On some generalized discrete logistic maps
统计学专业英语词汇

log-log 对数
log-normal distribution 对数正态分布
longitudinal 经度的,纵的
loss function 损失函数
M
Mahalanobis\' generalized distance Mahalanobis广义距离
drop out 脱落例
Durbin-Watson statistic(ratio) Durbin-Watson统计量(比)
E
efficient, efficiency 有效的、有效性
* Engel\'s coefficient 恩格尔系数
entropy 熵
epidemiology 流行病学
* error 误差
item 项
J
Jacknife 刀切法
K
Kaplan-Meier estimate Kaplan-Meier估计
* Kendall\'s rank correlation coefficients 肯德尔等级相关系数
Kullback-Leibler information number 库尔贝克-莱布勒信息函数
model, -ing 模型(建模)
moment 矩
moving average 移动平均
multicolinear, -ity 多重共线(性)
multidimensional scaling(MDS) 多维换算
multiple answer 重复回答
multiple choice 多重选择
multiple comparison 多重比较
* histogram 直方图
专业英语资料

英译中1 More generally, signal processing is an operation designed for extracting, storing, and transmitting useful information. The distinction between useful and unwanted information is often subjective as well as objective.更普遍的是,信号处理,提取,存储和传输有用的信息而设计的操作。
有用和无用信息之间的区别往往是主观和客观。
2 DSP is the mathematics, the algorithms, and the techniques used to manipulate real world signals after they have been converted into a digital form. This includes a wide variety of goals, such as: enhancement of visual images, recognition of speech, compression of data for storage and transmission, etc. DSP包含数学算法,算法实现和用于现实世界信号转换成数字形式后的处理技术。
DSP包括各种各样的目标,如:提高视觉图像,语音识别,存储和传输的数据压缩,等3 The channel capacity is a function of the probabilistic description of the output conditional on each possible input. Conversely, it is not possible to achieve low error probability at rates above the channel capacity.信道容量是在每个可能的输入输出条件概率描述的功能。
疾病的定义

疾病的定义与争议内科医生是如何认识“疾病”这个专业术语的?这可难为了临床医生们,因为这种哲学问题可能更应该由中世纪经院哲学家们来回答。
但最近医学研究院(IOM)的一篇235页报告,就“系统性劳累不耐受疾病”(SEID)提出了新的见解。
这项报告也对患者,医生以及第三支付方有很多具有临床启示。
对“疾病”的定义自临床医学建立以来,一直都是争论的焦点。
例如,古希腊Knidos学派与Kos学派对疾病的观点就不同。
Knidos学派(Aesculapius学院为代表)认为,散在病态实体(如脓肿或肿瘤)是疾病的定义特征,从属于病理学的一般规律。
以希波克拉底为代表的偏经验主义Kos学派,强调病人具有特定的痛苦。
事实上这两种观点或将疾病视为一种特殊的病理学进程,或将它看成是以患者的自述方式决定其特征的一种特殊的人类体验。
19世纪,德国病理学家RudolfVirchow的一项著名声明在医学科学领域引发了一场革命。
他提出:“没有广泛疾病,只有局部的疾病。
”但是Virchow的同事,LudwigAschoff却不认同,他认为Virchow仅仅是希望将病灶局部化,而不是疾病[3]。
我们确实有理由相信Virchow将疾病概念化为生物体的广义状况,也就是说会随着机体的死亡而消失,不像损伤那样。
当代,人们对疾病的定义仍然存在争议。
近期,AMA要求科学和公共健康委员会在肥胖的审议中出具一份顾问意见。
而委员会面临的一个问题是,“肥胖算是疾病吗?”委员会审慎的回答让我们见识了什么叫语言和谦逊:“因疾病没有统一、明确、权威以及被广泛认可的定义,所以难以最终确定肥胖是否是一种内科疾病。
[4]”不幸的是,在过去的50年间,对Virchow观点的狭义解释(比如近代精神病学家Thomas Szasz)占据了“疾病”讨论的主流。
这也使一种观点出现(在我看来是种误解):只有特定的,可识别的病理生理学或解剖学异常“称为”疾病。
然而,这些标准全然不顾古往今来的临床诊断,并且也与许多神经病学、精神病学、疼痛医学的当代诊断不一致。
基于 Voronoi 图的 简单多边形骨架提取

计算几何课程设计报告基于Voronoi图的简单多边形骨架提取引言骨架(Skeleton)又称中轴(Medial Axis),通常使用烧草模型和最大球(圆)模型来描述。
骨架有着与原物体相同的拓扑和形状信息,是一种性能优良的几何特征,能够有效的描述物体,因此,在物体识别、路径规划、医学工程等领域多有应用。
在物体识别等应用领域里,骨架提取的输入可以看作是空间内的点构成的多边形,对于多边形的骨架提取也成为了这些应用的基本技术,具有重要的应用意义。
在此次课程设计中,我们实现了基于Voronoi 图的任意多边形的骨架提取,并提供了多边形骨架提取的演示界面。
多边形骨架一个多边形的骨架,如上图所示,可以看作是由无数点对之间的骨架点组成的。
两点间的骨架(skeleton)(等同于对中轴(medial axis)的求取)是到两点距离相等的点的轨迹,它是两点连线的垂直平分线,每一点所邻接的半平面是到其距离最小的点集相应地可扩展为离散点集的中轴定义。
它是下列性质点的轨迹:其上任一点到最近两离散点距离相等,相应地也产生各点到其距离最小的点集;两线间的中轴是到两线距离相等的点的轨迹,它在两线相交时为角平分线——两线平行时为到两线距离——的平行线,每一线所邻接并以中轴为界的区域是到其距离最小的点集。
一线和一点间的中轴是到该点(线距离相等的点的轨迹,它是以该点为焦点、该线为准线的抛物线。
该点或线所邻接并以中轴为界的区域是到其距离最小的点集。
多边形骨架的几何算法多边形骨架(中轴)的几何算法,是由多边形的某一点开始,找出参与中轴线计算的相应的线段与线段、点与线段、点与点,实质都转化为求某个特定点(中轴转折点)的问题,因此也就是找点对序列的方法,基本的多边形骨架抽取的数据组织和算法梗概如下:从数据结构的组织上讲:实际多边形的中轴是一个多层次的环、树结构,且层次是不能限制的。
尽管一个多边形总是确定的、有限的,但复杂的多边形结构的复杂程度很难事先洞察,其各层次都可以生长,结构不定,数据组织困难,算法也困难。
一些常见的统计术语翻译

一些常见的统计术语翻译Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可承受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA 〔analysis of variance〕, 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差 ARIMA, 季节和非季节性单变量模型的极大似然估计 Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical puter programs), BMDP统计软件包Bo*plots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey deposition, 乔洛斯基分解Circle chart, 圆图 Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素bination pool, 合并binative table, 组合表mon factor, 共性因子mon regression coefficient, 公共回归系数mon value, 共同值mon variance, 公共方差mon variation, 公共变异munality variance, 共性方差parability, 可比性parison of bathes, 批比拟parison value, 比拟值partment model, 分部模型passion, 伸缩plement of an event, 补事件plete association, 完全正相关plete dissociation, 完全不相关plete statistics, 完备统计量pletely randomized design, 完全随机化设计posite event, 联合事件posite events, 复合事件Concavity, 凹性Conditional e*pectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingencytable, 列联表Contour, 边界限Contribution rate, 奉献率Control, 对照Controlled e*periments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性 Correlation coefficient, 相关系数Correlation inde*, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变 Co* Regression, Co*回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 