正品(统计初步与概率问题)
小学六年级数学总复习统计与概率

小学六年级数学总复习统计与概率Revised by BETTY on December 25,2020小学六年级数学总复习统计与概率复习建议一、统计统计知识在生产和生活中,特别是进行科学研究时,应用非常广泛。
小学阶段,学习内容是统计学中最初步的知识,它包括单式、复式统计表和条形、折线、扇形统计图的用途、结构及绘制方法等问题。
在这里我谈谈自己对统计与概率的认识。
复习内容:1、数据的收集、整理、统计图表。
2、对图表进行分析,解决问题。
3、条形(单式,复式),折线(单式,复式),扇形统计图的特点及选择方法。
4、统计图的选用与制作。
复习目标:1、通过复习已学过的统计的初步知识,加深学生对统计的意义及其应用的理解。
2、培养学生会看、会分析、会制作简单统计图表的能力和综合运用统计知识解决实际问题的能力。
3、通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。
复习重难点:重点:1、体会统计在实际生活中的应用,发展统计观念。
2、用自己的语言描各种统计图的特点。
难点:用自己的语言描述各种统计图的特点。
复习要点:1、统计表:把统计数据填写在一定的表格内,用来反映情况说明问题。
种类:单式统计表、复式统计表、百分数统计表。
2、统计图:用点、线、面积等来表示相关的量之间的数量关系的图形。
分类:(1)、条形统计图:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。
优点:很容易看出来各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区分开,并在制图日期下面注明图列。
(2)、折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次联系起来。
优点:不但可以表示数量的多少而且能够清楚表示出数量增减变化的情况。
注意:折线统计图的横轴表示不同的年份、月份等时间,不同时间之间的距离要根据年份或月份的间隔来确定。
10.统计初步与概率

你 选 购 哪 个 厂 家 的 产 品 ? 请 说 明理 由.
2 某 中学准 备 搬 迁 新 校 舍 , 迁 入 新 校 舍 之 . 在
H 前 , 学H 就 该 校 学 生 如 何 到 校 问 题 进 行 同 们
U
4 20 . 0 8年 奥 运 会 即 将 在 北 京 举 行 , 宁 市 某 南 校 学 生 会 为 了 了解 全 校 同 学 喜 欢 收 看 奥 运 会 比赛 项 目 的 情 况 , 机 调 查 了 2 0名 同 随 0 学 , 据 调 查 结 果 制 作 了频 数 分 布 表 : 根 最喜欢 收看 的项 目 频数 ( 数 ) 频率 人
A. 保 部 门对 淮 河 某 段 水 域 的 水 污 染 情 况 环
的 调 查
竞猜 游戏 , 戏 规则 是 : 2 游 在 0个 商 标 牌 中 ,
B 电 视 台 对 正 在 播 出 的 某 电 视 节 目收 视 率 .
的 调 查
有 5个 商 标 牌 的 背 面 注 明 了 一 定 的 奖 金 , 其 余 商 标 牌 的 背 面 是 一 张 “ 脸 ” 若 翻 到 哭 。
张亮
图 1
李娜
图形补 充完 整.
程
A. 亮 的 百 分 比 比 李 娜 的 百 分 比大 张 B. 娜 的 百 分 比 比 张 亮 的 百 分 比 大 李
C. 张亮 的 百 分 比与 李 娜 的 百 分 比一 样 大
D. 法 确 定 无
- ● l _ ● -
图 3 1 —
A . B c D . . . 吾 { 熹
二 、 空 题 填
1 为 响 应 国家 要 求 中小 学 生 每 天 锻 炼 1小 时 .
中职数学(基础模块上册 语文版)教学分析:第十单元 概率与统计初步

第十单元概率与统计初步一教学要求1.掌握分类计数原理和分步计数原理.2.理解随机事件,频率和概率的概念.3.理解概率的简单性质.4.了解直方图与频率分布的概念.5.了解总体与样本的概念.6.了解样本的抽样方法.7.理解均值标准差的概念;会用样本均值、标准差估计总体均值、标准差.8.了解相关关系及一元线性回归分析.9.培养学生的计算工具使用技能,数据处理技能和分析与解决问题能力.二教材分析和教学建议(一)编写思路1.由浅入深,强调基础概率与统计这部分知识,对于中职的学生来讲,无论是在概念、公式的含义上,还是在解题的思路上,都有一定难度,由于他们的数学基础水平低,学习起来困难会多一些.但是概率统计作为应用知识的一部分,更是一种重要的思想方法,一种思维方式,是他们应该学习和了解的.因此,本单元概率与统计初步在编写中,遵照大纲精神,选择了概率统计中最基础最重要的知识,由浅入深,多讲实例,淡化理论,强调理解与应用.在概率部分,只介绍了随机事件和频率的概念;给出了概率的统计定义和概率的简单性质;在统计方面,则在复习初中学过的简单统计知识的基础上,只介绍了样本的概念与抽样方法,用样本估计总体的方法.2.多讲实例,淡化理论为了降低难度,便于学生理解与掌握,教材中的概念大多是通过实例引入的,对于一些公式,则略去了推导与证明,只是作了一些必要的说明,如互斥事件的概率加法公式,相互独立事件的乘法公式等.在这里,教材都通过例题讲解了公式的使用方法,强调了对公式的直接应用.3.加强计算器及计算机相关软件的使用本单元中,样本的抽取,总体的频率分布,均值与标准差,用样本估计总体的均值与标准差,回归分析等部分由于涉及的一些计算比较复杂,都需要使用计算器或计算机相关软件,从而培养学生的计算工具的使用技能,数据表格处理技能及分析,解决问题能力.教材在各相应部分安排了应用计算器和计算机相关软件解题的内容.4.重点与难点本单元的重点概念是:随机事件,频率,概率,总体,个体,样本,频率分布,均值,标准差等.重要方法是:简单随机抽样的方法,用样本估计总体的方法,回归分析的方法.重要思想是:随机思想、统计思想.