湖南省2012届高三六校联考(理综)湖南师大附中一模

合集下载

2012高考湖南理科数学试题及答案(高清版)

2012高考湖南理科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(湖南卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan α=1”的逆否命题是( ) A .若π4α≠,则tan α≠1 B .若π4α=,则tan α≠1C .若tan α≠1,则π4α≠D .若tan α≠1,则π4α=3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线C :22221x y a b-=的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -= C .2218020x y -= D .2212080x y -= 6.函数f (x )=sin x -cos(x +π)的值域为( )A .[-2,2]B .[C .[-1,1]D .[ 7.在△ABC 中,AB =2,AC =3,1AB BC ⋅=,则BC 等于( )ABC. D8.已知两条直线l 1:y =m 和l 2:821y m =+(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,b的最小值为( ) A .B .C .D .二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线C 1:112x t y t =+⎧⎨=-⎩,(t 为参数)与曲线C 2:sin 3cos x a y θθ=⎧⎨=⎩,(θ为参数,a >0)有一个公共点在x 轴上,则a =________.10.不等式|2x+1|-2|x -1|>0的解集为__________________.11.如图,过点P 的直线与O 相交于A ,B 两点,若P A =1,AB =2,PO =3,则O的半径等于________.(二)必做题(12~16题)12.已知复数z =(3+i)2(i 为虚数单位),则|z |=________. 13. 6的二项展开式中的常数项为________.(用数字作答) 14.如果执行如图所示的程序框图,输入x =-1,n =3,则输出的数S =________.理图 文图15.函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.(1)若π6ϕ=,点P 的坐标为(0,2),则ω=________;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为________.16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换.将P 1分成两段,每段2N个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i 段,每段2i N个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置.(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.18.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.19.已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间; (2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.22.已知函数f (x )=e ax -x ,其中a ≠0.(1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合;(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2))(x 1<x 2),记直线AB 的斜率为k .问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.1. B 由N ={x |x 2≤x },得x 2-x ≤0⇒x (x -1)≤0, 解得0≤x ≤1.又∵M ={-1,0,1}, ∴M ∩N ={0,1}.2. C 命题“若π4α=,则tan α=1”的逆否命题是“若tan α≠1,则π4α≠”. 3. D 若为D 项,则主视图如图所示,故不可能是D 项.4. D D 项中,若该大学某女生身高为170 cm ,则其体重约为:0.85×170-85.71= 58.79(kg).故D 项不正确. 5. A 由2c =10,得c =5, ∵点P (2,1)在直线by x a=上, ∴21ba=.又∵a 2+b 2=25,∴a 2=20,b 2=5. 故C 的方程为221205x y -=. 6. B f (x )=sin x -cos(x +π6)=1sin sin )2x x x --=3sin cos 22x x -1sin cos )22x x -π)[6x -∈.故选B 项.7. A ∵||||cos(π)2||(cos )1AB BC AB BC B BC B ⋅=⋅-=⋅-=,∴1cos 2||B BC =-.又∵222||||||cos 2||||AB BC AC B AB BC +-=⋅=24||9122||2||BC BC BC +-=-⨯⨯, ∴2||=3BC .∴||=3BC BC =.8. B 由题意作出如下的示意图.由图知a =|x A -x C |,b =|x D -x B |, 又∵x A ·x B =1,x C ·x D =1,∴11||1||||C A A C A C x x b a x x x x -==-. y A +y C =-log 2x A -log 2x C=-log 2x A x C =8218172122122m m m m ++=+-≥++,当且仅当218221m m +=+,即32m =时取等号. 由-log 2x A x C ≥72,得log 2x A x C ≤72-,即0<x A x C ≤722-从而7212||A C b a xx =≥=当32m =时,ba 取得最小值B 项.9.答案:32解析:∵C 1:1,12,x t y t =+⎧⎨=-⎩∴C 1的方程为2x +y -3=0.∵C 2:sin ,3cos ,x a y θθ=⎧⎨=⎩∴C 2的方程为22219x y a +=. ∵C 1与C 2有一个公共点在x 轴上,且a >0, ∴C 1与x 轴的交点(32,0)在C 2上, 代入解得32a =. 10.答案:{x |x >14} 解析:对于不等式|2x +1|-2|x -1|>0,分三种情况讨论: 1°,当12x <-时,-2x -1-2(-x +1)>0, 即-3>0,故x 不存在; 2°,当112x -≤≤时,2x +1-2(-x +1)>0, 即114x <≤; 3°,当x >1时,2x +1-2(x -1)>0,3>0, 故x >1. 综上可知,14x >,不等式的解集是14x x ⎧⎫>⎨⎬⎩⎭.11.解析:过P 作圆的切线PC 切圆于C 点,连结OC .∵PC 2=P A ·PB =1×3=3,∴PC =在Rt △POC 中,OC =. 12.答案:10解析:∵z =(3+i)2,∴|z |=32+12=10. 13.答案:-160解析:6的通项为616C (rr r r T -+=- =(-1)r 6C r26-r x 3-r .当3-r =0时,r =3. 故(-1)336C 26-3=-36C 23=-160.14.答案:-4解析:输入x =-1,n =3.i =3-1=2,S =6×(-1)+2+1=-3; i =2-1=1,S =(-3)×(-1)+1+1=5; i =1-1=0,S =5×(-1)+0+1=-4; i =0-1=-1,-1<0,输出S =-4.15.答案:(1)3 (2)π4 f (x )=sin(ωx +φ),f ′(x )=ωcos(ωx +φ). 解析:(1)π6ϕ=时,f ′(x )=ωcos(ωx +π6).∵'(0)2f =,即πcos 62ω=,∴ω=3.(2)当ωx +φ=π2时,π2x ϕω-=;当ωx +φ=3π2时,3π2x ϕω-=.由几何概型可知,该点在△ABC 内的概率为3π2π212π11||||||||2223π2[0cos()]sin()π2AC P x x ϕωϕωωωωϕωωϕωωϕϕω--⨯⨯⋅⋅==--+-+-⎰=π23ππ22sin()sin()ϕϕωϕωϕωω---⋅++⋅+=π23ππsin()sin()22-+=ππ2114=+. 16.答案:(1)6 (2)3×2n -4+11解析:(1)由题意知,当N =16时,P 0=x 1x 2x 3x 4x 5…x 16,P 1=x 1x 3x 5…x 15x 2x 4…x 16,则 P 2=x 1x 5x 9x 13x 3x 7x 11x 15x 2x 6x 10x 14x 4x 8x 12x 16, 此时x 7位于P 2中的第6个位置.(2)方法同(1),归纳推理知x 173位于P 4中的第3×2n -4+11个位置.17.解:(1)由已知得25+y +10=55,x +30=45,所以x =15,y =20, 该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本.将频率视为概率得153(1)10020P X ===,303( 1.5)30010P X ===,251(2)1004P X ===,201( 2.5)1005P X ===,101(3)10010P X ===.X 的分布列为X 的数学期望为()3311111.52 2.531.920104510E X ⨯⨯⨯⨯⨯=++++=. (2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=333333920202010102080⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 18.解:解法一:(1)如图所示,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为P A ⊥平面ABCD ,CD 平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC .又BG ∥CD ,所以四边形BCDG 是平行四边形. 故GD =BC =3,于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG ==2AB BF BG ===于是P A =BF =5.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633V S PA =⨯⨯=⨯=.解法二:如图所示,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD =(-4,2,0),AE =(2,4,0),AP =(0,0,h ).因为CD AE ⋅=-8+8+0=0,CD AP ⋅=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD ,PA 分别是平面P AE ,平面ABCD 的法向量. 而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos ,||cos ,|CD PB PA PB =,即CD PB PA PB CD PBPA PB⋅⋅=⋅⋅.由(1)知,CD =(-4,2,0),PA =(0,0,-h ). 又PB =(4,0,-h ),故2=.解得5h =.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为111633V S PA =⨯⨯=⨯=.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以 B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4. 故数列{a n } 是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==.所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即 a n +2-qa n +1=a 2-qa 1.由n =1有B (1)=qA (1),即a 2=qa 1,从而a n +2-qa n +1=0. 因为a n >0,所以2211n n a a q a a ++==. 故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.20.解:(1)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为T 1(x ),T 2(x ),T 3(x ),由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+, 其中x ,kx,200-(1+k )x 均为1到200之间的正整数.(2)完成订单任务的时间为f (x )=max{T 1(x ),T 2(x ),T 3(x )},其定义域为{x |0<x <2001k+,x ∈N *}.易知,T 1(x ),T 2(x )为减函数,T 3(x )为增函数.注意到T 2(x )=2kT 1(x ),于是 ①当k =2时,T 1(x )=T 2(x ),此时 f (x )=max{T 1(x ),T 3(x )} =max{10001500,2003x x-}. 由函数T 1(x ),T 3(x )的单调性知,当100015002003x x=-时f (x )取得最小值,解得4009x =. 由于40044459<<,而f (44)=T 1(44)=25011,f (45)=T 3(45)=30013,f (44)<f (45). 故当x =44时完成订单任务的时间最短,且最短时间为f (44)=25011.②当k >2时,T 1(x )>T 2(x ),由于k 为正整数,故k ≥3,此时150********200(1)200(13)50k x x x≥=-+-+-.记375()50T x x=-,φ(x )=max{T 1(x ),T (x )},易知T (x )是增函数,则f (x )=max{T 1(x ),T 3(x )}≥max{T 1(x ),T (x )} =φ(x )=max{1000375,50x x-}.由函数T 1(x ),T (x )的单调性知,当100037550x x=-时φ(x )取最小值,解得40011x =. 由于400363711<<,而φ(36)=T 1(36)=250250911>,φ(37)=T (37)=3752501311>. 此时完成订单任务的最短时间大于25011. ③当k <2时,T 1(x )<T 2(x ),由于k 为正整数,故k =1,此时f (x )=max{T 2(x ),T 3(x )}=max{2000750,100x x-}. 由函数T 2(x ),T 3(x )的单调性知,当2000750100x x=-时f (x )取最小值,解得80011x =,类似①的讨论,此时完成订单任务的最短时间为2509,大于25011. 综上所述,当k =2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68.21.解:(1)方法一:设M 的坐标为(x ,y ),由已知得|2|3x +=.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以5x =+.化简得曲线C 1的方程为y 2=20x .方法二:由题设知,曲线C 1上任意一点M 到圆C 2圆心(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0).又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.3=. 整理得72k 2+18y 0k +y 02-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根.故001218724y y k k +=-=-.② 由101240,20k x y y k y x -++=⎧⎨=⎩得 k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以0112120(4)y k y y k +=.④ 同理可得0234220(4)y k y y k +=.⑤ 于是由②④⑤三式得010*******400(4)(4)y k y k y y y y k k ++= =201201212400[4()16]y k k y k k k k +++=22001212400(16) 6 400y y k k k k -+=. 所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.22.解:(1)若a <0,则对一切x >0,f (x )=e ax -x <1,这与题设矛盾.又a ≠0,故a >0.而f ′(x )=a e ax -1,令f ′(x )=0得11ln x a a =. 当11ln x a a <时,f ′(x )<0,f (x )单调递减;当11ln x a a>时,f ′(x )>0,f (x )单调递增.故当11ln x a a =时,f (x )取最小值11111(ln )ln f a a a a a=-. 于是对一切x ∈R ,f (x )≥1恒成立.当且仅当111ln 1a a a-≥.① 令g (t )=t -t ln t ,则g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增;当t >1时,g ′(t )<0,g (t )单调递减.故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当11a=,即a =1时,①式成立. 综上所述,a 的取值集合为{1}. (2)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---. 令φ(x )=f ′(x )-k =a e ax -2121e e ax ax x x --.则 φ(x 1)=121e ax x x --[e a (x 2-x 1)-a (x 2-x 1)-1], φ(x 2)=221e ax x x -[e a (x 1-x 2)-a (x 1-x 2)-1]. 令F (t )=e t -t -1,则F ′(t )=e t -1.当t <0时,F ′(t )<0,F (t )单调递减;当t >0时,F ′(t )>0,F (t )单调递增.故当t ≠0时,F (t )>F (0)=0,即e t -t -1>0.从而e a (x 2-x 1)-a (x 2-x 1)-1>0,e a (x 1-x 2)-a (x 1-x 2)-1>0.又121e 0ax x x >-,221e 0ax x x >-,所以φ(x 1)<0,φ(x 2)>0. 因为函数y =φ(x )在区间[x 1,x 2]上的图象是连续不断的一条曲线,所以存在c ∈(x 1,x 2),使得φ(c )=0.又φ′(x )=a 2e ax>0,φ(x )单调递增,故这样的c 是唯一的,且()21211e e ln ax ax c a a x x -=-.故当且仅当()212211e e ln ,ax ax x x a a x x ⎛⎫-∈ ⎪ ⎪-⎝⎭时,f ′(x )>k .综上所述,存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立,且x 0的取值范围为()212211e e ln ,ax ax x a a x x ⎛⎫- ⎪ ⎪-⎝⎭.。