穿插设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 穿插表 Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和 Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精细度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matri*, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反响曲线 Double blind method, 双盲法Double blind trial, 双盲试验Double e*ponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法 E-LEffect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经历分布Empirical probability, 经历概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量 Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件E*ceptional data point, 异常数据点E*pectation plane, 期望平面E*pectation surface, 期望曲面E*pected values, 期望值E*periment, 实验E*perimental sampling, 试验抽样E*perimental unit, 试验单位E*planatory variable, 说明变量E*ploratory data analysis, 探索性数据分析E*plore Summarize, 探索-摘要E*ponential curve, 指数曲线E*ponential growth, 指数式增长E*SMOOTH, 指数平滑方法 E*tended fit, 扩大拟合E*tra parameter, 附加参数E*trapolation, 外推法E*treme observation, 末端观测值 E*tremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数 First principal ponent, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fi*ed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型 Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型 Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目 Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐 Hierarchical classification, 组分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究 Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Inde*, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matri*, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度 Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L 估计量L-estimator of scale, 尺度L估计量Level, 水平Life e*pectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷 Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验 Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型 Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量M-RMain effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical e*pectation, 数学期望Mathematical model, 数学模型Ma*imum L-estimator, 极大极小L 估计量Ma*imum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组均方Means (pare means), 均值-均值比拟Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值 Model specification, 模型确实定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率 Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple parison, 多重比拟Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual e*clusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设 Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计 Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的方案卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精细度Predicted value, 预测值Preliminary analysis, 预备性分析Principal ponent analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Pro*imities, 亲近性 Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR deposition, QR分解Quadratic appro*imation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radi* sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值 Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-e*pression, 重新表达Reference set, 标准组Region of acceptance, 承受域Regression coefficient, 回归系数Regression sum of square, 回归平方和 Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回忆性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素R*C table, R*C表S-ZSample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析 Secondderivative, 二阶导数Second principal ponent, 第二主成分SEM (Structural equation modeling), 构造化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法 Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matri*, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差异的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层〔复数〕Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 构造关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARP (Variance ponent estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varima* orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilco*on paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访 Youden's inde*, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换。
清华大学本科计算机课程介绍

课号:00240013 学分: 3 课程名称 中文 课程属性:全校任选 英文 开课学期:秋、春 Fundamentals of Computer-aided Design 出版社 清华大学出版社 出版年月 2002 年 8 月
计算机辅助设计技术基础 书名 作者
使用教材
计算机辅助设计技术基 础教程
本课程是计算机科学与技术系为全校本科生开设的一门重要的计算机专业基础 课,目的是培养学生的软件工程素质,提高学生的软件开发能力。 本课程以软件生命周期的主要活动为主线,从软件及软件工程的历史和发展、软 件开发过程、需求分析、软件设计、程序编码、软件测试、软件维护、软件项目管理、 标准及规范等方面全面介绍软件工程的基本理论、方法、技术和工具。
课号: 30240273 课程名称
学分: 3 中文
课程属性:本科必修 开课学期: 春季 数据结构 书名 作者 英文 Data Structure 出版社 出版年月 1997
使用教材 参考书 讲课对象 课 程 简 介
数据结构(C 语言版)
严蔚敏,吴伟民 清华大学出版社
[1] Kruse, et.al. Data Structures & Program Desing in C. [2] Knuth. The Art of Computer Programming. Volume 1. 本科生 适用专业 工业工程系 先修课 C 语言程序设计
