个点的计算,这可能会让一部分学生产生困惑。
在课后的作业中,可以布置一些计算题,让学生从计算的角度进一步理解函数的图像特点。
正弦函数、余弦函数的图像(完整)

(
3 2
,1)
(1) 列表(列出对图象形状起关键作用的五点坐标)
(2) 描点(定出五个关键点)
(3) 连y线(用光滑的曲线顺次连结五个点)
图象的最高点
1-
-
(0,1) (2 ,1)
与x轴的交点
-
-1
o
6
2
3
2 3
5
7
6
6
4 3
3 5
2
3
11 6
2
x
(
2
,0)
(
3 2
,0)
-1 -
图象的最低点 ( ,1)
三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦函数的图象
问题:如何作出正弦函数的图象?
途径:利用单位圆中正弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
4
5 6 x
正弦、余弦函数的图象
如何由正弦函数图像得y 到余弦函数图像?
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象
y=cosx=sin(x+ ), xR
2
余弦函数的图象
y
1
正弦曲 线
形状完全一样 只是位置不同
余弦曲 线
-4 -3
-2
- o
-1
高中数学新课标三角函数课件三角函数的图象与性质课时

新课讲解.
例4.下列函数是奇函数的为: D
例5.试判断函数 f(x)1sinxcosx
在下列区间上的奇偶性 1sinxcosx
(1)x (. ).......(2)x [. ]
22
22
注意大前提:定义域关于原点对称
今日作业 书本P46.A组3.10 B组3+附加 附加.判断下列函数的奇偶性
2
七 .ysin x和 ycox的 s 图像性质 : 的研究思想 (1)充分利--用 --数 图 形 像 结合的思想
(2)ysin x,ycox与 syAsin x(),yAcosx ()间的换
正切函数的性质与图像
1正切曲线图象如何作:
几何描点法利用三角函数线
思考:画正切函数选取哪一段好呢画多长一段呢
1
-2 -
o
-1
2 3
y y=cosx
1
-2
- -1
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
ysinx:定义域为R,值域[1,1]
最大值1,此时x2k;最小值-1,此时x2k;
2
2
ycosx:定义域为R,值域[1,1]
最大值1,此时x2k;最小值-1,此时x2k;
1
-4 -3
-2
- o
-1
3
2
x
2
正弦曲 线
2
3
4
5 6 x
正弦、余弦函数的图象
如何由正弦函数图像得y 到余弦函数图像
1
-4 -3
-2
- o
-1
2
3
4
1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)(可编辑修改word版)