2024届修改病句最新试题对点专(1)练解析版

2024届修改病句最新试题对点专(1)练解析版

2024届语言文字运用修改病句专题2024届修改病句最新试题对点专练(一)教师版01【2024届新高三摸底联考语文试题(衡水金卷)】《流浪地球2》电影中,人类为了应对太阳危机,启动了“移山计划”。

即给地球安装上万座巨大的行星发动机,利用“烧石头”产生核聚变释放巨大的能量,推动地球开启“流浪之旅”。

什么是核聚变反应呢?①简单来说,②核聚变反应是将两个原子核重新结合生成一个较重的原子核,③因而产生巨大能量的过程。

④这是太阳及其他恒星内部源源不断产生能量的方式。

⑤我们所熟知的氩弹,⑥其爆炸过程也是一种核聚变反应,⑦只不过这种核聚变反应是不可控的。

⑧因此,⑨人类始终有一个愿望:通过可控核聚变反应来解决能源短缺。

⑩目前可控核聚变已经是最前沿世界的重大科学问题之一。

19.文中第二段有三处表述不当,请指出其序号并做修改,使语言表达准确流畅,逻辑严密。

不得改变原意。

(6分)01【2024届新高三摸底联考语文试题(衡水金卷)】19.③句中的“因而”改为“从而”;⑨句中的“通过可控核聚变反应来解决能源短缺”改为“通过可控核聚变反应来解决能源短缺问题”;⑩句中的“最前沿世界”改为“世界最前沿”。

(每改对一处得2 分,如有其他答案,只要言之成理,可酌情给分)【解析】第③处语境“核聚变反应是……原子核,因而……的过程”不合逻辑。

第⑨处“通过可控核聚变反应来解决能源短缺”成分残缺。

第⑩处“最前沿世界”语序不当。

02【2024届高三第一次联考湖南师大附中】三、语言文字运用(20 分)(一)语言文字运用I(本题共2 小题,10分)阅读下面的文字,完成 18~19 题。

2023年7月,第5号台风“杜苏芮”在我国东南沿海地区强势登陆。

截至7月28 日,台风“杜苏芮”造成的直接经济损失已达 5227 万元。

不过,与它的超强破坏力相比,“杜苏芮”这个名字却显得十分小清新。

人们怎么给超强台风起了这么个名字呢?从“山竹”“玉免”再到如今的“杜苏芮”,这些千奇百怪的名字究竟从何而来?台风是一种产生于热带洋面上的强烈气旋,这种气旋可以持续一周或更长时间,所以同一时间内可能会存在多个台风共舞的现象。

2024年湖南师大附中高三三模物理试题

2024年湖南师大附中高三三模物理试题

2024年湖南师大附中高三三模物理试题一、单选题:本题共7小题,每小题4分,共28分 (共7题)第(1)题下列关于教科书上的四副插图,说法正确的是( )A.图甲为静电除尘装置的示意图,带负电的尘埃被收集在线状电离器B上B.图乙为给汽车加油前要触摸一下的静电释放器,其目的是导走加油枪上的静电C.图丙中摇动起电机,烟雾缭绕的塑料瓶顿时清澈透明,其工作原理为静电吸附D.图丁的燃气灶中安装了电子点火器,点火应用了电磁感应原理第(2)题如图为某款手机防窥膜的原理图,在透明介质中等距排列有相互平行的吸光屏障,屏障的高度与防窥膜厚度均为x,相邻屏障的间距为L,方向与屏幕垂直,透明介质的折射率为,防窥膜的可视角度通常是以垂直于屏幕的法线为基线,左右各有一定的可视角度,可视角度越小,防窥效果越好,当可视角度时,防窥膜厚度( )A.B.C.L D.2L第(3)题如图,在点电荷Q产生的电场中,将两个带正电的试探电荷分别置于A、B两点,虚线为等势线.取无穷远处为零电势点,若将移动到无穷远的过程中外力克服电场力做的功相等,则下列说法正确的是A.A点电势大于B点电势B.A、B两点的电场强度相等C.的电荷量小于的电荷量D.在A点的电势能小于在B点的电势能第(4)题如图所示是一列简谐横波在某时刻的波形图,已知图中b位置的质点起振比a位置的质点晚0.5s,b和c之间的距离是5m,则此列波的波长和频率应分别为()A.5m,1Hz B.10m, 2Hz C.5m,2Hz D.10m,1Hz第(5)题如图所示,一段长方体形导电材料,左右两端面的边长都为a和b,内有带电量为q的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B。

当通以从左到右的稳恒电流I时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )A.,负B.,正C.,负D.,正第(6)题如图所示为实验室使用的旋转磁极式发电机模型,线圈的匝数,内阻,输出端与理想变压器的原线圈相连,理想变压器原、副线圈的匝数比为,副线圈外接电阻。

湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

2012年全国高考理科数学试题及答案-湖南卷

2012年全国高考理科数学试题及答案-湖南卷

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N=A.{0}B.{0,1}C.{-1,1}D.{-1,0,0} 【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N. 2.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为yA.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加D.若该大学某女生身高为170cm ,则可断定其体重比为 【答案】D【解析】由回归方程为y y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()y bx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错.5. 已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =1【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型. 6. 函数f (x )=sinx-cos(x+6π)的值域为A . [ -2 ,2] C.[-1,1 ] , ] 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin cos sin )226x x x x π=-+=-,[]sin()1,16x π-∈-,()f x ∴值域为].【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.7. 在△ABC 中,AB=2,AC=3,AB BC = 1则___BC =.C.【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC∴=-.又由余弦定理知222cos 2AB BC AC B AB BC +-=⋅,解得BC =. 【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC 的夹角为B ∠的外角. 8.已知两条直线1l :y =m 和2l : y=821m +(m >0),1l 与函数2log y x =的图像从左至右相交于点A ,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m变化时,ba的最小值为 A.B. C. D. 【答案】B【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2m mx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m m mmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()b a ∴=【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.二 、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10、 11三题中任选两题作答,如果全做,则按前两题记分 )9. 在直角坐标系xOy 中,已知曲线1C :1,12x t y t =+⎧⎨=-⎩ (t 为参数)与曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩(θ为参数,0a >) 有一个公共点在X 轴上,则__a =.【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. 【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得.10.不等式|2x+1|-2|x-1|>0的解集为_______. 【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).11.如图2,过点P 的直线与圆O 相交于A ,B 两点.若PA=1,AB=2,PO=3,则圆O 的半径等于_______.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为R ,由割线定理知【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知PA PB PC PD ⋅=⋅,从而求得圆的半径. (二)必做题(12~16题)12.已知复数2(3)z i =+ (i 为虚数单位),则|z|=_____. 【答案】10【解析】2(3)z i =+=29686i i i ++=+,10z ==.【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用z =求得.13.(6的二项展开式中的常数项为 .(用数字作答) 【答案】-160 【解析】()6的展开式项公式是663166C (C 2(1)r r r r rr r r T x ---+==-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.如果执行如图3所示的程序框图,输入1x =-,n =3,则输出的数S = . 【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点. (1)若6πϕ=,点P 的坐标为(0),则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 . 【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,2)时cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABCS AC πω=⋅=,设,A B 的横坐标分别为,a b . 设曲线段ABC与x 轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABCSP Sππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得. 16.设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,将此操作称为C 变换,将P 1分成两段,每段2N 个数,并对每段作C 变换,得到2p ;当2≤i ≤n-2时,将P i 分成2i 段,每段2i N个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置. (1)当N=16时,x 7位于P 2中的第___个位置;(2)当N=2n (n ≥8)时,x 173位于P 4中的第___个位置. 【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x =,可设为(1,2,3,4,5,6,,16), 113571524616P x x x x x x x x x =,即为(1,3,5,7,9,2,4,6,8,,16),2159133711152616P x x x x x x x x x x x =,即(1,5,9,13,3,7,11,15,2,6,,16), x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...分钟的概率. (注:将频率视为概率)【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得X 的分布为X 的数学期望为 33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过分钟的概率为980. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y ++=⨯+=从而解得,x y ,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得 该顾客结算前的等候时间不超过...分钟的概率. 18.(本小题满分12分)如图5,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ; (Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD 的体积. 【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作,,,,.BG CD AE AD F G PF //分别与相交于连接由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是BPF ∠为直线PB与平面PAE 所成的角,且BG AE ⊥.由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角.4,2,,AB AG BG AF ==⊥由题意,知,PBA BPF ∠=∠因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠=知,又所以四边形BCDG 是平行四边形,故3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以于是PA BF ==又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为 解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面(Ⅱ)由题设和(Ⅰ)知,,CD AP 分别是PAE 平面,ABCD 平面的法向量,而PB 与PAE 平面所成的角和PB 与ABCD 平面所成的角相等,所以由(Ⅰ)知,(4,2,0),(0,0,),CD AP h =-=-由(4,0,),PB h =-故解得5h =. 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为111633515V S PA =⨯⨯=⨯⨯=. 【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD ⊥即可,第二问算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积,或者建立空间直角坐标系,求得高几体积. 19.(本小题满分12分)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+……+a n ,B (n )=a 2+a 3+……+a n +1,C (n )=a 3+a 4+……+a n +2,n =1,2,……(1) 若a 1=1,a 2=5,且对任意n ∈N ﹡,三个数A (n ),B (n ),C (n )组成等差数列,求数列{ a n }的通项公式. (2) 证明:数列{ a n }是公比为q 的等比数列的充分必要条件是:对任意N n *∈,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. 【解析】解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以 即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=- (Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. (2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列, 则()(),()()B n qA n C n qB n ==,于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即 由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列, 综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证. 20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案. 【解析】 解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k=于是(1)当2k =时,12()(),T x T x = 此时 {}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数13(),()T x T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得 4009x =.由于 134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()max (),()50T x x T x T x xϕ==-易知()T x 为增函数,则 1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭.由函数1(),()T x T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而此时完成订单任务的最短时间大于25011.(3)当2k <时,12()(),T x T x < 由于k 为正整数,故1k =,此时{}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知, 当2000750100x x=-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时 完成订单任务的最短时间为2509,大于25011. 