This course focuses on the basic concepts, principles, algorithms and applications of computer-aided design(CAD), it mainly consists of the following topics: software and hardware system of CAD, two-dimensional transformations, line clipping, raster display of 2D graphics, curves Introduction and surfaces, solid modeling, three-dimensional transformations, three-dimensional viewing, visible-surface determination, basic illumination models, and introductions to AutoCAD, 3DMAX 5.0 and OpenGL. It is an ideal choice for students who want to learn the rudiments of this dynamic and exciting CAD technology. 姓 名 讲 课 教 师 职称 主要教学和科研领域 主要教学领域: (1)承担全校计算机辅助设计技术基础 课教学; (2)承担研究生的小波分析及其应用课教学; 主要研究领域:小波分析及其应用,科学计算可视化, 计算机图形学,几何造型和图象处理。 (1)承担全校计算机辅助设计技术基础课教学
六西格玛术语缩写中英对照

What is 城市轨道交通 urban rail transport
精品ppt模板
公共方差 公共变异 共性方差 可比性 批比较 比较值 分部模型 伸缩 补事件 完全正相关 完全不相关 完备统计量
13
• Completely randomized design • Composite event • Composite events • Concavity • Conditional expectation • Conditional likelihood • Conditional probability • Conditionally linear • Confidence interval • Confidence limit • Confidence lower limit • Confidence upper limit
条形图
• Bar graph
条形图
ቤተ መጻሕፍቲ ባይዱ
• Base period
基期
• Bayes‘ theorem
Bayes 定理
• Bell-shaped curve
钟形曲线
What is 城市轨道交通 urban rail transport
精品ppt模板
6
• Bernoulli distribution • Best-trim estimator • Between-group variation • Bias • Binary logistic regression • Binomial distribution • Binomial tests • Bisquare • Bivariate Correlate • Bivariate normal distribution • Bivariate normal population • Biweight interval
统计学术语中英对照

population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 表达统计学inferential/inductive statistics 推论 ...抽样调查〔sampliing survey单纯随机抽样〔simple random sampling 系统抽样〔systematic sampling分层抽样〔stratified sampling整群抽样〔cluster sampling多级抽样〔multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics) 实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 表达统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性形式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive表达统计学: Descriptive statistics 期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statisticalhypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple randomsampling分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signedrank tests魏克森等级和检定: Wilcoxon rank sumtests连检定法: Run test离散的均匀密度: Discrete uniformdensities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniformdensities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysis存活分析: Survival analysis时间序列分析: Time series analysis线性形式: Linear models品质工程: Quality engineering机率论: Probability theory统计计算: Statistical computing统计推论: Statistical inference随机过程: Stochastic processes决策理论: Decision theory离散分析: Discrete analysis数理统计: Mathematical statistics统计名词市调辞典众数(Mode) 普查(census)指数(Index) 问卷(Questionnaire)中位数(Median) 信度(Reliability)百分比(Percentage) 母群体(Population)信赖水准(Confidence level) 观察法(Observational Survey)假设检定(Hypothesis Testing) 综合法(Integrated Survey)卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling)差距量表(Interval Scale) 序列偏向(Series Bias)类别量表(Nominal Scale) 次级资料(Secondary Data)顺序量表(Ordinal Scale) 抽样架构(Sampling frame)比率量表(Ratio Scale) 集群抽样(Cluster Sampling)连检定法(Run Test) 便利抽样(Convenience Sampling)符号检定(Sign Test) 抽样调查(SamplingSur)算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error)展示会法(Display Survey)调查名词准确效度(Criterion-RelatedValidity)元素(Element) 邮寄问卷法(Mail Interview)样本(Sample) 信抽样误差(Sampling error)效度(Validity) 封闭式问题(Close Question)准确度(Precision) 访问法(TelephoneInterview)准确度(Validity) 随机抽样法(RandomSampling)实验法(Experiment Survey)抽样单位(Sampling unit) 资讯名词市场调查(Marketing Research) 决策树(Decision Trees)容忍误差(Tolerated erro) 资料采矿(DataMining)初级资料(Primary Data) 时间序列(Time-Series Forecasting)目的母体(Target Population) 回归分析(Regression)抽样偏向(Sampling Bias) 趋势分析(TrendAnalysis)抽样误差(sampling error) 罗吉斯回归(Logistic Regression)架构效度(Construct Validity) 类神经网络(Neural Network)配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test)人员访问法(Interview) 判别分析法(Discriminant Analysis)集群分析法(cluster analysis) 规那么归纳法(Rules Induction)内容效度(Content Validity) 判断抽样(Judgment Sampling)开放式问题(Open Question) OLAP(OnlineAnalytical Process)分层随机抽样(Stratified Randomsampling) 资料仓储(Data Warehouse)非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge DiscoveryAbsolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可承受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA 〔analysis of variance〕, 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs),BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector,卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准那么Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联络数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比拟Comparison