本单元的难点是:概率的概念,样本对总体的估计,回归分析,用概率统计知识解决实际问题.(二)课时分配本单元教学约需16课时,分配如下(仅供参考):10.1计数原理约2课时10.2随机事件与概率约2课时10.3概率的简单性质约2课时10.4直方图与频率分布约2课时10.5总体与样本约1课时10.6抽样方法约1课时10.7均值与标准差约2课时10.8用样本估计总体约1课时10.9一元性回归约1课时归纳与总结约2课时(三)内容分析与教学建议10.1计数原理1.教材通过对两个具体实例进行分析,引进了分类计数的加法原理和分类计数的乘法原理.实际上这两个原理本身就是人们通过大量实践经验归纳抽象出来的,因此称为“基本原理”.在本单元中,它们是概率统计计算的依据.2.教学时,在给出原理之前,一定要使学生获得必要的感性认识,对引例要讲得清晰明确.(1)叙述和讲解例题时,要准确使用分类及分步等术语;(2)将分类及分步的具体内容列举出来;(3)讲过加法原理之后,在讲乘法原理的引例的时候,一定要和加法原理的引例加以比较,突出它们的区别;(4)让学生直接参与基本原理的引入,除了解答教材中提出的问题外,还可以让学生自己举出一些类似实例,以使学生由被动接受变为主动思考,然后由师生一起归纳出基本原理.3.两个原理都讨论“做一件事”,确定“完成这件事所有的不同方法的种数”但这里所指的“做一件事”是一个比较抽象的概念,它不同于学生在小学、初中解应用题时遇到的“做一件工作”、“完成一项工程”等,其含义比这要广泛得多,讲解例题时,要着重说明该题的“做一件事”究竟指的是什么.例如:(1)从甲地到乙地;(2)从甲地经乙地到丙地;(3)从三个班中任选一名三好学生;(4)从三个班中各选一名三好学生;(5)由5个数字组成没有重复数字的两位偶数.这些都是原理中所说的“做一件事”.明确了什么叫“做一件事”,才能去分析完成这件事可以采取什么方法,是分类还是分步,从而确定该题是使用分类计数的加法原理还是分类计数的乘法原理.4.教材明确指出了两个基本原理的区别,这在教学中要结合实例加以阐述和强调,同时要注意:(1)“做一件事,完成它可以有n类方式”,这里是对完成这件事的所有方式的一个分类.分类时,首先要根据问题的特点确定一个分类的标准,然后在这个确定的标准下进行分类.标准不同,分类的结果就不同.其次,分类应满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同类的两种方法都是不同的方法,只有满足这些条件,才能正确使用分类计数的加法原理.(2)“做一件事,完成它需要分成n个步骤”,这里是指完成这件事的任何一种方法,都要分成n步执行.和分类计数的加法原理一样,分步时,首先要根据问题的特点确定一个分步的标准,然后在这个确定的标准下进行分步.标准不同,分成的步骤数也可以不同.一个合理的分步还必须满足两个要求:第一,完成这件事必须而且只需连续完成这n步.这就是说,分别选自这n个步骤的n个方法,对应了完成这件事的一种做法;第二,做每一个步骤时,选用的方法和做上一个步骤时选用的方法是无关的,并且每一个步骤的完成方法种数正好是完成这个步骤所有方法的种数.只有满足这些条件,才能正确使用分步计数的乘法原理.5.例题的教学,要紧密联系基本原理,有意识地培养学生从两个基本原理出发思考问题的习惯.简单的问题,可以单独使用分类计数的加法原理或分类计数的乘法原理,有些问题常常同时要用到两个基本原理或可以分别用两个原理去做.稍复杂一些的问题,在具体“分类”和“分步”时,学生常常感到困难,因此需要多多练习,不断积累经验,逐步做到恰当分类,合理分步.10.2随机事件与概率1.本节内容包括随机现象,随机试验,随机事件,频率等基本概念及概率的统计定义.2.通过观察几个例子,教材接连给出了随机现象,随机试验,随机事件这三个概念,它们之间虽然没有概念的种属关系,但彼此是有关联的,都是在前一个概念的基础上,定义后面的概念,接下来与事件有关的概念也是这样给的,这种给出的形式密度虽显稍大,但是学生并不难理解,反而会感到前后关联,容易接受.为了便于学生理清层次,可给出下面的链式:现象→随机现象→随机试验→随机事件(含必然事件和不可能事件)→基本事件→复合事件.为了使学生更好地理解这些概念,教师可根据实际,多举一些例子.其中搞清基本事件的个数是个难点,教学中应注意培养学生这方面的能力.3.研究随机现象的规律性是通过随机试验进行的.关于随机试验,有如下严格的定义:(1)试验在相同条件下,可以重复进行;(2)每次试验的结果不止一个,而且所有可能结果事先都是明确的;(3)每次试验在其最终结果揭晓前,无法预言会发生哪一个结果.4.随机事件在一次试验中是否发生,不能事先确定,但是在大量重复试验的情况下,它的发生会呈现出一定的规律性,怎样观察和发现这种规律性呢?这种规律性是通过什么体现出来呢?通过观察事件在大量重复试验中所发生的频率,可以发现这种规律.频率是这样一个量,即该事件发生的次数与试验总次数的比值,频率随试验次数的不同而不同.这一点通过教材中的例子可以清楚地反映出来.5.频率具有稳定性.这种稳定性把随机事件发生的可能性大小客观地反映出来,利用这种稳定性,教材给出了概率的统计定义.可以认为概率是频率在理论上的期望值.例如,对一批零件进行抽查计算,得出这批零件合格品的概率是98%,那么,如果将这批零件全部装箱,其中每箱装1000个,那么可以估计平均每箱含有合格品980个,这是箱中含有合格品数的理论上的期望值.但在实际情况中,每箱的合格品数可能略多于980个也可能略少于980个.6.对于必然事件,因为每次试验中它一定发生,试验重复进行n次,它也发生n次,因此它的频率总是1;对于不可能事件,因为每次试验中它一定不发生,试验重复进行n次,它发生的次数应是0,因此它的频率总是0.7.概率的统计定义实质是给出了概率的近似值,用抛掷硬币这个传统,经典的试验,说明一个事件的频率稳定在它的概率左右,是多数教科书的编者所采取的方法,这个试验简单,做起来方便,不需要什么成本,任何人随时随地都可以做,所以教学中教师也不妨让学生做一做,亲自试验体验一下.8.