综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数 分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.21.(本小题满分13分)在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值.(Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =. (Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆 2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y y k k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④ 同理可得 0234220(4).y k y y k +⋅=⑤ 于是由②,④,⑤三式得 22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想.22.(本小题满分13分)已知函数()f x =ax e x =-,其中a ≠0.(1) 若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1ax e x =-<,这与题设矛盾,又0a ≠, 故0a >.而()1,ax f x ae '=-令11()0,ln .f x x a a '==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a>时,()0,()f x f x '>单调递增,故当11ln x a a =时,()f x 取最小值11111(ln )ln .f a a a a a=- 于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1. (Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==--- 令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则 令()1t F t e t =--,则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t -->从而21()21()10a x x e a x x ---->,12()12()10,a x x e a x x ---->又1210,ax e x x >-2210,ax e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0,x ϕ=2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>. 综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥,从而得出a的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}考点:交集及其运算.专题:计算题.分析:求出集合N,然后直接求解M∩N即可.解答:解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.点评:本题考查集合的基本运算,考查计算能力,送分题.2.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.3.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题4.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.5.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.6.(5分)(2012•湖南)函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2]B.[﹣,]C.[﹣1,1]D.[﹣,]考点:三角函数中的恒等变换应用;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.解答:解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.点评:本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.7.(5分)(2012•湖南)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.考点:解三角形;向量在几何中的应用.专题:计算题;压轴题.分析:设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.解答:解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.8.(5分)(2012•湖南)已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在X轴上的投影长度分别为a,b,当m变化时,的最小值为()A.16B.8C.8D.4考点:基本不等式在最值问题中的应用;对数函数图象与性质的综合应用;平行投影及平行投影作图法.专题:计算题;综合题;压轴题.分析:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,依题意可求得为x A,x B,x C,x D的值,a=|x A﹣x C|,b=|x B﹣x D|,利用基本不等式可求得当m变化时,的最小值.解答:解:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,则﹣log2x A=m,log2x B=m;﹣log2x C=,log2x D=;∴x A=2﹣m,x B=2m,x C=,x D=.∴a=|x A﹣x C|,b=|x B﹣x D|,∴==||=2m•=.又m>0,∴m+=(2m+1)+﹣≥2﹣=(当且仅当m=时取“=”)∴≥=8.故选B.点评:本题考查对数函数图象与性质的综合应用,理解平行投影的概念,得到=是关键,考查转化与数形结合的思想,考查分析与运算能力,属于难题.二、填空题(共8小题,考生作答7小题,每小题0分,满分35分,9,10,11三题任选两题作答;12~16必做题)9.(2012•湖南)在直角坐标系xoy 中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0 )有一个公共点在X轴上,则a等于.考点:椭圆的参数方程;直线的参数方程.专题:计算题.分析:化参数方程为普通方程,利用两曲线有一个公共点在x轴上,可得方程,即可求得结论.解答:解:曲线C1:(t为参数)化为普通方程:2x+y﹣3=0,令y=0,可得x=曲线C2:(θ为参数,a>0 )化为普通方程:∵两曲线有一个公共点在x轴上,∴∴a=故答案为:点评:本题考查参数方程化为普通方程,考查曲线的交点,属于基础题.10.(5分)(2012•湖南)不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:由不等式|2x+1|﹣2|x﹣1|>0⇔不等式|2x+1|>2|x﹣1|⇔(2x+1)2>4(x﹣1)2即可求得答案.解答:解:∵|2x+1|﹣2|x﹣1|>0,∴|2x+1|>2|x﹣1|≥0,∴(2x+1)2>4(x﹣1)2,∴x>.∴不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.故答案为:{x|x>}.点评:本题考查绝对值不等式的解法,将不等式|2x+1|﹣2|x﹣1|>0转化为(2x+1)2>4(x ﹣1)2是关键,着重考查转化思想与运算能力,属于中档题.11.(5分)(2012•湖南)如图,过点P的直线与圆⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于.考点:与圆有关的比例线段.专题:计算题.分析:设出圆的半径,根据切割线定理推出PA•PB=PC•PD,代入求出半径即可.解答:解:设圆的半径为r,且PO与圆交于C,D两点∵PAB、PCD是圆O的割线,∴PA•PB=PC•PD,∵PA=1,PB=PA+AB=3;PC=3﹣r,PD=3+r,∴1×3=(3﹣r)×(3+r),r2=6∴r=,故答案为:.点评:本题主要考查切割线定理等知识点,熟练地运用性质进行计算是解此题的关键.12.(5分)(2012•湖南)已知复数z=(3+i)2(i为虚数单位),则|z|=10.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.13.(5分)(2012•湖南)()6的二项展开式中的常数项为﹣160(用数字作答).考点:二项式定理.专题:计算题.分析:根据题意,利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.解答:解:()6展开式的通项为T r+1=C6r•(2)6﹣r•(﹣)r=(﹣1)r•C6r•26﹣r•x3﹣r,令3﹣r=0,可得r=3,其常数项为T4=(﹣1)r•C6r•26﹣r=﹣160;故答案为﹣160.点评:本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=﹣1,n=3,则输出的数S=﹣4.考点:循环结构.专题:计算题.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:判断前x=﹣1,n=3,i=2,第1次判断后循环,S=﹣6+2+1=﹣3,i=1,第2次判断后S=5,i=0,第3次判断后S=﹣4,i=﹣1,第4次判断后﹣1≥0,不满足判断框的条件,结束循环,输出结果:﹣4.故答案为:﹣4.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.15.(5分)(2012•湖南)函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若φ=,点P的坐标为(0,),则ω=3;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为.考点:导数的运算;几何概型;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;压轴题.分析:(1)先利用导数的运算性质,求函数f(x)的导函数f′(x),再将φ=,f′(0)=代入导函数解析式,即可解得ω的值;(2)先利用定积分的几何意义,求曲线段与x轴所围成的区域面积,再求三角形ABC的面积,最后利用几何概型概率计算公式求面积之比即可得所求概率.解答:解:(1)∵函数f(x)=sin (ωx+φ)的导函数y=f′(x)=ωcos(ωx+φ),其中φ=,过点P(0,),∴ωcos=∴ω=3.故答案为:3.(2)∵f′(x)=ωcos(ωx+φ),∴曲线段与x轴所围成的区域面积为[﹣f′(x)]dx=﹣f(x)=﹣sin﹣(﹣sin)=2,三角形ABC的面积为=,∴在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为P==.故答案为:.点评:本题主要考查了f(x)=Asin (ωx+φ)型函数的图象和性质,导数运算及导函数与原函数的关系,定积分的几何意义,几何概型概率的计算方法,属基础题.16.(5分)(2012•湖南)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,x N依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…x N.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…x N﹣1x2x4…x N,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2,当2≤i≤n ﹣2时,将P i分成2i段,每段个数,并对每段作C变换,得到P i+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第6个位置;(2)当N=2n(n≥8)时,x173位于P4中的第3×2n﹣4+11个位置.考点:演绎推理的基本方法;进行简单的演绎推理.专题:压轴题.分析:(1)由题意,可按照C变换的定义把N=16时P2列举出,从中查出x7的位置即可;(2)根据C变换的定义及归纳(1)中的规律可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16,再173=16×10+13,即可确定出x173位于P4中的位置.解答:解:(1)当N=16时,P0=x1x2…x16.由C变换的定义可得P1=x1x3…x15x2x4…x16,又将P1分成两段,每段个数,并对每段作C变换,得到P2,故P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,由此知x7位于P2中的第6个位置;(2)考察C变换的定义及(1)计算可发现,第一次C变换后,所有的数分为两段,每段的序号组成公差为2的等差数列,且第一段序号以1为首项,第二段序号以2为首项;第二次C变换后,所有的数据分为四段,每段的数字序号组成以4公差的等差数列,且第一段的序号以1为首项,第二段序号以3为首项,第三段序号以2为首项,第四段序号以4为首项,依此类推可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,9,5,13,…,由于173=16×10+13,故x173位于以13为首项的那一段的第11个数,由于N=2n(n≥8)故每段的数字有2n﹣4个,以13为首项的是第四段,故x173位于第3×2n﹣4+11=3×2n﹣4+11个位置.