初三数学月考试题
2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上册21.1-22.1。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
九年级月考数学真题试卷【含答案】

九年级月考数学真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 在直角坐标系中,点P(2, -3)关于原点的对称点是()。
A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若一组数据的方差为4,则这组数据的标准差是()。
A. 2B. 4C. √4D. 1/25. 下列命题中,真命题是()。
A. 所有的实数都有倒数B. 若a > b,则1/a < 1/bC. 若a^2 = b^2,则a = bD. 对角线相等的四边形是矩形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 一元二次方程的解一定都是实数。
()8. 在三角形中,大边对大角。
()9. 若一组数据的平均数为0,则这组数据的中位数一定为0。
()10. 所有的等边三角形都是等腰三角形。
()三、填空题(每题1分,共5分)11. 若一个等腰三角形的底边长为10,腰长为13,则这个三角形的周长为______。
12. 若函数y = 2x + 3的图像与x轴相交于点P,则点P的坐标是______。
13. 在直角坐标系中,点A(3, 4)到原点的距离是______。
14. 若一组数据的众数是7,则这组数据中至少有一个数是______。
15. 若a^2 = 25,则a的值为______或______。
四、简答题(每题2分,共10分)16. 解释什么是算术平方根,并给出一个例子。
17. 解释什么是函数的单调性,并给出一个例子。
18. 解释什么是三角形的内角和,并给出一个例子。
19. 解释什么是数据的方差,并给出一个例子。
20. 解释什么是平行四边形的对角线,并给出一个例子。
九年级数学月考试题(含答案)

第五次月考一 选择题(共10小题,每小题3分,计30分)1. 如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A.43 B.34 C.53 D.542. △ABC 中,∠A 、∠B 都是锐角,且sin A =21,cos B =23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3. .在△ABC 中,AB =AC =4,BC =2,则4cos B 等于( )A.1B.2C.15D.4154. 如果∠A 为锐角,且cos A =41,那么∠A 的范围是 A . 0°<∠A ≤30° B.30°<∠A <45° C. 45°<∠A <60°D.60°<∠A <90°5 如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工。
从AC 上的一点B ,取∠ABD=145°,BD=500米,∠D=55°,要使A 、C 、E 成一直线,那么开挖点E 离点D 的距离是( )A. 500sin55°米B. 500cos55°米C. 500tan55°米D. 500tan35°米6. 下列各关系式中,属于二次函数的是(x 为自变量) ( )A.y =81x 2B.y =12-xC.y =21x D.y =a 2x7. 已知二次函数c bx ax y ++=2的图象如右图所示, 则a、b、c满足( )A. a <0,b <0,c >0 B. a <0,b <0, c <0 C. a <0,b >0,c >0 D. a >0,b <0, c >0 8. 下列说法错误的是 ( )BACA.二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B.二次函数y =-6x 2中,当x =0时,y 有最大值0C.a 越大图象开口越小,a 越小图象开口越大D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 9. 在同一坐标系中,作y =x 2,y =-21x 2,y =31x 2的图象,它们的共同特点是( ) A.抛物线的开口方向向上B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点10. 已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 3二 填空题(共6小题,每小题3分,计18分)11. 如图,等腰三角形ABC 的顶角为1200,腰长为10,则底边上的高AD=12. 某段公路每前进100 m ,就升高4 m ,则路面的坡度约为_____13. 如果由点A 测得点B 在北偏西20°的方向,那么由点B 测得点A 的方向是______ 14. 若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k ______15. 写出一个开口向上,顶点是y 轴上的二次函数的表达式:16. 