2第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1. 正弦曲线、余弦曲线2. “五点法”画图画正弦函数 y =sin x ,x ∈[0,2π]的图象,五个关键点是 ; 画余弦函数 y =cos x ,x ∈[0,2π]的图象,五个关键点是.3.正、余弦曲线的联系依据诱导公式 cos x =sin (x +π),要得到 y =cos x 的图象,只需把 y =sin x 的图象向π平移 个单位长度即可.2知识点归纳:1. 正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2. 五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题 1. 函数 y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴πC .直线 y =xD .直线 x =2π2. 函数 y =cos x (x ∈R )的图象向右平移2个单位后,得到函数 y =g (x )的图象,则 g (x )的解析式为( ) A .-sin x B .sin x C .-cos x D .cos x2 4 4 2 4 4π 3π3. 函数 y =-sin x ,x ∈[-2, 2]的简图是()4. 在(0,2π)内使 sin x >|cos x |的 x 的取值范围是()A.(π,3π)B.(π π] (5π 3π], ∪ , C.(π,π)D.(5π,7π)5. 若函数 y =2cos x (0≤x ≤2π)的图象和直线 y =2 围成一个封闭的平面图形,则这个封闭图 形的面积是( ) A .4 B .8 C .2π D .4π 6.方程 sin x =lg x 的解的个数是( )π7. 函数 y =sin x ,x ∈R 的图象向右平移2个单位后所得图象对应的函数解析式是 .8. 函数 y = 2cos x +1的定义域是 . 9. 方程 x 2-cos x =0 的实数解的个数是 . 10. 设 0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则 x 的取值范围为 . 三、解答题1.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π);(2)y =-1-cos x (0≤x ≤2π).4 4 4 212.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,求k 的取值范围.( )解析 y =sin x −−−−−−→ y =sin x - 2 2 23 3知识梳理§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案2.(0,0),( ,1),(π,0),( π,-1),(2π,0) (0,1),( ,0),(π,-1),( π,0),(2π,1)π 3 π 3 22223.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出 y =sin x ,x ∈(0,π)与 y =|cos x |,x ∈(0,π)的图象,观察图象易得 x ∈(π,3π).]4 45.D [作出函数 y =2cos x ,x ∈[0,2π]的图象,函数 y =2cos x ,x ∈[0,2π]的图象与直线 y =2 围成的 平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形 OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数 y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移 2π 个单位, 得到 y =sin x 的图象.描出点 1,-1 ,(1,0),(10,1)并用光滑曲线连接得到 y =lg x 的图象,如图所示.10由图象可知方程 sin x =lg x 的解有 3 个.] 7.y =-cos x向右平移 2个单位 ( π)∵sin (x -π)=-sin (π-x )=-cos x ,∴y =-cos x . 8.[2k π-2π,2k π+2π],k ∈Z解析 2cos x +1≥0,cos x ≥-1,结合图象知 x ∈[2k π-2π,2k π+2π],k ∈Z . 2 3 39.2解析 作函数 y =cos x 与 y =x 2 的图象,如图所示,4 4由图象,可知原方程有两个实数解.10.[π,5π]解析由题意知sin x-cos x≥0,即cos x≤sin x,在同一坐标系画出y=sin x,x∈[0,2π]与y=cos x,x∈[0,2π]的图象,如图所示:π 5观察图象知x∈[ ,π].4 411.解利用“五点法”作图(1)列表:X 0π2π3π22πsin x 0 1 0 -1 01-sin x 1 0 1 2 1(2)列表:X 0π2π3π22πcos x 1 0 -1 0 1-1-cos x -2 -1 0 -1 -212.解(1)y=|sin x|=Error! (k∈Z).其图象如图所示,(2)y=sin|x|=Error!,其图象如图所示,13.解由题意,x 满足不等式组Error!,即Error!,作出y=sin x 的图象,如图所示.结合图象可得:x∈[-4,-π)∪(0,π).14.解f(x)=sin x+2|sin x|=Error!图象如图,若使f(x)的图象与直线y=k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
正弦函数余弦函数的图象完整版课件

y
1-
-
-
6
4
2
o
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以y=sinx,x∈R的图象在
4,2 ,2,0, 0,2, 2,4,…与y=sinx,x∈[0,2π]的图象相同
正弦曲线:ysinx xRy
1
-1
x
-cosx -1 0
1
0 -1
y
y=-cosx x[0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
y=1+sinx x[0, 2]
1
o
3
2
-1
2
2
x
y=sinx x[0, 2]
1
●
●
●
●
●
7 4 3 5 11
6
6 3 2 3 6 2
●
2 0
2 5
●
11
6 32 3 6
●
●
x
●
5
6
-1
●
●
●
3
y
ysinx x [0 ,2 ]
1-
-
-1
o 6
3
2
2 3
5
7
6
6
4 3
3
5
2
3
11 6
2
-1 -
1.4.1《正弦函数余弦函数的图像》教案