value, 比拟值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 结合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 结合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate,相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界限Contribution rate, 奉献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准那么Criteria of least squares, 最小二乘准那么Critical ratio, 临界比Critical region, 回绝域Critical value, 临界值Cross-over design, 穿插设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 穿插表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料搜集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精细度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 分布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反响曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经历分布Empirical probability, 经历概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式间隔Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance 〔已说明方差〕Explanatory variable, 说明变量Exploratory data analysis, 探究性数据分析Explore Summarize, 探究-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩大拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶尔事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初程度Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 结合概率Joint probability distribution, 结合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准那么Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 程度Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比拟Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小间隔估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型确实定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC〔多元散射校正〕Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比拟Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目的函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图〔又称佩尔托图〕Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 形式PCA〔主成分分析〕Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的方案卡PLS〔偏最小二乘法〕Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精细度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified randomsampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q 图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 承受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 回绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回忆性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 构造化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著程度Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差异的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层〔复数〕Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 构造关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目的分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ORIGINAL ARTICLEOn some generalized discrete logistic mapsAhmed G.Radwan*Engineering Mathematics Department,Faculty of Engineering,Cairo University,12613,Egypt Nanoelectronics Integrated Systems Center (NISC),Nile University,Cairo,Egypt Received 11February 2012;revised 7May 2012;accepted 15May 2012Available online 28June 2012KEYWORDS Logistic map;Bifurcation diagram;Stability;Generalized 1D map;Arbitrary power;ChaosAbstract Recently,conventional logistic maps have been used in different vital applications like modeling and security.However,unfortunately the conventional logistic maps can tolerate only one changeable parameter.In this paper,three different generalized logistic maps are introduced with arbitrary powers which can be reduced to the conventional logistic map.The added parameter (arbitrary power)increases the degree of freedom of each map and gives us a versatile response that can fit many applications.Therefore,the conventional logistic map is considered only a special case from each proposed map.This new parameter increases the flexibility of the system,and illustrates the performance of the conventional system within any required neighborhood.Many cases will be illustrated showing the effect of the arbitrary power and the equation parameter on the number of equilibrium points,their locations,stability conditions,and bifurcation diagrams up to the chaotic behavior.