在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______ 三 解答题(共8小题,计52分,解答应写出过程)17(本题满分6分)求值:sin 245°- cos60°+ tan60°·cos 230°18.(本题满分10分)如图,一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?19. (本小题满分12 分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):(1)在测点A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离AN = m ; (3)量出测倾器的高度AC = h .根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案: (1)在图②中,画出你测量小山高度 MN 的示意图(标上适当字母); (2)写出你设计的方案.x20. (本小题满分12 分)有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)21(本小题满分12 分)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1.)(1)(2)参考答案:一、1. A 2.B 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. C二、11.5 12. 1∶24.98 13. 南偏东20° 14. ≠±2 15. 21y x =+ 16. y =36-x 2三、17. 解:原式= 2212- (2分)=112244-+= (6分) 18.解:⑴ ∵抛物线 21 3.55y x =-+的顶点为(0,3.5) ∴最大高度为3.5米 (4分) ⑵ 在21 3.55y x =-+中 当 3.05y =时 213.05 3.55x =-+ ∴2 2.25x = ∴ 1.5x =±又∵x >0 ∴ 1.5x = …………………… (8分) 当 2.25y =时 212.25 3.55x =-+ ∴2 6.25x = ∴ 2.5x =± 又∵x <0 ∴ 2.5x =- …………………… (11分) 故运动员距离篮框中心水平距离为 1.5+2.5 = 4 …………………… (12分) 19.解:(1)正确画出示意图. (4分) (2)① 在测点A 处安置测倾器,测得此时山顶M 的仰角 ∠MCE = α;② 在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角 ∠MDE = β;③ 量出测倾器的高度AC = BD = h ,以及测点A 、B 之间的距离AB = m . 根据上述测量数据,即可求出小山的高度MN . (12分)20.解:(1)设拱桥顶到警戒线的距离为m .∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a ∴抛物线表达式为y =2125x -8分 (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续2.01=5(小时)到拱桥顶. 12分(1) (2)21解:(1)如图,建立直角坐标系, …………2分 设二次函数解析式为 y =ax 2+c …………3分 ∵ D (-0.4,0.7),B (0.8,2.2), …………4分∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a …………5分∴ ⎪⎩⎪⎨⎧.=,=2.0528c a∴绳子最低点到地面的距离为0.2米. …………7分 (2)分别作EG ⊥AB 于G ,FH ⊥AB 于H …………8分 AG =21(AB -EF )=21(1.6-0.4)=0.6. 在Rt △AGE 中,AE =2, EG =22AG AE -=226.02 =64.3≈1.9. …………11分∴ 2.2-1.9=0.3(米).∴ 木板到地面的距离约为0.3米. …………12分。
九年级上册数学第一次月考试卷

九年级上册数学第一次月考试卷一、选择题(每题3分,共30分)1. 下列二次根式中,最简二次根式是()A. √(8a)B. √(2a/3)C. √(3a)D. √(a^2b^4)2. 下列函数中,是一次函数但不是正比例函数的是()A. y = 2xB. y = -x/2C. y = 3/xD. y = -2x + 13. 下列运算正确的是()A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 7a + a = 7a^2D. (x - 1)^2 = x^2 - 14. 下列说法中,正确的是()A. 无限小数是无理数B. 绝对值等于它本身的数是非负数C. 垂直于同一直线的两条直线互相平行D. 相等的角是对顶角5. 下列方程中,是一元二次方程的是()A. x^2 + 2x = x^2 - 1B. (x + 1)^2 = 4xC. x^2 + y = 1D. 1/x^2 + x = 16. 已知直线y = kx + b 经过点(1, -2) 和(-2, 4),则k 的值为()A. -2B. 2C. -4/3D. 4/37. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆8. 下列不等式组中,解集为x > 3 的是()A. { x > 2, x < 3 }B. { x > 3, x > 4 }C. { x ≤2, x > 3 }D. { x > 3, x ≥2 }9. 下列调查中,适合采用全面调查(普查)方式的是()A. 对全市中学生目前使用手机情况的调查B. 对某品牌电视机的使用寿命的调查C. 对乘坐飞机的旅客是否携带违禁物品的调查D. 对全国小学生课外阅读情况的调查10. 下列关于概率的描述性定义中正确的是()A. 必然发生的事件的概率是0B. 不可能发生的事件的概率是1C. 概率是1 的事件在一次试验中一定不会发生D. 概率是0.5 的事件在一次试验中有可能不发生二、填空题(每题3分,共18分)11. 计算:√(16) = _______。
中学初三年级第一次月考数学试题

2 中学初三年级第一次月考数学试题一、选择题(3×8=24)1、下列函数中,y 是x 的反比例函数的有( ) (1)y =-πχ (2)xy =2 (3)y =2x 2 (4)y = x1 (5)y =x 12+ (6)y =11+x (7)y =x 21- (8)y =21-x A.1个 B.2个 C.3个 D.4个 2、已知反比例函数y =xk 2-的图像位于第一、三象限,则k 的取值范围是( )A.k >2B.k ≥2C.k ≤2D.k <23、若点A (1,1y )B (2,2y )都是反从例函数y=xk (k >0)的图象上,则1y与2y 的大小关系是( )A.1y <2y B.1y ≤2y C.1y >2y D.1y ≥2y4、正比例函数y =x 6的图象与反比例函数y =x6的图像的交点位于( ) A.第一象限 B.第二象限 C.第二、四象限 D.第一、三象限 5、下列方程中,一元二次方程有( )① x x =5 ①(x -3)2-6=0 ①x 2 =1 ①7x (x -2)=7x 2 ①ax 2+bx +c=0 A.1个 B.2个 C.3个 D.4个 6、一元二次方程x 2-2x -4=0的根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根7、若一元二次方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数值是( )A.-1B.0C.1D.28、若关于x 的一元二次方程x 2+kx +4k 2-3=0的两个实数根分别是1x .2x ,且满足1x +2x =1x .2x ,则k 的值为( )A.-1或43B.-1C.43 D.不存在 二、填空题(3×6=18)9、如图,已知A 点是反比例函数y =xk (k ≠0)的图像上一点,AB①y 轴于B ,①ABO 的面积为5,则k 的值为 。
10、已知反比例函数y =x6在第一象限的图像,如图所示,点A 在其图象上,点B 在x 轴的正半轴上,连结A0、AB,且AO=AB,则①AOB 的面积= 11、若y =x 2与双曲线y =xk的一个交点是(36),则另一个交点是 12、若关于x 的一元二次方程kx 2+3x +1=0有两不相等的实数根,则k 的取值范围是13、关于x 的一元二次方程(m -2)x 2+2x +m 2+m -6=0有一个实数根为0,则m 的值是14、已知一个三角形的两边长分别是3cm 和7cm ,第三边长为acm ,且满足a 2-10a+21=0,则此三角形的周长为 。
初三数学月考测试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. 0.001C. -√9D. 3.142. 若a < b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. 2a < 2bD. 2a > 2b3. 在等腰三角形ABC中,若AB = AC,且∠BAC = 60°,则∠ABC =()A. 30°B. 45°C. 60°D. 90°4. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = 3x^25. 已知一次函数y = kx + b(k≠0)的图象与x轴、y轴分别交于A、B两点,若OA = 3,OB = 4,则k的值为()A. 1/3B. 1/4C. 3/4D. 4/36. 在直角坐标系中,点P(2,3)关于原点O的对称点是()A.(2,3)B.(-2,-3)C.(3,2)D.(-3,-2)7. 若等差数列{an}中,a1 = 2,公差d = 3,则a5 =()A. 10B. 13C. 16D. 198. 在△ABC中,若∠A = 45°,∠B = 30°,则sinC =()A. 1/2B. √3/2C. 1/√2D. √3/29. 若a,b,c是等比数列的连续三项,且a + b + c = 18,b = 3,则a =()A. 3B. 6C. 9D. 1210. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 + b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2二、填空题(每题3分,共30分)11. 若m^2 - 5m + 6 = 0,则m的值为______。