故答案为3×2n﹣4+11点评:本题考查演绎推理及归纳推理,解题的关键是理解新定义,找出其规律,本题是探究型题,运算量大,极易出错,解题进要严谨认真,避免马虎出错三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次性购物量1至4件 5 至8件9至12件13至16件17件及以上顾客数(人)x 30 25 y 10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:应用题.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,故可得结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;将频率视为概率可得P(X=1)==0.15;P(X=1.5)==0.3;P(X=2)==0.25;P(X=2.5)==0.2;P(X=3)==0.1X的分布列X 1 1.5 2 2.5 3P 0.15 0.3 0.25 0.2 0.1X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,所以P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.点评:本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;证明题.分析:解法一:(Ⅰ)先根据条件得到CD⊥AE;再结合PA⊥平面ABCD即可得到结论的证明;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA=BF,进而得到四边形BCDG是平行四边形,在下底面内求出BF的长以及下底面的面积,最后代入体积计算公式即可.法二:(Ⅰ)先建立空间直角坐标系,求出各点的坐标,进而得到=0以及•=0.即可证明结论;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA 的长,再求出下底面面积,最后代入体积计算公式即可.解答:解法一:(Ⅰ)连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,又AD=5,E是CD得中点,所以CD⊥AE,PA⊥平面ABCD,CD⊂平面ABCD.所以PA⊥CD,而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,由CD⊥平面PAE知,BG⊥平面PAE,于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.由题意∠PBA=∠BPF,因为sin∠PBA=,sin∠BPF=,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD.所以四边形BCDG是平行四边形,故GD=BC=3,于是AG=2.在RT△BAG中,AB=4,AG=2,BG⊥AF,所以BG==2,BF===.于是PA=BF=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.解法二:以A为坐标原点,AB,AD,AP所在直线分别为X轴,Y轴,Z轴建立空间直角坐标系,设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).(Ⅰ)=(﹣4,2,0),=(2,4,0),=(0,0,h).因为=﹣8+8+0=0,•=0.所以CD⊥AE,CD⊥AP,而AP,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)由题设和第一问知,,分别是平面PAE,平面ABCD的法向量,而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以:|cos<,>|=|cos<,>|,即||=||.由第一问知=(﹣4,2,0),=((0,0,﹣h),又=(4,0,﹣h).故||=||.解得h=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.点评:本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.(12分)(2012•湖南)已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式.(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.考点:等差数列的性质;充要条件;等比关系的确定.专题:计算题;证明题.分析:(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,整理即可得数列{a n}是首项为1,公差为4的等差数列,从而可得a n.(2)必要性:由数列{a n}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0,即充分性成立,于是结论得证.解答:解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,∴B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,亦即a n+2﹣a n+1=a2﹣a1=4.故数列{a n}是首项为1,公差为4的等差数列,于是a n=1+(n﹣1)×4=4n﹣3.(2)证明:(必要性):若数列{a n}是公比为q的等比数列,对任意n∈N*,有a n+1=a n q.由a n>0知,A(n),B(n),C(n)均大于0,于是===q,===q,即==q,∴三个数A(n),B(n),C(n)组成公比为q的等比数列;(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则B(n)=qA(n),C(n)=qB(n),于是C(n)﹣B(n)=q[B(n)﹣A(n)],即a n+2﹣a2=q(a n+1﹣a1),亦即a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0.∵a n>0,∴==q.故数列{a n}是首项为a1,公比为q的等比数列.综上所述,数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.点评:本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.20.(13分)(2012•湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.考点:函数模型的选择与应用.专题:综合题.分析:(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,;(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解.解答:解:(1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x)∴,,其中x,kx,200﹣(1+k)x均为1到200之间的正整数(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x)①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{}∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x=∵,,,f(44)<f(45)∴x=44时,完成订单任务的时间最短,时间最短为②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{}∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x=∵,,∴完成订单任务的时间大于③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{}∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x=类似①的讨论,此时完成订单任务的时间为,大于综上所述,当k=2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68. 点评:本题考查函数模型的构建,考查函数的单调性,考查分类讨论的数学思想,解题的关键是确定分类标准,有难度. 21.(13分)(2012•湖南)在直角坐标系xoy 中,曲线C 1上的点均在C 2:(x ﹣5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程 (Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别于曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.考点:直线与圆锥曲线的综合问题;轨迹方程. 专题:综合题;压轴题. 分析:(Ⅰ)设M 的坐标为(x ,y ),根据对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值,可得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧,从而可得曲线C 1的方程;(Ⅱ)当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),设切线方程为kx ﹣y+y 0+4k=0,利用直线与圆相切可得,从而可得过P 所作的两条切线PA ,PC 的斜率k 1,k 2是方程的两个实根,设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,从而可得;同理可得,由此可得当P 在直线x=﹣4上运动时,四点A ,B ,C ,D的纵坐标之积为定值为6400.解答:(Ⅰ)解:设M 的坐标为(x ,y ),由已知得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C 1的方程为y 2=20x(Ⅱ)证明:当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),∵y 0≠±3,∴过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y ﹣y 0=k (x+4),即kx ﹣y+y 0+4k=0, ∴,整理得①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根 ∴②由,消元可得③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4, ∴y 1,y 2是方程③的两个实根 ∴④同理可得⑤由①②④⑤可得==6400∴当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值为6400. 点评: 本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题. 22.(13分)(2012•湖南)已知函数f (x )=e ax ﹣x ,其中a ≠0. (1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合.(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2)(x 1<x 2),记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.考点: 导数在最大值、最小值问题中的应用;函数恒成立问题. 专题: 压轴题. 分析:(1)先确定a >0,再求导函数,确定函数的单调性,可得时,f (x )取最小值故对一切x ∈R ,f (x )≥1恒成立,则,构建新函数g (t )=t ﹣tlnt ,则g ′(t )=﹣lnt ,确定函数的单调性,求出函数的最大值,由此即可求得a 的取值集合;(2)由题意知,,构建新函数φ(x)=f′(x)﹣k=,则,,构建函数F(t)=e t﹣t﹣1,从而可证明φ(x1)<0,φ(x2)>0,由此即可得到存在x0∈(x1,x2),使f′(x0)>k成立.解答:解:(1)若a<0,则对一切x>0,函数f(x)=e ax﹣x<1,这与题设矛盾,∵a≠0,∴a>0∵f′(x)=ae ax﹣1,令f′(x)=0,可得令f′(x)<0,可得,函数单调减;令f′(x)>0,可得,函数单调增,∴时,f(x)取最小值∴对一切x∈R,f(x)≥1恒成立,则①令g(t)=t﹣tlnt,则g′(t)=﹣lnt当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减∴t=1时,g(t)取最大值g(1)=1∴当且仅当=1,即a=1时,①成立综上所述,a的取值集合为{1};(2)由题意知,令φ(x)=f′(x)﹣k=,则令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;∴t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0∴,∵>0,∴φ(x1)<0,φ(x2)>0∴存在c∈(x1,x2),φ(c)=0∵φ(x)单调递增,故这样的c是唯一的,且当且仅当x∈(,x2)时,f′(x)>k综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为(,x2)点评:本题考查导数知识的运用,考查函数的单调性与极值,考查构建新函数确定函数值的符号,从而使问题得解.。