ª2012Cairo University.Production and hosting by Elsevier B.V.All rights reserved.IntroductionSince 1930until now iterated maps are still considered very important in the modeling and processing of many fields such as in population biology,encryption,communication and business cycle theory [1–11].One of the most famous maps comes from the so called continuous logistic equation which was introduced by Pierre Verhulst in the middle of the 19th century.The dynamical behavior of this continuous equation is trivial compared with that one presented by thediscrete logistic map introduced in the 1960s,although it was popularized in the 1970s by Robert May in his well known paper published in the journal Nature.Another complex map based on the iterated empirical reproduction curves of fish was introduced by William Ricker in 1954.Furthermore,the analysis of many iterated maps was stud-ied such as generating random numbers from the logistic map by John von Neumann in 1940[2].One of the basic classifications of logistic maps can be done with the help of bifurcation diagrams which display some char-acteristic properties of the asymptotic solution of a dynamical system as a function of a control parameter.According to the Sarkovskii theorem [2,3],if the function has a periodic point of period three then it has all periods as well which means chaos can be achieved at a certain range of the control parameter.The major property of any chaotic system is that it exhibits a great sensitivity to initial conditions.The most common lo-gistic map is that showing a non-linear recurrence relation with*Tel.:+201224647440.E-mail address:agradwan@Peer review under responsibility of CarioUniversity2090-1232ª2012Cairo University.Production and hosting by Elsevier B.V.All rights reserved./10.1016/j.jare.2012.05.003a single control parameter l and describes the population size x relative to the time t as followsx nþ1¼k x nð1Àx nÞð1Þwhere k is the growth rate of the population,as discussed before. As k<3the system has afixed stable point(nontrivial solution). However as k increases,the system outputfluctuates between different periodic points.For3<k<3.45the output oscillates between twofixed points(first bifurcation happens at k=3) Moreover,as3.45<k<3.545the system oscillates between four stable points,and so on as k increases until it reaches4 which shows infinitefixed points or chaos.This diagram which describes this process is called the bifurcation diagram.Many recent applications used the logistic map as a model or a data source such as the following examples:In biology [5,6],if the biologist can predict very accurately the population rate of living organisms such that when the population sizefluc-tuates betweenfixed values,a period of2,4or8years,many novel achievements can be presented[2].Also,the logistic map can be used to model some processes in chemistry such ware to create logistic maps[20]and Chaotic circuits[21,22] which has random-like appearance values limited between two bounds.The generation of the logistic map with its bifur-cation properties can also help in the noise analysis for many applications such as modeling of the respiratory system[23].In this paper we will investigate three different cases of the lo-gistic map of arbitrary power.The three cases can be summa-rized byx nþ1¼k x anð1Àx bnÞð2Þwhere(a,b)will take one of the three following cases(a,a),(1, a)and(a,1)for all a e R+.For each case,we will discuss the fixed points,its range,the effect of iteration,arbitrary power a and the bifurcation diagrams with respect to the two parame-ters a and k.The next three sections in this paper will discuss the behavior and properties of the three proposed logistic maps.The summary and comparisons of the three logistic sys-tems will be introduced in the conclusion.First generalized logistic map x nþ1¼k x anð1Àx anÞFig.1(a)The effect of the function iteration f m where fðx;a;kÞ¼4x aðlÀx aÞfor m={1,2,4}and(b)the projection of thefifth iteration for different values of k={3.0,3.5,4.0}.164 A.G.Radwancurves rotate as a changes.It is clear that the surface rotation of the iterated function f m increases as m increases and a de-creases.In addition,as m increases the number of peaks in-creases exponentially in a nonlinear way(not as the conventional case)so that some of them rotate left and others right as shown in Fig.1a when m=4.Effect of k withfixed m=5As known from the conventional case,the parameter k affects the map response.Fig.1b shows the projection of thefifth iter-ated function f5in the a–x plane for different values of k.The range of this function increases as k increases from less than 0.8when k=3.0up to the full range[0,1]when k=4.0. Moreover,the number of peaks increases as shown from Fig.1b from the merging of the red color(high values)with the blue(low values),and the contours become more nonlinear as k increases from3.0up to4.0.The nontrivialfixed points versus kThefixed points can be calculated from xüfðxÃ;k;aÞthen the equation that controls the value of x\is given by kðxÃÞ2aÀkðxÃÞaþxü0.Let us assume a=0.1k,where k e N+and y=x0.1which transforms the previous equation into a polynomial as k y2kÀk y kþy10¼0As long as the parameter