初三数学月考测试卷

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. 3.14C. √25D. √22. 已知等边三角形ABC的边长为a,则三角形ABC的周长是()A. 3aB. 2aC. a√3D. 2√3a3. 下列函数中,一次函数是()A. y = x^2 + 1B. y = 2x + 3C. y = 3x^3 + 2D. y = √x4. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |2|D. |-2|5. 已知一元二次方程 x^2 - 4x + 3 = 0,则方程的两个根是()A. x = 1, x = 3B. x = 2, x = 2C. x = -1, x = -3D. x = -2, x = -26. 下列各图中,轴对称图形是()A.B.C.D.7. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)8. 下列各式中,能化为完全平方公式的是()A. x^2 - 6x + 9B. x^2 + 6x + 9C. x^2 - 4x + 4D. x^2 + 4x + 49. 已知等腰三角形ABC的底边BC=6,腰AB=AC=8,则三角形ABC的周长是()A. 14B. 16C. 18D. 2010. 下列函数中,反比例函数是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 2x二、填空题(每题5分,共20分)11. 已知x + y = 5,xy = 6,则x^2 + y^2 = ________。
12. 在直角坐标系中,点P(3,-2)关于原点的对称点坐标是 ________。
13. 已知一元二次方程 x^2 - 5x + 6 = 0,则方程的两个根的和是 ________。
14. 下列函数中,函数值y随自变量x增大而减小的函数是 ________。
15. 已知等腰三角形ABC的底边BC=8,腰AB=AC=6,则三角形ABC的面积是________。
初中月考数学试卷及答案

一、选择题(每题5分,共30分)1. 下列数中,是负数的是()A. -5B. 0C. 5D. -5/22. 下列代数式中,结果是正数的是()A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. 3 × 23. 若 a > b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a - 1 < b - 1D. a + 1 > b + 14. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2 + 2x + 1D. y = x^3 + 2x^2 + 3x + 15. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题5分,共25分)6. 若 |x - 2| = 5,则x的值为______。
7. 若 a = 3,b = -2,则 a^2 - b^2 的值为______。
8. 下列函数中,y = 2x + 1 是______函数。
9. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积为______cm³。
10. 在等腰三角形ABC中,若AB = AC,且底边BC的长度为6cm,则腰AB的长度为______cm。
三、解答题(共45分)11. (10分)解下列方程:3x - 5 = 2x + 712. (10分)计算下列代数式的值:(2x + 3y) - (x - 2y),其中 x = 2,y = -113. (10分)已知二次函数 y = ax^2 + bx + c,其中 a ≠ 0,且 a + b + c = 0。
求证:这个二次函数的图像与x轴有两个交点。
14. (15分)在平面直角坐标系中,点A(2, 3),点B(5, 7),点C(-3, -1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年第二学期旧州中学初三年级第二次月考数学试卷本卷为数学试题单,共27个题,满分150分,共4页。
考试时间120分钟。
一、单项选择题(共30分,每小题3分) 1.9-的相反数是( ) A .9B .9-C .19D .19-2.今年1-4月份,贵阳市经济发展形势良好,已完成的固定资产投资快速增长,达240.31亿元,用科学记数法可记作( ) A .8240.3110⨯元 B .102.403110⨯元C .92.403110⨯元D .924.03110⨯元3.关于x 的一次函数21y kx k =++的图象可能正确的是( )4.在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A .B .C .D . 5.图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN 的度数为( )A .30ºB .36ºC .45ºD .72ºxxxxD.第3题图图(1) 第5题图图(2)6.