事件的频率和事件的概率是两个不同的概念,随机事件的频率与试验次数有关的一个相对数量,是随着试验的不同而不同.而事件的概率反映的是随机事件的某种本质属性,是与试验次数无关而客观存在的一个确定的数.频率是概率的表现形式,概率决定着频率的变化趋势,概率才是随机现象的本质属性.9.本节教学内容的重点是随机事件等有关概念和概率的统计定义,频率的计算,概率的确定.难点是搞清基本事件的个数,确定某事件的概率及分析概率问题的思想方法,解题思路.概率问题的思考方法,学生接受起来比较困难,为此,应加强概念教学,加强对容易混淆的概念的区别与比较,来加深学生对有关概念的理解.10.3概率的简单性质1.本节内容包括概率的四个简单性质:(1)必然事件的概率等于1,不可能事件的概率等于0;(2)对于任何事件A,有0≤P(A)≤1;(3)如果A,B是互斥事件,那么P(A+B)=P(A)+P(B);(4)如果A,B是相互独立事件,那么P(A·B)=P(A)·P(B).2.由于必然事件的频率总是1,所以它的概率等于1,由于不可能事件的频率总是0,所以它的概率等于0;根据,0≤W(A)≤1,不难得到0≤P(A)≤1,这里的事件A显然是随机事件、必然事件、不可能事件三者的统称.3.性质(3)是互斥事件的概率加法公式.互斥事件是指在一次随机试验中,不可能同时发生的两个事件,在众多事件中,辨认、识别互斥事件,举出互斥事件和非互斥事件的例子,是使学生理解并掌握这一概念的方法.教师可以学生熟悉的实例,让学生多做一些这样的练习.所谓“A+B”事件,是指在同一试验中,A或B中有一个发生它就发生的事件.教材中提到的“A或B中至少有一个发生”的事件就是指“A+B”事件.实际上,对于“A+B”事件,不论A与B是不是互斥事件,总是存在的.互斥事件的概率加法公式,教材是直接给出的,没有加以证明,教材主要是要求学生能理解其含义,掌握其使用条件,会用来计算即可.例1是互斥事件的概率加法公式的直接应用.4.对立事件是互斥事件的一部分,即其中必有一个发生的两个互斥事件叫做对立事件.这就告诉我们,对立事件首先是互斥事件,但互斥事件不都是对立事件,只有那些必有一个发生的两个互斥事件才叫做对立事件.教材给出了对立事件计算公式的一个简单证明,只需学生了解即可,例2是对立事件计算公式的直接应用.5.教材借助于实例给出了相互独立事件的描述性定义,要确切地表示它,需要涉及条件概率的概念,但是本教材没有出现条件概率的概念,因此,为了让学生能正确理解两个事件的相互独立关系,可以让学生自己举一些相互独立事件的例子,共同分析相互独立的两个事件中“一个事件的发生与否对另一个事件发生的概率没有影响”这一特征.同时要将“相互独立”与“互斥”两个概念加以区别,让他们在对比中理解和掌握相互独立这一概念.6.如果事件A与B是相互独立的,那么事件A与B,A与B,A与B也相互独立.这一性质很重要,例4,例5就应用了这个性质,从而使计算得到了简化.讲解时应加以强调,以引起学生重视.7.本节教材重点是互斥、对立及相互独立事件的概念及有关计算,难点是三种事件关系的区别.10.4直方图与频率分布1.本节的内容是直方图与频率分布及学习用样本频率分布来估计总体频率分布的方法、步骤.2.在获取了样本资料以后,要对样本数据进行整理.先根据样本资料列频率分布表,再画频率分布直方图,这是由样本估计总体分布的基本方法.这从理论上讲并不难,只是具体操作起来比较麻烦,教学中应结合例题把列频率分布表和画频率分布直方图的步骤、要领讲清,要让学生自己动手,通过实际操作掌握方法,要让学生知道,对样本数据的整理是统计工作的基本功,尽管麻烦但很重要,因此要多加练习,培养自己认真细致的实战作风,从而提高计算能力,提高工作能力.3.频率分布表可以清楚地反映样本数据的分布规律,列这个表需要四个步骤,即:(1)计算极差;(2)决定组距与组数;(3)确定各组分点;(4)列频率分布表.前三步是对数据的整理,决定组距与组数需要根据具体情况灵活处理,第四步列频率分布表时,需要依次计算各个频率,计算量大些,要仔细耐心,算完之后可以将所有的频率相加看是否得1,以进行检验.完成这四步之后,可以利用其结果,画频率分布直方图.4.频率分布直方图可以将频率分布表中反映出来的规律直观形象地表示出来.画频率分布直方图之前需要建立一个坐标系,横轴表示数据,将各组数据的分点标在横轴上;纵轴表示频率与组距的比值.各个小长方形的面积等于相应各组的频率,这样频率分布直方图就以图形的面积形式反映了数据落在各个小组内的频率大小.在频率分布直方图中,由于各小长方形的面积等于相应各组的频率,而各组频率的和等于1,因此各小长方形的面积的和等于1.5.利用Excel表格做直方图,培养学生数据处理能力是大纲明确提出的要求,为了便于学生掌握,教材给出了具体步骤,可让学生按照步骤来操作.6.本节教学的重点是频率分布表,频率分布直方图的绘制;难点是样本数据的整理.10.5总体与样本1.本节的内容是复习总体与样本的概念.2.关于总体与个体,不是笼统地指总体与个体本身,而是指总体与个体的某一数量指标,例如:灯泡的使用寿命,玉米的产量,学生的身高等.因此总体可以看做是某些数据的集合.3.样本是总体这个集合的一个子集.它由总体中的一部分个体组成,这部分个体的数量叫做样本的容量.4.本节教学的重点是掌握总体与样本的概念,理解二者之间的关系.10.6抽样方法1.本节的内容是样本抽取的三种方法:简单随机抽样法,系统抽样法,分层抽样法.2.在讲解每一种抽样方法时,应结合具体问题进行演示与讲解,首先要讲清简单随机抽样,系统抽样,分层抽样三种抽样方法的原理与步骤,并通过对具体问题的解决让学生进3. 统计的基本思想方法是用样本估计总体,即用局部推断整体,这就要求样本应具有良好的代表性,而这完全取决于抽样方法的客观合理性.可见,抽样是选取样本的基础,样本的选取是否恰当,对于研究总体是十分关键的.因此在教学中,要提高对抽样方法重要性的认识.4.