1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特点。
文章首先介绍了正弦函数和余弦函数在数学中的重要性,然后概述了本教案的主要内容和目的。
接着分别讨论了正弦函数和余弦函数的图像特点,包括周期、振幅、相位等。
通过具体的案例分析,帮助学生更好地理解函数图像的绘制方法和规律。
在结尾部分,对本教案进行了总结,并提出了相应的教学建议,同时展望了学生在学习正弦函数和余弦函数图像时可能取得的进展和突破。
通过本教案的学习,学生将能够掌握正弦函数和余弦函数的图像特点,提高数学学习的效率和兴趣。
【关键词】正弦函数、余弦函数、图像、教案、概述、特点、案例分析、总结、教学建议、展望。
1. 引言1.1 1.4.1《正弦函数余弦函数的图像》教案正弦函数和余弦函数是高中数学中重要的函数之一,它们在数学中有着广泛的应用。
本教案将重点讲解正弦函数和余弦函数的图像特点,帮助学生更好地理解和掌握这两个函数的性质。
在学习正弦函数的图像特点时,我们将介绍正弦函数的周期、幅值、对称轴等基本概念,并通过实例演示如何绘制正弦函数的图像。
我们也会讲解正弦函数的性质,如奇偶性、单调性等,以便学生更好地应用正弦函数解决实际问题。
通过本教案的学习,学生将能够准确绘制正弦函数和余弦函数的图像,并理解它们的基本特点。
学生还将学会如何利用正弦函数和余弦函数解决实际问题,提高数学应用能力。
希望本教案能够对学生的数学学习起到一定的帮助,让他们更加喜爱数学这门学科。
2. 正文2.1 引言在本节课程中,我们将学习正弦函数和余弦函数的图像特点。
正弦函数和余弦函数是我们在数学中经常接触到的函数,它们在几何学、物理学等领域也有广泛的应用。
通过学习它们的图像特点,我们可以更好地理解它们的性质和规律。
正弦函数是一种周期函数,它的图像呈现出波浪形状。
正弦函数的周期为2π,在每个周期内有一个最大值和一个最小值,这些点称为正弦函数的极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案
思考二 我们得到正弦函 数
那怎么能够得到
思考三
我们得到了正弦函数的精确图象,然而在做题时往往 需要正弦函数的大致图象,我们在知道了正弦函数图 象的前提下可以怎么得到图象?
需要哪些点?为什么需要的是这些点?
x
y
0
0 1 0 -1 0
五点作正弦函数曲线的步骤
1确定五个关键点:即最高点、最低点、与X轴的交点。
2.列表:将上述五点列成表格形式 3.描点:在平面直角坐标系中描出上述五个关键点。 4.连线:用光滑的曲线连接上述五点。注意连线时,必须符合三角函数的图像特征 5.平移:将所做的 上的图像向左、向右平行移动(每次 象即所求正弦曲线、余弦曲线。 个单位长度),得到的图
2.列表:将上述五点列成表格形式 3.描点:在平面直角坐标系中描出上述五个关键点。 4.连线:用光滑的曲线连接上述五点。注意连线时, 必须符合三角函数的图像特征 5.平移:将所做的 上的图像向左、向右平行移动(每 次 个单位长度),得到的图象即所求正弦曲线、余 弦曲线。
我们研究完正弦函数的图象之后 请同学们类比以上研究方法,小 组讨论一下如何能够得到余弦函 数的图象? 1 利用单位圆中的余弦线
2利用图象平移(将正弦函数的图象 向左平移 个单位) 3利用五点作图方法
பைடு நூலகம்
x y
0 1
0
-1
0
1
描点作图
课堂练习
请同学们运用五点作图法作出下列函 数的图象
y 1 sin x, x 0, 2
课堂小结
一 正弦函数、余弦函数的图象得到的方法(利用正弦线、余弦 线,利用五点作图法) 二 五点作正弦函数、余弦函数曲线的步骤
正 弦 函 数 、 余 弦 函 数 的 图 象
将塑料瓶底部扎一个小孔做成 一个漏斗,再挂在架子上,就 做成了一个简易单摆,在漏斗下 方放一块纸板,板的中间画一 条直线作为坐标系的横轴,把 漏斗灌上细沙并拉离平衡位置, 放手使它摆动,同时匀速拉动 纸板。
温馨提示:利用单位圆中的正弦线
y=sinx
1确定五个关键点:即最高点、最低点、与X轴的交点。
3 ( 0 , 0 ), ( , 1 ), ( , 0 ), ( ,1), (2 ,0) 正弦曲线 的五点是 2 2 3 ( 0 , 1 ), ( , 0 ), ( , 1 ), ( ,0), (2 ,1) 余弦曲线 的五点是 2 2