2012届全国高考地理模拟新题筛选专题汇编20 区域可持续发展--环境保护

2012届全国高考地理模拟新题筛选专题汇编20 区域可持续发展--环境保护

2012届全国高考地理模拟新题筛选专题20-区域可持续发展--环境保护(湖南师大附中2012届高三第二次月考)下图是四个大型工业城市的大气污染企业布局情况,据此回答14—15题。

14.以上城市最有可能分布在印度半岛的是(C)A.甲城B.乙城C.丙城D.丁城【解析】印度半岛盛行西南季风和东北季风,污染企业应布局在盛行风的垂直方向,即西北方和东南方,因此丙城市最有可能分布在印度半岛。

(厦门外国语学校2012十阶)C.【选修6—环境保护】资料一:福建省龙岩市永定县龙井生态农业,是集英国贵妃鸡、美国中学山鸡、竹鼠等特色珍禽养殖;百香果、红心蜜柚、美国早实核桃、中草药等名优水果种植;活禽屠宰、分割、熟食深加工、动物标本工艺品加工;农家乐餐饮、休闲旅游为一体的专业规模化、现代化生态农业园。

资料二:下图是龙井生态链种养循环图。

阅读上述资料,回答下列问题:(1)读资料二,说出该农业生态园哪些方面形成废物资源化?(8分)(2)分析该农业生态园的好处。

(7分)C【选修6—环境保护】(1)1 食品加工的废弃物用于生产沼气;2 种植业的秸秆用于生产沼气;3 珍禽养殖、黄粉虫、竹鼠的粪便用于生产沼气;4 珍禽的皮毛用于制作观赏标本等。

(每点2分)(2)产业链长,附加值高;废弃物资源化,减少环境污染,提高经济效益;使用有机肥料,实现绿色优质;使用沼气能源,较少植被破坏;促进餐饮、生态旅游等第三产业的发展;果草套种模式,提高土地利用率。

(任写4点得7【江苏省苏州市苏苑高级中学2012届高三上学期10月月考试题(地理)】“保护性耕作法”是指对耕地实行免耕或浅耕,并在粮食收割时及时将作物秸秆粉碎后归还农田,或者将庄稼茬子留在田地过冬。

用此法进行实验得出下表数据,阅读下表回答23~24题。

某地冬春季节实验前后资料对比表A.增加地表径流量B.减轻空气污染C.增强土壤透气性D.保持土壤水分24. 由表可知,该地最可能是A.三江平原 B.河西走廊C.河套平原D.江汉平原【答案】23.BD 24.BC(黑龙江哈师大附中2012届高三10月月考)下表是20世纪下半叶我国强沙尘暴发生频率与土地沙化速度统计表。