本节只讲了具体的抽取方法,关于如何确定样本容量的内容,由于大纲没有涉及,所以本教材也没有做定量的介绍,样本容量的大小,一般取决于下面几个因素:(1)总体中每个个体的差异较大,样本容量就要大些;(2)抽样调查的力量大(人员多,财力强,时间长等),则应要求较小的误差,反之则可允许较大的误差,而误差的大小决定或影响着样本容量的大小;(3)对抽样调查结果愿意承担较小的风险,则应加大样本容量,反之则可适当减少样本容量;(4)在其他条件相似的条件下,不同的抽样方法也可影响到样本容量的大小.5.还应该提出的是,完全随机的样本,在现实中是很少的,因为每一次抽取总是要直接或间接地通过人的判断来执行.也就是说,随机抽样只是一种理想的情况,况且在实际问题中,有时考虑到一些具体因素(例如抽样的代价),也可能有意识的不采用随机抽样的方法.由样本推断总体必然会有误差,但是这种误差是我们可以掌握的,我们可以通过概率论和数理统计的理论和方法,对这些误差进行估计和适当的控制.6.本节教学的重点和难点是对三种抽样方法的掌握.10.7 均值与标准差1.本节的内容是均值与标准差的意义及计算方法.2.上一节给出了用样本频率分布来估计总体频率分布的方法,可以使我们对总体的统计规律有一个直观,完整的了解,但在很多情况下,我们并不需要知道总体的分布状况,而只需要知道它的某些特征就够了,例如,在测量某零件的长度时,由于种种偶然因素的影响,零件长度的测量值每次测量不尽相同,是一个随机变量,一般我们只关心这一零件的平均测量长度及测量结果的精确度,即要求知道测量长度的平均值与离散程度.又如,对一个射手的射击技术的评定,除了根据他多次射击的平均命中环数之外,还要看他各次射击命中的环数与平均命中环数的偏差(也就是射击的散布程度)大不大,偏差越大,表明射击命中点越分散,射击的技术越不稳定.由这些例子可以看出,我们引进一些用来表示平均值和衡量离散程度的量,这些量能够刻画随机变量的主要性质,我们称之为随机变量的数字特征,其中最重要的是均值与标准差.数字特征及其运算在概率统计中起着重要作用,利用它们可以使许多问题的解决大大简化.3.对于均值的计算,教材给出了两种情况及两个计算公式,它们是:x =1n (x 1+x 2+…+x n )=1n ∑i =1n x i ; x =x 1·f 1n +x 2·f 2n +…+x k ·f k n =∑i =1k x i ·f i n. 教学中,要让学生能根据不同情况选择不同的公式.4.对于标准差的概念,本节只是明确了它的意义,即“它可以用来衡量一组数据的波动大小,标准差越大,说明这组数据波动越大”.因此本节主要强调标准差的计算及两组标准差大小的比较.5.本节教学的重点和难点是均值与标准差的计算.10.8 用样本估计总体1.本节内容是对总体均值与标准差的估计.2.用样本的均值x 估计总体均值和用样本的标准差估计总体标准差都属于无偏估计. 所谓“无偏估计”就是使估计量符合下面三个标准:(1)无偏性.设θ^(x 1,x 2,…,x n )是总体中某参数θ的估计量,若E (θ^)=θ,则称θ^是θ的无偏估计量.我们用x =1n ∑i =1n x i 去估计总体均值E (x )=m ,因为 E (x )=E ⎝ ⎛⎭⎪⎪⎫1n ∑i =1n x i =1n ∑i =1n E (x i )=1n ·n ·m =m . 所以估计量x 是满足无偏性的.同样用样本标准差S 去估计总体标准差也具有无偏性.(2)有效性.设θ^1与θ^2都是θ的无偏估计量,若D (θ^1)<D (θ^2),则称θ1比θ2更有效.用x 和S 来估计总体的均值和标准差比其他估计量更有效.(3)一致性.我们希望,当n 越来越大,n →∞时,估计量θ^对θ的估计越精确,越一致.如果P (||θ^ (n)-θ<ε=1,则称θ^(n )是θ的一致估计量,可以证明,样本均值x 是总体均值的一致估计量,S 也是总体标准差的一致估计量.关于无偏估计的概念不必告诉学生.3.计算均值与标准差可以利用计算器和计算软件,这样可以使繁杂的计算变得简单.4.本节教学内容的重点和难点是对总体均值与标准差的无偏估计. 10.9 一元线性回归1.本节内容是一元线性回归方程的建立.2.变量之间的关系,有一种是确定性关系,如正方形的面积S 与边长x 之间的关系S =x 2就是确定性关系; 圆的周长C 与圆的半径r 之间的关系C =2πr 也是确定性关系.变量之间除了具有确定性关系之外,还存在一种非确定性关系——相关关系.例如施肥量与亩产量之间虽然不能确定出准确的函数关系式,但它们之间却具有相关性;又如,高中毕业生毕业考试成绩与高考成绩,虽然不具有确定性关系,即二者之间不可能建立精确的函数表达式,但它们的关系也非常密切,一般来说,毕业成绩好的学生高考成绩也比较好.具有相关关系的变量之间,存在着一定的统计规律性,线性回归就是研究这种规律的手段之一.3.观察散点图是求回归直线方程前非常重要的步骤.如果所有的散点大体上散布在某一条直线附近,就可以认为y 对x 的回归函数类型为直线型.通过观察散点图,可以画出不止一条直线,那么,其中哪一条直线最能代表变量y 与x 的关系呢?为了不涉及更多的线性相关的知识,可以认为在整体上与这几个点最接近的一条直线,就是所求的直线,并设为y ^=a +bx ,此处应提醒学生这个解析式不同于一次函数解析式的表示方法.4.再由y ^=a +bx 得到y ^=a ^+b ^x 时,教材没有给出a ^,b ^的求解过程,只是说“利用微积分的知识可以算得,当a ^,b ^为下列值时,所得回归直线最好” ,然后就是结论:a ^=y -b ^x ,b ^=S xy S xx, 其中,x =1n ∑i =1n x i ,y =1n ∑i =1n y i , S xy =∑i =1nx i y i -n xy ,S xy =∑i =1n x 2i -n x 2.这里,只要求学生会用这些公式计算,求出a ^,b ^即可.对于这些较复杂的计算,还是训练学生使用计算器和计算软件计算为好.5.教学中应告诉学生,回归方程y ^=a ^+b ^x 与具有函数关系的直线方程y =a +bx 不同.