为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且1002=甲s 、1102=乙s 、1202=丙s 、902=丁s . 根据统计结果,派去参加竞赛的两位同学是( )A .甲、乙B .甲、丙C .甲、丁D .乙、丙7. 如右图8所示,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是( )8.如图,一把遮阳伞撑开时母线的长是2米,底面半径为1米,则做这把遮阳伞需用布料的面积是( )A .4π平方米B .2π平方米C .π平方米D .1π2平方米(第8题图)(第9题图)9.如图,把抛物线2y x =与直线1y =围成的图形OABC 绕原点O 顺时针旋转90°后,再沿x 轴向右平移1个单位得到图形1111O A B C ,则下列结论错误..的是( ) A .点1O 的坐标是(10), B .点1C 的坐标是(21)-,C .四边形O B 1A 1B 是矩形D .若连接OC ,则梯形OCA 10.如图,A 、B 是函数2y x=BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .S 10题二、填空题(共32分,每小题4分) 1.分解因式:a 2+2a =__ . 2.2.函数y =x 的取值范围是_____________. 3.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 . 4.如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在A B 上,若PA 长为2,则△PEF 的周长是_ _ .5.正整数按图8的规律排列.请写出第20行,第21列的数字 .第一行 第二行第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列 1 2 5 10 17 (4)3611 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)2423 2221………图86.如图2,AB O是⊙的直径,弦303c m C D A B E C B O⊥∠=于点,°,⊙, 则弦CD 的长为 .7.已知二次函数2y ax bx c =++(0a ≠20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有 . 8.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是______.三、解答题(共88分)1、计算 104cos30sin60(2)2008)-︒︒+-- (本题满分8分)2、先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =. (本题满分8分) 3、解不等式组20537x x x -<⎧⎨+≤+⎩;并写出它的整数解。
(本题满分8分)4 小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次. (本题满分10分) (1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上.......正面向上,由爸爸陪同前往北京;有两次或两....次以..上.反面向上,则由妈妈陪同前往北京.分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率.图2 C ABOE D 图35、李大叔今年五月份购买了一台彩电和一台洗衣机,根据“家电下乡”的补贴标准:农户每购买一件家电,国家将按每件家电售价的13%补贴给农户. 因此,李大叔从乡政府领到了390元补贴款. 若彩电的售价比洗衣机的售价高1000元,求彩电和洗衣机的售价各是多少元. (本题满分10分)6、(本题满分10分)已知一次函数(0)y kx b k =+≠和反比例函数2ky x=的图象交于点A(1,1) (1) 求两个函数的解析式;(2) 若点B 是x 轴上一点,且△AOB 是直角三角形,求B 点的坐标。
7、(本题满分10分)如图5,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.51.73,结果保留整数).8.(本题满分12分)如图,直线l 切⊙O 于点A ,点P 为直线l 上一点,直线PO 交⊙O 于点C 、B ,点D 在线段AP 上,连结DB ,且AD=DB . (1)求证:DB 为⊙O 的切线.(2)若AD=1,PB=BO ,求弦AC 的长.9.(本题满分12分) 如图,已知直线112y x =+与y 轴交于点A ,与x 轴交第7题第8题图于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式; ⑵动点P 在轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