k is known the roots of the previous equation can be easily obtained.Fig.2shows the nontrivial solution (x\…0)where x\increases as k increases when a<1.In addi-tion,the nonlinearity of the curve x\also increases.As a be-comes very small,the value of x\becomes closer to zero (trivial solution).The stability criteria of these points is classi-fied based on the derivative at these points for example if j f0ðxÃ;k;aÞj<1then this point is a sink point(stable point), however if j f0ðxÃ;k;aÞj>1this point will be a source(unstable point).The derivative f0¼@f@xis given byf0ðxÃ;k;aÞ¼kaðxÃÞaÀ1ð1À2ðxÃÞaÞð3ÞTherefore,the critical point k s is the value of k when the abso-lute derivative becomes one.This value depends on the rela-tionship between thefixed point x\and x p¼ffiffiffiffiffiffiffi0:5apas follows k s¼1aðxÃÞaÀ1ð1À2ðxÃÞaÞxÃ<x p4x p xüx p1aðxÃÞaÀ1ð2ðxÃÞaÀ1ÞxÃ>x p8>><>>:ð4ÞFig.2Thefixed points and their derivatives versus for different values of(a)a<1and(b)a>1.Table1The values of x k and k c for different a.a 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92x k0.1040.1980.2760.340.3970.4440.4840.51950.550.5774 k c 1.3674 1.6136 1.81 1.976 2.117 2.238 2.34479 2.43896 2.5228 2.5981Fig.3The bifurcation diagram of thefirst proposed logistic map versus A for different values of a={0.1,0.3,1.1,2.5}. Fig.4The bifurcation diagram of thefirst proposed logistic map versus a for different values of X=1,2,3,and4.When a=0.1,the system has a singlefixed point in the full range of k and it is always stable.However,as a increases, the absolute derivative j f0ðxÃ;k;aÞj begins to exceed one as k increases as shown from Fig.2a.For example when a=0.5, then fðx;k;aÞ¼kffiffiffix pð1Àffiffiffix pÞ,thefixed point x\is given by xüðk=ðkþ1ÞÞ2and x p=0.25.The derivative at thisfixed point is given by f0ðxÃ;k;0:5Þ¼0:5ð1ÀkÞ.Therefore,this fixed point is stable only in the range k e(0,3).If k>k s=3,then this point will be unstable and bifurcation starts.Similarly for other cases when a<1,the system has a fixed point in the range of k e(0,k max).When a>1.0,the curves of x\become more nonlinear as shown in Fig.2b.By simple differentiation and analysis,thecritical value x k at which@k@xü0is given by x k¼ð1Àa1À2aÞ1=a andthe critical value k c¼x k2ak ak.These critical values are locatedin the acceptable range if a>1.0as shown from Table1, and also from Fig.2b.By using the definition of k c and x k in the calculation of the derivative at that point where j f0ðx k;k c;aÞj¼1is the stability limit of thefixed points.There-in Fig.3.Therefore,forfixed value of k,the behavior of the system will be changed with different a.For example at k=3.8,the system response changed fromfixed points,period two,multiple periods,and chaos when a equals to0.1,0.3,0.5 and a>0.7respectively.As a=1,the conventional bifurca-tion diagram is obtained.The bifurcation diagrams versus k for a>1As discussed in thefixed points subsection,when a>1this lo-gistic map has afixed point for each k in the interval k e(k c,k s). Therefore,the bifurcation diagram suffers from discontinuities once the parameter a>1as shown from Fig.3where thefixed points appeared suddenly at k=k c as discussed in Table1. For example when a=2.5,the bifurcation diagram starts very close to k=2.9with a single solution(fixed point)until k%3.3where bifurcation begins.It is very clear that the bifur-cation diagram has a similar shape to the conventional case. However as a becomes greater than one the range of k for a5The bifurcation diagram of the second proposed logistic map(a)versus A for different values of a={0.1,0.4,0.7,1.0,100} versus a for different values k={1.5,2.5,4.0}.On some generalized discrete logistic maps167different as shown in Fig.3where the range of acceptable a for nontrivial solution is related to k c .For example when k =2the system has a single nontrivial fixed point up to a =1.416.Avery interesting curve is found when k =3where the system has period two in the range a e (0.5,1).Otherwise,parameter a in this case since p ðx ;k ;a Þis different than the pre-vious case f ðx ;k ;a Þwhere this range was fixed.The fixed points168A.G.RadwanThefifth iteration a e[0,2]for different k<k max=2.5981 The effect of k in the5th iteration p5ðx;k;aÞwhere the function value increases as k increases is studied.The function value at k=0.5<1is very small compared to higher values of k max>k>0.5where this value will approach one as k ap-proaches its maximum value k max=2.5981.In addition,the number of peaks increases as k increases and at higher values of a.The bifurcation diagrams versus k for different aThe bifurcation diagrams with respect to k for different values of a