满足函数关系y =a +bx 的任意一点(x i ,y i )一定落在直线y =a +bx 上,而有相关关系的两个变量的任一观测点(x i ,y i )都不能保证严格地落在直线y ^=a ^+b ^x 上.6. 本节教学内容的重点是一元线性回归方程的建立,难点是方程系数a ^,b ^的计算.(四)复习建议1.学完全单元之后,学生需要对全章知识要点有一个清楚的了解,教材以填空题的形式对全单元内容作了归纳与总结,目的是让学生参加归纳与总结的过程,以达到复习的效果.2.本单元从知识结构上分为三部分:计数原理、概率与统计.计数原理部分分别介绍了分类计数的加法原理和分步计数的乘法原理;概率部分在介绍了随机事件,随机试验,基本事件,频率等基本概念之后给出了概率的统计定义,并安排了概率的简单性质等内容;统计部分在复习了总体,个体,样本等概念之后,介绍了抽取样本的三种方法,在用样本推断总体方面,给出了用样本频率分布推断总体频率分布的频率分布直方图,用样本均值推断总体均值,用样本标准差推断总体标准差的估计,最后简单介绍了相关关系及回归分析.3.在本单元的复习中,应结合专业,加强实践,做到理论能联系实际.例如:关于抽取样本的内容比较繁琐,实际操作上有许多程序,写下来颇费纸张,这部分复习时,就应以实践为主,可以找一个学生熟悉的例子,用适当的方法搞一次抽样调查,在实践中,教师和学生共同总结这部分内容.4.在本单元的复习中,应加强计算器和计算软件的使用教学,在“归纳与总结”中,特意安排了一个计算器和计算软件使用的例题,目的是希望教师能在复习中集中指导 一下计算器和计算软件的使用,提高学生使用计算工具和数据处理的能力.。
概率与统计初步

概率与统计初步概率与统计初步教案一、引言概率与统计是一门应用广泛的数学学科,它研究的是随机事件的发生概率以及通过收集和分析数据来推断总体特征的方法。
本课程将以初步的形式介绍概率与统计的基本概念、方法和应用。
二、概率的基本概念1.概率的定义概率是用来描述随机事件发生可能性大小的数值。
介绍概率的定义,包括频率概率和几何概率的概念。
2.概率的性质介绍概率的几个基本性质,如概率的非负性、概率的规范性、概率的可列可加性等。
3.事件的关系与运算介绍事件的包含、交、并的关系,以及事件的补运算等。
三、概率的计算方法1.古典概型的概率计算介绍古典概型的概率计算方法,包括等可能原理的应用。
2.频率概率的概率计算介绍频率概率的计算方法,包括相对频率和极大似然估计等。
3.几何概率的计算介绍几何概率的计算方法,包括正方形和圆上的点的计数等。
四、条件概率与独立性1.条件概率的概念与性质介绍条件概率的定义和性质,以及条件概率的计算方法。
2.乘法定理与贝叶斯公式介绍乘法定理和贝叶斯公式的概念和应用。
3.独立事件的概念与性质介绍独立事件的定义和性质,以及独立事件的计算方法。
五、随机变量与概率分布1.随机变量的概念与分类介绍随机变量的定义和分类,包括离散随机变量和连续随机变量。
2.概率分布函数与密度函数介绍概率分布函数和概率密度函数的概念和性质。
3.常见概率分布介绍常见的离散型概率分布和连续型概率分布,包括二项分布、正态分布等。
六、统计的基本概念和方法1.总体与样本介绍总体和样本的概念,以及总体参数和样本统计量的区别。
2.抽样与抽样分布介绍随机抽样和抽样分布的概念,包括正态总体和大样本抽样和小样本抽样。
3.参数估计介绍参数估计的概念和方法,包括点估计和区间估计。
4.假设检验介绍假设检验的概念和步骤,包括零假设和备择假设的提出和检验。
七、概率与统计的应用1.生活中的概率与统计介绍概率与统计在日常生活中的应用,如赌博、保险、抽奖等。
2.工程中的概率与统计介绍概率与统计在工程领域中的应用,如可靠性分析、质量控制等。
概率与统计初步

第七章 概率与统计初步概率论与数理统计是研究大量随机现象的统计规律的一门科学,它在自然科学,工程技术和经济管理等方面都有广泛应用。
本章我们主要介绍随机事件及其概率,随机变量及其分布,随机变量的数字特征和参数估计。
§7.1 随机事件与概率一. 随机现象与随机事件在自然界与人类社会生活中常常会遇到两类现象,一类是确定性现象,另一类是随机现象。
例如,抛掷一枚硬币,必然会下落;在标准大气压下,C100的水必然沸腾等等是在一定的条件下必然会发生的现象,这些现象称为确定性现象。
而抛掷一枚硬币,下落后可能出现正面也可能出现反面;产品进行质量检查,任意抽取到的产品可能是正品也可能是次品;某人进行一次射击可能命中也可能不命中等等.在一定的条件下可能发生也可能不会发生的现象,这些现象称为随机现象或者不确定性现象。
表面上看随机现象具有偶然性和不确定性,但在相同条件下进行大量的重复试验就会发现其结果会呈现出某种规律性.对随机现象进行一次观察或试验称为一次随机试验(简称试验)。
这种试验有以下特点:可以在相同的条件下重复进行,每次试验的所有可能结果事先是已知的,但试验前不能确定哪一个结果出现。
如抛硬币或从一批产品任意抽取产品观察其结果都是随机试验.随机试验的每一个可能发生的结果称为随机事件(简称事件),常用大写字母⋅⋅⋅C B A ,,表示。
例 1 抛掷一枚均匀的骰子,“出现k 点”)6,5,4,3,2,1(=k 是随机事件,分别记为)6,,2,1(⋅⋅⋅=k A k ;“出现大于3的点数”,“出现偶数点”,“出现不大于6的点数”也都是随机事件,分别记为.,,C B A在例1 中,事件61,,A A ⋅⋅⋅是试验中不可能再分解的事件,称之为基本事件。
全体基本事件的集合称为这个试验的样本空间(记为)Ω,每个基本事件称为样本点,如例1中},,,,,{654321A A A A A A =Ω,其中)6,5,4,3,2,1(=k A k 都是样本点。
中职概率与统计初步练习及答案

概率与统计初步例1.指出下列事件是必然事件,不可能事件,还是随机事件? ①某乒乓球运动员在某运动会上获得冠军。
②掷一颗骰子出现8点。
③如果0=-b a ,则b a =。