数学试卷答题卡班级 . 姓名. 考号 . 得分 . 一、选择题(本大题共10小题,每小题3分,满分30分)1. . 2. . 3 .. 4 .5. .6. .7. .8. . 三、解答题(共88分) 1.(本题满分8分)2.(本题满分8分)3.(本题满分8分)4、(本题满分10分)5、(本题满分10分)6、(本题满分10分)7、(本题满分10分)题第78.9.(本题满分12分)参考答案一、选择题(本大题共10小题,每小题3分,满分30分)二、填空题(共32分,每小题4分)1.a (a +2) 2.x ≥0且1x ≠ 3.-3 4.4 5.420 6.3cm 7.①②③ 8.23三、解答题(共88分) 1.(本题满分8分)32; 2.(本题满分8分)解:原式21212(1)(1)1x x x x x x +-+==+-+- 当2x =时,原式1=.3.(本题满分8分)解:解①得2<x (3′) 解②得1-≥x(6′)∴12x -≤<(7′) ∴所求不等式组的整数解为:-1. 0. 1 .(8′)4、(本题满分10分)解:(1)(2)P (由爸爸陪同前往)12=;P (由妈妈陪同前往)12=; (3)由(1)的树形图知,P (由爸爸陪同前往)12=. 5、(本题满分10分).解:设一台彩电的售价为x 元,一台洗衣机的售价为y 元根据题意得:100013()390x y %x y ì-=ïïíï+=ïî·················································································· 6分 解得20001000x y ì=ïïíï=ïî ································································································· 9分 答:略 ······················································································································ 10分6、(本题满分10分)解:(1)∵点A (1,1)在反比例函数x2k y =的图象上, ∴k=2.∴反比例函数的解析式为:x1y =. (3′) 一次函数的解析式为:b x 2y +=.∵点A (1,1)在一次函数b x 2y +=的图象上 ∴1b -=.∴一次函数的解析式为1x 2y -= (6′)(2)∵点A (1,1) ∴∠AOB=45o . 正反 正 反 正 反 正 正反 正反正 反反 第一次 第二次 第三次∵△AOB 是直角三角形 ∴点B 只能在x 轴正半轴上.① 当∠OB 1A=90 o 时,即B 1A ⊥OB 1.∵∠AOB 1=45o ∴B 1A= OB 1 . ∴B 1(1,0).(8′)② 当∠O A B 2=90 o 时,∠AOB 2=∠AB 2O=45o ,∴B 1 是OB 2中点, ∴B 2(2,0). (10′)综上可知,B 点坐标为(1,0)或(2,0).7、(本题满分10分)设山高BC =x ,则AB =12x , 3分 由tan3012002BC xBDx ==+ ,得 5分1)400x =, 8分解得162x ==米 10分8.(1)证明: 连结OD ……………………………………………………… ∵ P A 为⊙O 切线 ∴ ∠OAD = 90°……………………………………… ∵ OA=OB ,DA=DB ,DO=DO , ∴ΔOAD ≌ΔOBD ………………… ∴ ∠OBD =∠OAD = 90°, ∴P A 为⊙O 的切线…………………6分(2)解:在RtΔOAP 中,∵ PB =OB =OA ∴ ∠OP A=30°……………… ∴ ∠POA =60°=2∠C , ∴PD=2BD =2DA =2…………………………… ∴ ∠OP A =∠C =30°…………………………………∴ AC =AP =3…………………………………………12 分说明:其它解法请参照上述评分说明给分.9.(本题满分12分)(1)将A (0,1)、B (1,0)坐标代入212y x bx c =++得1102c b c =⎧⎪⎨++=⎪⎩解得321b c ⎧=-⎪⎨⎪=⎩ ∴抛物线的解折式为213122y x x =-+…(2分) (2)设点E 的横坐标为m ,则它的纵坐标为213122m m -+ 第7题第8题图即 E 点的坐标(m ,213122m m -+)又∵点E 在直线112y x =+上 ∴213111222m m m -+=+ 解得10m =(舍去),24m = ∴E 的坐标为(4,3)……(4分)(Ⅰ)当A 为直角顶点时过A 作AP 1⊥DE 交x 轴于P 1点,设P 1(a,0)易知D 点坐标为(-2,0) 由Rt △AOD ∽Rt △POA 得DO OA OA OP =即211a =,∴a =21 ∴P 1(21,0)……(5分) (Ⅱ)同理,当E 为直角顶点时,P 2点坐标为(112,0)……(6分) (Ⅲ)当P 为直角顶点时,过E 作EF ⊥x 轴于F ,设P 3(b 、0)由∠OPA+∠FPE =90°,得∠OPA =∠FEP Rt △AOP ∽Rt △PFE 由AO OP PF EF =得143b b =- 解得13b =,21b = ∴此时的点P 3的坐标为(1,0)或(3,0)……(8分) 综上所述,满足条件的点P 的坐标为(21,0)或(1,0)或(3,0)或(112,0)。