are shown in Fig.5.It is clear that thefixed point appears in all cases at k=1however the range of obtaining chaos is widely different with a.When a=0.1thefirst bifurcation hap-pens at k s=21and chaos happens at k max=28.53whereas these values shrink to k s=6and k max=8.117at a=0.4 and shrink more up to k s=3and k max=4at the conven-tional case(a=0.4)as shown in Fig.5.The range from the first bifurcation to chaos in case a=1.5,2.0,3.0,and5.0is gi-ven by(2.33,3.07),(2,2.598),(1.667,2.116),and(1.4,1.717) respectively.For a=100this range will shrink to (1.02,1.0577)where the bifurcation happens at k=1.02and the system behaves chaotically at k=1.0577with an output covering all the range[0,1].The bifurcation diagrams versus a for different kSimilarly the bifurcation diagrams with respect to a are shown in Fig.5for different values of k=1.5,2.5,and4.0.All the bifurcation diagrams are similar to the bifurcation diagram shown before with respect to k.It is noted that,the dependence of the functions f and p are different with respect to a as shown from the bifurcation diagrams of Figs.4and5respectively. Third generalized logistic map x nþ1¼k x anð1Àx nÞLet us define sðx;k;aÞ¼k x að1ÀxÞwhere the peak of this ex-ists at x¼x p¼a which monotonically increases as a in-creases.As afi0the peak value x p tends to0however as afi1the value of x pfi1.The range of k to guarantee that s mðx;k;aÞis always in the range[0,1]is given by k e(0,k max)where k max¼ðaþ1Þaþ1a a .Then if a increases,k max will increase asshown in ing simple calculations,thefixed point x\ will be stable in the range max(0,aÀ1)<x<aþ1which isequivalent to0<k<ðaþ2Þaðaþ1ÞaÀ1¼k s in case if a<1andk min¼a aðaþ1ÞaÀ1<k<ðaþ2Þaðaþ1ÞaÀ1¼k s when a>1.Therefore,therange of operating k forfixed a is the distance between k=0and the dashed line(horizontal line k max)as clear in the case of a=0.5in Fig.6a.The range of all possible outputs is given from the intersection between the dashed line with the solid line.However,as a>1the curve k c has a minimum (non-invertible)then for constant a thefixed point will not start from k=0and the starting point(k min)increases as a in-creases.Hence,the maximum range of acceptable k for non-trivial solution is(k min,k max).For example when a=1.5,the system has only one trivial solution in the interval(0,2.6), the single nontrivialfixed point exists from k min%2.6and then bifurcation to chaos appears in the interval below k max=5.38 as shown in Fig.6a and its bifurcation diagram in Fig.6b.As a increases both the k min and k max increase where the system has a nontrivial solution as shown in Fig.6a and b in the case a=6.3.The bifurcation diagram of the third proposed logistic map versus the arbitrary power is shown in Fig.6c where the cha-otic response happens at the lower values of a.As a increases the system behavior transforms from chaotic response,to peri-odic until it reachesfixed point.In addition,as k increases both the lower and upper values of a for nontrivial solutions are increased.Comparison and calculation of Lyapunov exponentFrom the previous sections,we found that the proposed logis-tic maps have different characteristics and cover all possible cases.For example,the bifurcation range is:k e(0,4)withfixed limits as in thefirst proposed map when a<1,k e(k c,4)with variable start limit as in thefirst proposed map when a>1,k e(0,k max)with variable end limit as in the third proposed map when a<1,k e(1,k max)with variable end limit as in the second pro-posed map,k e(k min,k max)with variable start and end limits as in the third proposed map when a>1.Moreover,the bifurcation diagram with respect to the new parameter a for the second and third proposed maps has sim-ilar properties as the conventional logistic map which increases the designflexibility.The time domain output and the illustra-tion of Cobweb method for the three proposed maps are shown in Table2when the new parameter a=0.5and in the chaotic range of k.The calculation of Lyapunov exponentTo prove the chaotic behavior of the output response,it is re-quired to calculate the Lyapunov exponent which is the major key for chaotic systems.As known from the nonlinear analysis of chaos,it is necessary to have a positive value of the Lyapu-nov exponent to prove chaotic behavior.Recently[24–28], there are many numerical techniques to calculate the value of the Lyapunov exponent.For the1-D map defined by x k+1=f(x k,k),the Lyapunov exponent for the orbit starting at x o can be calculated byL:E:¼limn!11nX nÀ1i¼0ln j f0ðx iÞj()ð5Þwhere f0ðxÞis the derivative of the function f(x).The Lyapu-nov exponents of the proposed maps are shown in Table2. As known