④某人买某一期的体育彩票中奖。
解析:①④为随机事件,②是不可能事件,③是必然事件。
例2.某活动小组有20名同学,其中男生15人,女生5人,现从中任选3人组成代表队参加比赛,A 表示“至少有1名女生代表”,求)(A P 。
例3.在50件产品中,有5件次品,现从中任取2件。
以下四对事件那些是互斥事件?那些是对立事件?那些不是互斥事件?①恰有1件次品和恰有2件次品 ②至少有1件次品和至少有1件正品 ③最多有1件次品和至少有1件正品 ④至少有1件次品和全是正品例4.从1,2,3,4,5,6六个数字中任取两个数,计算它们都是偶数的概率。
例5.抛掷两颗骰子,求:①总点数出现5点的概率;②出现两个相同点数的概率。
例6.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算: ①两人都未击中目标的概率; ②两人都击中目标的概率;③其中恰有1人击中目标的概率; ④至少有1人击中目标的概率。
例7.种植某种树苗成活率为0.9,现种植5棵。
试求: ①全部成活的概率; ②全部死亡的概率;③恰好成活4棵的概率; ④至少成活3棵的概率。
【过关训练】一、选择题1、事件A 与事件B 的和“B A ”意味A 、B 中( ) A 、至多有一个发生 B 、至少有一个发生 C 、只有一个发生 D 、没有一个发生2、在一次招聘程序纠错员的考试中,程序设置了依照先后顺序按下h,u,a,n,g 五个键的密码,键盘共有104个键,则破译密码的概率为( )A 、51041P B 、51041C C 、1041 D 、1045 3、抛掷两枚硬币的试验中,设事件M 表示“两个都是反面”,则事件M 表示( ) A 、两个都是正面 B 、至少出现一个正面C 、一个是正面一个是反面D 、以上答案都不对 4、已知事件A 、B 发生的概率都大于0,则( ) A 、如果A 、B 是互斥事件,那么A 与B 也是互斥事件 B 、如果A 、B 不是相互独立事件,那么它们一定是互斥事件 C 、如果A 、B 是相互独立事件,那么它们一定不是互斥事件D 、如果A 、B 是互斥且B A 是必然事件,那么它们一定是对立事件5、有5件新产品,其中A 型产品3件,B 型产品2件,现从中任取2件,它们都是A 型产品的概率是( )A 、53B 、52C 、103D 、2036、设甲、乙两人独立地射击同一目标,甲击中目标的概率为0.9,乙击中目标的概率为98,现各射击一次,目标被击中的概率为( )A 、98109+B 、98109⨯C 、981081⨯-D 、90897、一个电路板上装有甲、乙两个保险丝,若甲熔断的概率为0.2,乙熔断的概率为0.3,至少有一根熔断的概率为0.4,则两根同时熔断的概率为( )A 、0.5B 、0.1C 、0.8D 、以上答案都不对8、某机械零件加工有2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品是彼此无关的,那么产品的合格率是( )A 、1+--b a abB 、b a --1C 、ab -1D 、ab 21-9、某厂大量生产某种小零件,经抽样检验知道其次品率是1﹪,现把这种零件每6件装成一盒,那么每盒中恰好含1件次品的概率是( )A 、6)10099(B 、0.01C 、516)10011(1001-CD 、4226)10011()1001(-C 10、某气象站天气预报的准确率为0.8,计算5次预报中至少4次准确的概率是( )A 、45445)8.01(84.0--⨯⨯CB 、55555)8.01(84.0--⨯⨯C C 、45445)8.01(84.0--⨯⨯C +55555)8.01(84.0--⨯⨯C D 、以上答案都不对11、同时抛掷两颗骰子,总数出现9点的概率是( ) A 、41 B 、51 C 、61D 、9112、某人参加一次考试,4道题中解对3道则为及格,已知他的解题准确率为0.4,则他能及格的概率约是( )A 、0.18B 、0.28C 、0.37D 、0.48二、填空题1、若事件A 、B 互斥,且61)(=A P ,32)(=B P ,则=)(B A P 2、设A 、B 、C 是三个事件,“A 、B 、C 至多有一个发生”这一事件用A 、B 、C 的运算式可表示为3、1个口袋内有带标号的7个白球,3个黑球,事件A :“从袋中摸出1个是黑球,放回后再摸1个是白球”的概率是4、在4次独立重复试验中,事件A 至少出现1次的概率是8180,则事件A 在每次试验中发生的概率是5、甲、乙两射手彼此独立地射击同一目标,甲击中目标的概率为0.8,乙击中目标的概率为0.9,则恰好有一人击中目标的概率为三、解答题1、甲、乙两人射击,甲击中靶的概率为0.8,乙击中靶的概率为0.7,现在,两人同时射击,并假定中靶与否是相互独立的,求:(1)两人都中靶的概率; (2)甲中靶乙不中靶的概率; (3)甲不中靶乙中靶的概率。
概率与数理统计初步

某批 灯泡的寿命
国产轿车每公里
的耗油量
该批灯泡寿命的全 体就是总体
国产轿车每公里耗油量 的全体就是总体
…
每一个灯泡就是个体; 从中抽取10个进行试验, 10个灯泡为样本容量.
如果Q(1,2,n )是1,2,n 的函数,而且这个函数 中不含未知参数,则称 Q(1,2,n )是一个样本统计量.
几个常见统计量
这样的方法称为区间估计,[1,2 ]称为的1置信区间
1 和 2分别称为置信下限和置信上限. 显著性水平
1. 已知方差 2 时数学期望 的区间估计
设总体服从正态分布 ~ N(, 2 )
__
考虑统计量 U
n ,可以证明 U ~ N(0,1)
对于给定的置信水平 1
P( U ) () () 2() 1 1
… 知的仅仅是一个 … 或几个参数.
1. 点估计
由于1,2,n是来自总体,而总体的分布为 N(, 2 )
因此每个样本的分布都服从 N(, 2 ) .
结论
__
E( )
1 n
n i 1
E(i )
__
x
1 n
n
i1
xi
为总体均值μ的估计值.