湖南省湖南师大附中、长沙市一中等六校2014届高三下学期4月联考试题 理综 含答案

湖南省湖南师大附中、长沙市一中等六校2014届高三下学期4月联考试题 理综 含答案

湖南省2014届高三六校联考理科综合能力试题(含答案)时量:150分钟满分:300分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第33—40题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

可能用到的相对原子质量:H~l C~12 O~16 Cu~64第I卷选择题(共126分)一、选择题(本题共13小题,每小题6分,共78分。

在每小题列出的四个选项中,只有一项是符合题目要求的)1.下列关于细胞中化学元素和化合物说法错误的是A.活细胞中,数量最多的元素是HB.鸟嘌呤和胞嘧啶数量越多的DNA分子越稳定C.氨基酸、多肽链和蛋白质一般都含有氨基和羧基D.构成淀粉、纤维素和糖原的单体都相同2.真核细胞中具有某些结构,能显著增大膜面积,有利于酶的附着以提高代谢效率。

下列不属于此类结构的是A.神经细胞的树突B.线粒体的嵴C.甲状腺细胞的内质网D.叶绿体的基粒3.利用麦芽酿造啤酒时,麦芽中多酚氧化酶(PPO)的作用会降低啤酒质量。

下图为不同pH和温度对PPO活性影响的曲线,有关叙述错误的是A.PPO催化多酚类物质的生化反应B.相同温度时,pH 7.8的酶促反应产物比pH 8.4的少C.在制备麦芽过程中应将反应条件控制在温度80℃、pH 8.4D.高于90℃,若PPO发生热变性,一定温度范围内温度越高变性越快4.下列关于细胞的生命历程的说法正确的是A.具有细胞结构的生物都有细胞分化现象B.人体衰老的红细胞自由水含量降低,细胞核体积增大C.人体中被病原体感染的细胞和衰老细胞的清除,都需要通过细胞凋亡实现D.细胞的癌变、衰老都是基因程序性突变的结果5.下列有关生物变异的叙述中,正确的是A.基因重组导致杂合子Aa自交后代出现性状分离B.三倍体西瓜、四倍体西瓜的培育原理是染色体畸变,它们与二倍体西瓜属同一物种C.基因重组和染色体结构变异都可能引起DNA碱基序列的改变D.花药离体培养过程中,基因重组、基因突变和染色体畸变均有可能发生6.科学家在细胞外液渗透压和钾离子浓度相同的条件下进行了用含有不同钠离子浓度的细胞外液对离体枪乌贼神经纤维电位变化影响的实验,结果如右图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2012届高三六校联考理科综合能力测试时量:150分钟满分:300分注意事项:1.本试题卷分选择题和非选择题两部分,时量150分钟,满分300分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡和本试题卷上。

2.回答选择题,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试题卷和草稿纸上无效。

3.回答非选择题时,用0.5毫米黑色墨水签字笔将答案按题号写在答题卡上。

写在本试题卷和草稿纸上无效。

4.考试结束时,将本试题卷和答题卡一并交回。

可能到的相对原子质量:H 1 C 12 O 16一、选择题:本大题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.存在于酵母菌细胞中,但不存在于颤藻细胞中的结构或成分是A.染色质B.胸腺嘧啶C.CO2 D.[H]2.右图表示一个分泌细胞。

有关该细胞的叙述,错误的是A.若Y表示胰高血糖素,则该细胞在血糖浓度过低时,活动加强B.若Y表示抗体,则该细胞是由B细胞或记忆细胞增殖分化而来C.若Y表示性激素,则该细胞受下丘脑分泌的激素直接调节D.若Y表示消化酶,则该酶自该细胞到达消化道跨过的膜层数为03.右图所示的实验装置,可用于多种生物学实验。

下列与该装置相关的实验叙述,合理的是A.如果x是葡萄糖,产物Y是酒精,则条件还需添加酵母菌B.如果X是CO2,产物Y是O2,则条件只要加水绵等绿色植物C.如果x是ADP+Pi,装置内有葡萄糖氧化分解,则Y一定是ATPD.如果X是DNA,产物Y含有U,则装置中必须加入RNA聚合酶等4.甲图中的曲线表示光照强度、温度、CO2浓度对农作物产量的影响,乙图是植物细胞代谢的部分过程示意图。

下列相关叙述,正确的是A.引起甲图中B、D两点净光合速率不同的外界因素是光照强度和CO2浓度B.甲图中A点处的三碳化合物含量少于C点处C.乙图中C6H12O6的生成和物质N的生成均在细胞质基质D.乙图所示状态,该植物细胞的光合作用强度大于呼吸作用强度5.右图是4个患遗传病的家系,图中的黑色为遗传病患者,白色为表现正常个体。

下列叙述正确的是A.可能是白化病遗传的家系是甲、乙、丙、丁B.肯定不是红绿色盲遗传的家系是甲、丙、丁C.家系乙中患病男孩的父母一定是该病携带者D.家系丁中的夫妇再生一个正常女儿的几率为25%6.右图中的曲线X表示某种群在理想环境中呈“J”型增长,曲线Y为某种群在有环境阻力条件下呈“S”型增长。

若不考虑迁入和迁出,下列有关叙述错误的是A.曲线X与曲线Y之间的阴影部分面积大小表示环境阻力大小B.从b→c的过程中,种群增长速率减小,数量逐渐增大C.c点时种群增长速率为零,出生率等于死亡率D.立体农业模式可使农作物呈X型增长7.下列实验操作或对实验事实的叙述正确的是①用氨水清洗做过银镜反应的试管②用分液漏斗分离硝基苯和水的混合物③用湿润的pH试纸测定稀盐酸的pH④用酸式滴定管量取20.00mL 0.1mol/L KMnO4溶液⑤不慎将苯酚溶液沾到皮肤上,立即用NaOH稀溶液清洗⑥配制FeSO4溶液时,需加入少量铁粉和稀硫酸⑦下列e~i装置中,除e外都可用于吸收HClA.①②③④B.②⑥⑦C.②④⑥D.①④⑤⑥8.水热反应是指在高温高压的水环境条件下,将二氧化碳转化为有机物的技术。

水热反应不仅能实现二氧化碳到有机物的转化,还可以将有机物质转化为矿物能源,也可将废水中的有机物转化成煤炭等资源。

下列说法不正确的是A.水热反应一定包含化学变化B.水热反应可以降低自然界中碳的含量C.水热反应可以改善温室效应D.水热反应可重建地球上碳资源的和谐循环9.苯丙酸诺龙结构简式如右图。