the conventional logistic map at k=3.9has a Lyapunov exponent of order0.496.The effect of the new parameter a in thefirst proposed map(fixed range)on the Lyapunov exponent is shown in Table2where the LE in-creases as the value of a increases for the same value of k.Five170 A.G.Radwandifferent cases of the LE for each of the second and third pro-posed maps are shown in Table2.ConclusionThis paper introduces three independent generalized logistic maps of arbitrary order.The summary of the main factors for each proposed map,the critical points,ranges,and some comments on the bifurcation diagrams with respect to the sys-tem parameter and also to the arbitrary power are introduced. Moreover,the iterated outputs of the three systems are also introduced where chaotic behavior is verified through the time domain and also by the calculation of the Lyapunov exponent where positive values are obtained.Therefore,the proposed three generalized logistic maps enrich the nonlinear dynamical system through the extra degree of freedom which can be used for the accurate study and modeling of many applications in variousfields as in bioengineering and communication security.References[1]Gulick D.Encounters with chaos.New York:McGraw-Hill;1992.[2]Ausloos M,Dirickx M.The logistic map and the route to chaosfrom the beginnings to modern applications.Berlin/ Heidelberg:Springer;2006.[3]Li TY,Yorke J.Period three implies chaos.Am Math Month1975;82:985–92.[4]Pellicer-Lostao C,Lo pez-Ruiz R.A chaotic gas-like model fortrading markets.J Comput Sci2010;1:24–32.[5]Pearl R.An introduction to medical statistics.Oxford MedicalPublications;2000.[6]Kinnunen T,Pastijn H.The chaotic behavior of growthprocesses.ICOTA proceedings,Singapore;1987.[7]Malek K,Gobal F.Application of chaotic logistic map for theinterpretation of anion-insertion in poly-ortho-aminophenol films.Synthetic Met2000;113:167–71.[8]Pareek NK,Patidar V,Sud KK.Image encryption using chaoticlogistic map.Image Vis Comput2006;24:926–34.[9]Andrecut M.Logistic map as a random number generator.Int JModern Phys B1998;12:921–30.[10]Patidar V,Sud KK,Pareek NK.A pseudo random bit generatorbased on chaotic logistic map and its statistical testing.Informatica2009;33:441–52.[11]Singh N,Sinha A.Chaos-based secure communication systemusing logistic map.Opt Lasers Eng2010;48:398–404.[12]Barakat ML,Radwan AG,Salama KN.Hardware realizationof chaos based block cipher for image encryption.The23rd international conference on microelectronics(ICM),Tunis;2011.[13]Sarker JH,Mouftah HT.Secured operating regions of SlottedALOHA in the presence of interfering signals from other networks and DoS attacking signals.J Adv Res2011;2:207–18.[14]Lopez-Ruiz R,Fournier-Prunaret plex behaviour in adiscrete logistic model for the symbiotic interaction of two species.Math Biosci Eng2004;1:307–24.[15]Ausloos M,Clippe P,Miskiewicz J,Pekalski A.A reactivelattice-gas approach to economic cycles.Phys A2004;344:1–7.[16]Ausloos M,Miskiewicz J.Delayed informationflow effect ineconomy systems:an ACP model study.Phys A 2007;382:179–86.[17]Ausloos M,Miskiewicz J.Influence of informationflow in theformation of economic cycle.In:The logistic Map and the Rout to Chaos.Berlin:Springer-Verlag;2006.p.223–38.[18]Leydesdorff L,Dubois DM.Anticipation in social systems:theincursion and communication of meaning.Int J Comput Anticipatory Syst2004;15:203–16.[19]Dubois DM.Introduction to computing anticipatory systems.Int J Comput Anticipatory Syst1998(2):3–14.[20]Suneel M.Electronic circuit realization of the logistic map.Sadhana2006;31(1):69–78.[21]Radwan AG,Soliman AM,EL-sedeek AL.An inductorlessCMOS realization of Chua’s circuit.Chaos Solitons Fractals 2003:149–58.[22]Radwan AG,Soliman AM,EL-sedeek AL.MOS realization ofthe double-scroll-like chaotic equation.IEEE Circ Syst-I 2003;50(2):285–8.[23]Sturm R.Modeling the deposition of bioaerosols with variablesize and shape in the human respiratory tract–a review.J Adv Res,in press.[24]Strogatz SH.Nonlinear dynamics and chaos:with applicationsto physics,biology,chemistry,and engineering.New York:Addison-Wesley;1994.[25]Nayfeh AH,Balachandran B.Applied nonlinear dynamics:analytical,computational,and experimental methods.New York:John Wiley&Sons;1995.[26]Wolf A,Swift JB,Swinney HL,Vastano JA.DeterminingLyapunov exponents from a time series.Phys D:Nonlinear Phenom1985;16(3):285–317.[27]Abarbanel HDI.Analysis of observed chaotic data.NewYork:Springer-Verlag;1996.[28]Rosenstein MT,Collins JJ,DeLuca CJ.A practical method forcalculating largest Lyapunov exponents from small data sets.Phys D:Nonlinear Phenom1993;65:117–34.On some generalized discrete logistic maps171。