E(S 2 ) D( ) 2
S2
n
1
1
n
i1
(
xi
__
__
x
S
__
,x
n
S n
我们用统计量 χ2
(n
1)S 2
2
做方差的区间估计,则
χ2
的分
布称为自由度为n-1的卡方分布,记为 2 ~ 2 (n 1)
χ 2 分布密度函数下图所示
概率与统计初步(含习题训练)

第九章 概率与统计初步一、计数原理1、 (分类计数)加法原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……在第n 类办法中有n m 种不同的方法,那么完成这件事情,共有:n m m m N +++= 21种不同的方法;2、 (分步计数)分步乘法原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第n 步有n m 种不同的方法,那么完成这件事情,共有:n m m m N ⨯⨯⨯= 21种不同的方法;3、 区分做事情的方法是“分类”还是“分步”主要看能否一步做完,能够一步做完的就是分类(用加法原理),不能一步做完的,就是分步(用乘法原理);二、排列与组合1、 排列数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有排列的个数,叫做从n 个不同的元素中取出m 个不同元素的排列数,用符号n mA 表示,且:2、 n 的阶乘:自然数1到n 的连乘积,叫做n 的阶乘,记作:!n ,且:3、 组合数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同元素的组合数,用符号n mC 表示,且:组合数公式也可写为:4、 组合数的两个性质:()()n m n m n n m n mn n m C C C C C 1121--+-+==5、 排列与组合的区别:排列与顺序有关;组合与顺序无关。
()()()()n m m n n n n A n m ≤+---=,121 ()()10,1221!=⋅--=!规定: n n n n ()()()()()()1,,1221121!0=≤⋅--+---==n n m nmC n m m m m m n n n n m A C 规定: ()!!!m n m n C n m -⋅=()!!m n n A nm -=为:易知排列数公式也可写三、概率1、 基本概念(1) 随机现象:在相同的条件下,具有多种可能的结果,而事先又无法确定会出现哪种结果的现象;(2) 随机试验的特征:可以在相同的条件下重复进行;试验的所有可能结果是可以明确知道的,并且这些可能结果不止一个;每次试验之前不能准确预言哪一个结果会发生;(3) 随机事件:随机试验的结果叫做随机事件,简称事件,常用大写字母A 、B 、C表示;(4) 必然事件:在一次随机试验中必然要发生的事件,用Ω表示(Ω读作“omiga ”,Ω对应的小写希腊字母是“ω”); (5) 不可能事件:在一次随机试验中不可能发生的事件,用φ表示(φ读作“fai ”); (6) 基本事件:随机事件中不能分解的事件称为基本事件,即:最简单的随机事件;(7) 复合事件:由若干个基本事件组成的事件称为复合事件; 2、 频数与频率(1) 频数:在n 次重复试验中,事件A 发生了m 次()n m ≤≤0,m 叫做事件A 发生的频数;(2) 频率:在n 次重复试验中,事件A 发生的频数在试验总次数中所占的比例nm ,叫做事件A 发生的频率; 3、 概率(1) 一般地,当试验的次数充分大时,如果事件发生的频率总稳定在某个常数附近,那么就把这个常数叫做事件发生的概率,记作:; (2) 概率的性质:i. 对于必然事件Ω:()1=ΩP ii. 对于不可能事件φ:()0=φP iii. ()10≤≤A P4、 古典概型(1) 古典概型:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性相同,那么称这个随机试验属于古典概型;(2) 概率:设试验共有n 个基本事件,并且每一个基本事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件发生的概率为:(3) 事件的“交”:“B A ”表示B A 、同时发生,记作:AB ;(4) 事件的“并”:“B A ”表示B A 、中至少有一个会发生,又称为事件A 与事件B 的和事件;()nA A P m==基本事件总数包含的基本事件(5) 事件的“否”:A 表示事件A 的对立事件;(A 读作a bar ,“A 拔”)(6) 互为对立的事件:若事件A 是事件B 的对立面,且Ω==B A B A ,φ;(对立事件的理解:在任何一次随机试验中,事件A 与B 有且仅有一个发生) (7) 互斥事件(互不相容事件):不可能同时发生的两个事件,即:φ=B A ;(对立事件是互斥事件,但互斥事件不一定是对立事件)(8) 相互独立事件:在随机试验中,如果事件A 的发生不会影响事件B 发生的可能性的大小,即在事件A 发生的情况下,事件B 发生的概率等于事件B 原来的概率,那么称事件A 与事件B 相互独立;(事件A 发生与否,不影响事件B 的概率) (9) 若A 、B 是互斥事件,则:()()()B P A P B A P +=(10) 若A 、B 是对立事件,则:()()B P A P +=1,即:()()A P A P -=1 (11) 若A 、B 不是互斥事件,则:()()()()B A P B P A P B A P -+= (12) 若A 、B 是相互独立事件,则:()()()()B P A P AB P B A P ⋅==四、总体、样本与抽样方法例1:为了了解全校1120名一年级学生的身高情况,从中抽取100名学生进行测量; 1、 总体:在统计中,所研究对象的全体;例1中“全校1120名一年级学生的身高”是总体;2、 个体:组成总体的每一个对象;例1中“全校每一位一年级学生的身高”是个体;3、 样本:被抽取出来的个体的集合;例1中“抽取的100名一年级学生的身高”是样本;4、 样本容量:样本所含个体的数目;例1中“100”是样本容量;5、 抽样的方法有三种:简单随机抽样、系统抽样、分层抽样;6、 说明:当总体中的个数比较小时,常采取简单随机抽样;当总体中的个数比较多,且其分布没有明显的不均匀情况,常采用系统抽样;当总体由差异明显的几个部分组成时,常采用分层抽样;五、用样本估计总体1、 样本均值:()n x x x nx +++=2112、 样本方差:()()()[]2222121x x x x x x nS n -++-+-= 3、 样本标准差:()()()[]222211x x x x x x nS n -++-+-=4、 说明:均值反映了样本和总体的平均水平;方差和标准差则反映了样本和总体的波动大小程度;5、作频率分布直方图的方法:①把横轴分成若干段,每一线段对应一个组的组距;②然后以此线段为底作一矩形,它的高等于该组的频率/组距;这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经理小张统计与概率的复习【知识结构】1、本章内容的知识结构图为:2、近几年中考命题对统计与概率的知识加大了考查力度,其命题特点是:(1)试题在题型设计、内容安排、分值分布、难易程度上体现稳中求新的特点;(2)试题注重从知识立意转向能力立意;(3)试题选材紧密结合生活实际,关注社会热点,注重背景设置的新颖性.3、在新课标理念指导下,预计2008年考查有关统计与概率的知识点将着重数据的分析和事件发生机会大小的确定以及统计与概率知识的实际应用,对统计中涉及的计算将趋向简单.试题将会继续结合社会热点,创设一些新的情境来涉及有关统计与概率的知识,突出收集、整理、描述信息,建立数学模型(概率模型),进而解决问题.中考中会适当设置一些把统计、概率知识和方程、不等式、函数等知识结合在一起的开放型问题和探索问题,或者出现与其他学科、生活知识等综合的题型,注重考查学生的创新意识与实践能力.【例题精析】(1)该公司“高级技工”有 名;(2)所有员工月工资的平均数x 为 中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员. 出用(2(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.【解析】本题利用表格的形式给出信息,考查平均数、众数、中位数三个重要统计量,并运用三个统计来量进行推断和做出合理决策.本题考查了学生的统计意识以及对相关统计量所代表数据特征的理解,体现了数学的实用性、工具性;其关键是理解平均数、中位烽、众数的的概念,具体应用时,要能够准确求其数值和体会其具体内涵.【解答】(1)16;(2)1700;1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)250050210008400346y ⨯--⨯=≈1713(元). y 能反映.【例2】某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩100分)进行统计.