下列有关苯丙酸诺龙的说法中正确的是A.苯丙酸诺龙分子式是C27H35O3B.苯丙酸诺龙属于芳香烃C.苯丙酸诺龙既能使溴的四氯化碳溶液褪色又能使酸性KMnO4溶液褪色D.1mol苯丙酸诺龙最多可与含2mol NaOH的溶液反应10.下列反应不属于氧化反应的是A.乙炔使酸性高锰酸钾溶液褪色B.葡萄糖在人体内转化为CO2C.溴乙烷在碱性条件下水解D.TNT的爆炸反应11.某固体酸燃料电池以CaHSO4固体为电解质传递H+,基本结构见右图,电池总反应可表示为:2H2+O2==2H2O,下列有关说法不正确的是A.H+由a极通过固体酸电解质传递到b极B.b极上的电极反应式为:O2+4e—+4H+===2H2OC.每转移0.1mol 电子,消耗标准状态下的H2 1.12LD.电子从b极通过外电路流向a极12.下列有关离子浓度的关系不正确的是A.若常温下,0.1mol/L的二元酸H2A溶液c(H+)=0.11mol/L,则Na2A稀溶液中:c(Na+)=2c(A2-)+2c(HA-)+2c(H2A)B.pH=5.6的CH3COOH与CH3COONa混合溶液中:c(Na+)<c(CH3COO—)C.NaHCO3与NaHSO3混合反应后的中性溶液中:D.浓度均为0.1mol/L的CH3COOH和CH3COONa溶液等体积混合后:13.已知三价铁离子的氧化性比铜离子强。

现将a mol铁和b mol铜的混合物与含有c mol HNO3的稀溶液充分反应,设还原产物为NO。

下列结论:①若只有一种氧化产物,则3c=8a;②若只有二种氧化产物,被还原的硝酸物质的量为0.25c mol;③若有三种氧化产物,被还原的硝酸物质的量为0.25c mol;④若剩余金属0.5a mol,则氧化产物为一种或二种。

其中正确的组合是A.只有②B.①②C.②③D.③④二、选择题:本题包括8小题。

每小题6分,共48分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全得3分,有选错或不答的得0分。

14.关于物理思想方法和物理学史,下列说法正确的是A.卡文迪许利用扭秤装置比较准确地测出了引力常量B.法拉第发现了电流可以使周围的磁针偏转C.E=F/q是用微元法定义物理量D.伽利略对自由落体运动的研究,运用了逻辑推想、猜想和假说和科学实验相结合的方法15.如图所示,a、b两物体静止叠放在光滑水平面上。

a,b质量分别为m a=12kg,m b=4.0kg,a、b之间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力。

在物体b上施加水平方向的拉力F,开始时F=10N,此后逐渐增加在F增大的过程中,下列判断正确的是A.F开始作用时两物体间即开始相对滑动B.两物体间始终不会相对滑动C.两物体先相对静止,当拉力F>24N时,开始相对滑动D.两物体先相对静止,当F>32N时,开始相对滑动16.工人师傅利用搭在货车车厢与地面间的木板来卸下货物时,发现木板与地面的倾角α分别为30°和37°时货物所受摩擦力的大小恰好相同,则货物与木板间的动摩擦因数的大小为(sin37°=0.6,cos37°=0.8)A .12 B.2 C.2 D .5817.如图所示,与斜面平行的绝缘轻质弹簧一端固定在斜面底端,带电小球Q 固定在光滑绝缘斜面上的M 点,另有一小球P 与Q 大小相同、带同种电荷,P 、Q 都可视为质点,且在通过弹簧中心的直线ab 上。

现将P 压缩弹簧到一定长度,由静止开始释放P ,P 沿斜面向上运动到达N 点时速度为零。

从释放P 到运动到N 点的过程中A .刚释放的瞬间P 的加速度为零B .小球P 的加速度先减小后增大C .小球P 和弹簧的总机械能减小D .小球P 和Q 与弹簧组成的系统机械能增大18.一台微型电风扇的直流电动机的额定电压为U ,额定电流为I ,线圈电阻为R ,将它接在电动势为E ,内阻为r 的直流电源的两极间,则A .若电动机正常工作,电源的效率为(1)IrE -B .若电动机正常工作,电动机消耗的热功率为2U RC .若电风扇被卡住不转动,电动机消耗的总功率为UID .若电风扇被卡住不转动,电源的效率为UE19.如图所示,某匀强电场中的四个点a 、b 、c 、d 是一个四边形的四个顶点,电场线 与四边形所在平面平行,ab//cd ,ab ⊥bd ,ab=2L,bd=cd=L 。

已知a 点电势为8V ,c 点电势为16V ,d 点电势为20V 。

一个带电量为e (元电荷)的带正电粒子经过d 点的速度大小为v 0,方向与bd 成45°,一段时间后经过b 点。

不计粒子的重力,则A .场强的方向由d 指向aB .b 点电势为16VC .粒子从d 运动到b ,电场力做功为6eVD .粒子从d 运动到b0v20.宇宙中有一半径为R 的星球,宇航员站在该星球上离星球表面h 高处以速度v 平行星球表面抛出一质量为m 的小球,测得小球的水平位移为x ,这一平抛运动的空间范围很小,可不计重力加速度的变化。

下列判断正确的是A.在该星球表面上以0v = B.在该星球表面上以0v =C .绕该星球表面附近运行的卫星的向心加速度为222hv a x =D .绕该星球表面附近运行的卫星的周期为2xT v π=21.如图所示,边长为L 的正三角形闭合金属框架,全部处于垂直于框架平面的匀强磁场中,现把框架匀速拉出磁场,图象中E为回路电动势,I为回路电流,F为所加外力,P为回路电功率,x为框架位移。

则框架拉出磁场的过程中,正确的图象是三、非选择题:包括必考题和选考题两部分。

第22题~第32题为必考题,每个试题考生都必须做答。

第33题~第40题为选考题,考生根据要求做答。

(一)必考题(11题,共129分)22.(6分)用拉力传感器和速度传感器“探究加速度a与物体合外力F的关系”的实验装置示意图如图甲所示。

实验中用拉力传感器记录小车受到细线的拉力F的大小,在长木板上相距为L的A、B两个位置分别安装速度传感器1和2,记录小车到达A、B两位置时的速度为v A、v B。

(1)用本题中设定的物理量写出加速度的表达式:a= ;(2)从理论上来看“a – F”图象是过原点的一条直线,本次实验得到的图线却如图乙所示,其中的原因是。

(3)利用上述装置还可以完成什么实验?(写一实验名称)23.(10分)某同学对一硅光电池感兴趣,欲探究其的输出电压U与输出电流I的关系。

设计了如图甲所示电路。

可实验时只是没有电流表,但有多的电压V2和定值电阻R0(阻值等于3.0Ω),而且电压表内阻很大可视为理想电压表。

(1)请你根据已有的实验器材将图甲的电路稍作改,并按修改的电路图在图乙中将实验器材连成实验电路。

(2)若电压表V2的读数为1.8V,则电源的输出电流I= A;(3)调节滑动变阻器,通过测量得到电压表V1的示数U1随电压表V2的示数U2的曲线U1—U2如图丙所示,由此可知电池内阻Ω,短路电流为A。

相关文档
最新文档