请你根据不完整的频率分布表,解答下列问题: (1)补全频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D ”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由.【解析】频率分布表和频数分布直方图是中考的热点,它形象地描述了个部分数据之间的关系(主要是大小);利用样本来估计总体,是统计学的基本思想,是考试的热点. 【解答】【例3】王强与李刚两位同学在学习“概率”时,做抛骰子(均匀正方体形状)实验,他们共抛了54)次,出现向上点数的次数如下表:(1)请计算出现向上点数为3的频率及出现向上点数为5的频率. (2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.” 李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.” 请判断王强和李刚说法的对错.(3)如果王强与李刚各抛一枚骰子,求出现向上点数之和为3的倍数的概率.【解析】本题第(2)问引导学生如何正确理解概率的频率定义及概率的真实含义,王强的说法中体现了实验次数不充分时,结果会受到极端数据的较大影响;当实验次数很大时,一个事件发生的频率稳定在相应的概率附近,概率描述的是事件发生可能性的程度,体现某次实验结果发生的可能性. 【解答】(1)出现向上点数为3的频率为554,出现向上点数为5的频率为827.(2)都错.(3)画树状图或列表或简单说理(正确)概率121363P == .【例4】如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止. (1)请你通过画树状图的方法求小颖获胜的概率. (2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【解析】本题的游戏规则是否公平可要求参加者获胜的概率相同,但不一定是各占一半,只要相等即可;画树状图与列表法是计算概率的一个基本方法,在判断游戏的公平性、设计公平游戏等方面也经常用到,请同学们务必掌握. 【解答】(1)画树状图如下:开始甲 1 2 3乙 6 7 8 9 6 7 8 9 6 7 8 9 和 7 8 9 10 8 9 10 11 9 10 11 12可见,共有12种等可能的情况,其中和小于10的有6种.∴小颖获胜的概率为61122=. (2)该游戏规则不公平.由(1)可知,共有12种等可能的情况,其和大于10的情况有3种,甲乙∴小亮获胜的概率为31124=,显然1124≠,故该游戏规则不公平. 游戏规则可修改为:当两个转盘指针所指区域内的数字之和大于或等于10时,小亮获胜;当两个转盘指针所指区域内的数字之和小于10时,小颖获胜.修改游戏规则的方式很多,只要修改后的游戏规则符合题目要求即.例如游戏规则也可修改为:当两个转盘指针所指区域内的数字之和为奇数时,小亮获胜;为偶数时,小颖获胜.【例5】在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是83. ⑴试写出y 与x 的函数关系式;⑵若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为21,求x 和y 的值. 【解析】本题是概率与函数的综合题,充分体现出知识之间的相互交融;近几年中考中也出现了概率与方程结合的题目,并渗透样本估计总体的思想;解题时要要冷静地分析问题,联想和运用有关知识,综合地解决问题.【解答】解:(1)根据题意得:83=+y x x ,整理,得y x x 338+= ∴5x =3y , ∴x y 35= (2)根据题意,得211010=+++y x x 整理,得2x +20=x +y +10, ∴y =x +10∴5x =3(x +10), ∴ x =15,y =25【学有所得】本章的学习要求在熟练掌握基本概念、基本方法、基础知识的前提下,准确把握数量、图形之间的关系,灵活运用数学方法,解决相关的问题,学习时要注意以下几个方面: 1、数形结合:注意将抽象的数学语言与直观的图形、图表结合起来; 2、统计思想:用样本来估计总体;3、分析与综合:对具有强烈时代气息,具有很强现实性的有关统计与概率的应用题,要加强分析与综合,解决相关问题.【巩固练习】一、选择题1、要了解一个城市的气温变化情况,下列观测方法最可靠的一种方法是( ) A .一年中随机选中20天进行观测; B .一年中随机选中一个月进行连续观测; C .一年四季各随机选中一个星期进行连续观测; D 一年四季各随机选中一个月进行连续观测.2、2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是( )A.32,31B.31,32C.31,31D.32,353、下列事件中,必然事件是( ) A .中秋节晚上能看到月亮 B .早晨的太阳从东方升起 C .今天考试小明能得满分 D .明天气温会升高4、在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .3 B .4 C .9 D .125、随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为( )A .12B .13C .14D .156、小刚与小亮一起玩一种转盘游戏。
如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示。
固定指针,同时转动两个转盘,任其自由停止。
若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜。
则在该游戏中小刚获胜的概率是( )A .21 B 、94 C 、95 D 、32 7、在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15 B .14C .29D .518 8、小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )A 、π93B 、π63C 、π33D 、219、(2007杭州)将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A.1216B.172C.136D.11210、小丁和小兰分别用掷A 、B 两枚骰子的方法来确定P(x ,y )的位置,她们规定:小丁掷得的点数为x ,小兰掷得的点数为y ,那么她们各掷一次所确定的点落在已知直线62+-=x y 上的概率为( )A .366 B .181 C .121 D .91二、填空题11、为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有 条鱼.12、一组数据35,35,36,36,37,38,38,38,39,40的极差是________13、小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .14、图8中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______15、为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.16、如图,数轴上两点A B ,,在线段AB 上任取一点,则点C 到表示1的点的距离不大于2的概率是 . 17、(2007宁波)一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .18、甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a ,b 分别取数字0,1,2,3,若a ,b 满足1a b -≤,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为 .三、解答题19、红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行专业知识测试,成绩如下表所示;并依录用的程序,组织200名职工对三人进行民主评议投票推荐,三人得票率如图所示.(没有弃权票,每位职工只能投1票,每得1票记作1分)测试项目测试成绩(单位:分) 甲 乙 丙 专业知识 7374 67 (1)请填出三人的民主评议得分:甲得 分,乙得 分,丙得 分;(2)根据招聘简章,人事部将专业知识、民主评议二项得分按6:4的比例确定各人成绩,成绩优者将被录用.那么 将被录用,他的成绩为 分. 20、某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形图和扇形统计图,请你根据图表信息完成下列各题: (1)此次共调查了多少位学生?(2)请将表格填充完整;(3)请将条形统计图补充完整.丙31% 甲 35%乙 34% (第2题图)图8兴趣爱好图1 图2 3-第16题图其他坐公共汽车 44%21、如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.22、四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。