练习13 函数的进一步讨论(二)(带答案)
C语言基础知识答案

29 C 30 B 31 A 32 A 33 B 34 B 35 A 36 D 37 B 38 B
二填空题
10 72k *k3*x t4int * *t5(1)s=p+3;(2)s=s-2(3)66(4)*(s+1)(5)4
16 A 17 D 18 B 19 C C 27 D 28 B
29 D 30 A 31 C 32 A 33 D 34 D 35 B 36A 37 D 38 C 39 C 40C 41C
42B 43A
二填空题
1IJKLEFGHABCD23394752661371 3 6879(double*)
第一章C语言基础知识
一选择题
1 B 2 DBD 3 BE 4 A 5 B 6 C 7 B 8 C 9 D 10 BDD 11 D 12 D 13 C
14 AC 15 A 16 CC 17 D 18 A 19 AAA 20 D 21 D 22 BDDBB 23 A 24 D
25 D 26 A 27 C 28 A 29 B 30 CG 31C 32 DDBA 33 C 34 D 35 D 36 D
16 D 17 D 18 B 19 D 20 B 21 C22 A 23 A 24 A 25 C 26 A 27 B 28 D 29B
30 B 31D
二填空题
12223435 2410 4516 6 struct STRU 7 ex 8 sizeof(struct node)
9 b->day, (*b).day 10 3,3 11 struct link *next 12 struct node * 13 struct STRU*
对函数的进一步讨论_真题-无答案

对函数的进一步讨论(总分14,考试时间90分钟)一、选择题1. 下列程序执行后的输出结果是______。
A. helloB. helC. hloD. hlm void func1 (int ;void func2 (int ;char st[]="hello,friend!";void func1(int { printf("%c",s;if(i<3){ i+=2;func2(;} } void func2 (int { printf("%c",s;if(i<3){ i+=2;func1(;} } main() { int i=0;func1(;printf("\n");}2. 程序中若有如下说明和定义语句char fun (char*);main() { char*s="one",a[5]={0},(*f1)()=fun,ch;… } 以下选项中对fun()函数的正确调用语句是——。
A. (*f1)(; B. *f1(*;C. fun(&;D. ch=*f1(;3. 若有以下说明和定义fun(int*c){...} main() { int(*a)()=fun,(*b)(),w[10],c;} 在必要的赋值之后,对fun()函数的正确调用语句是______。
A. a=a(;B. (*(&;C. b=*b(;D. fun(;4. 以下程序的输出结果是______。
A. 54321B. 012345C. 1 2 3 4 5D. 5 4 3 2 1 0 main() { int w=5;fun(;printf("\n");} fun (int { if(k>0) fun(k-1);printf("%d"",;}5. 不合法的main函数命令行参数表示形式是______。
(完整版)导数讨论含参单调性习题(含详解答案).doc

1.设函数.( 1)当时,函数与在处的切线互相垂直,求的值;( 2)若函数在定义域内不单调,求的取值范围;( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.( 1)讨论的单调性;( 2)当时,证明:;( 3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).( 1)当时,若在其定义域内为单调函数,求的取值范围;( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.( 1)讨论函数的单调性;( 2)若存在两个极值点,求证:无论实数取什么值都有.5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 .( 1)求的值;( 2)若在及所在的取值范围上恒成立,求的取值范围;6.已知函数ln , x ,其中.f x ax x F x e ax x 0, a 0( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的e2最小值 .7.已知函数 f ( x) e x m ln x .( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ;( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) .8.已知函数 f x ln 1 mx x2mx ,其中0 m 1 .2( 1)当m 1时,求证: 1 x 0 时, f x x3;3( 2)试讨论函数y f x 的零点个数.9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 .(1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 .10 .已知函数f x e x ax 2(1)若a 1 ,求函数f x 在区间[ 1,1]的最小值;(2)若a R, 讨论函数 f x 在 (0, ) 的单调性;(3)若对于任意的x1, x2 (0, ), 且 x1 x2,都有 x2 f ( x1) a x1 f ( x2 ) a 成立,求 a 的取值范围。
高中数学对函数的进一步认识 合作与讨论 试题

卜人入州八九几市潮王学校对函数的进一步认识与讨论1.怎样判断一个解析式是否是函数要判断一个解析式表达的是否为函数,利用定义法便可解决.即对定义域中的任何一个值,在值域中都有唯一的函数值与它对应.2.函数y =x 2与S =t 2是同一函数吗 函数确实定只与定义域与对应关系有关,而与所表示的字母无关,因此y =x 2与S =t 2表示的是同一个函数.因此并非字母不同便是不同的函数.这是由函数的本质决定的.3.如何判断一个对应是否为映射根据定义即可,称为定义法.对于一个A 到B 的对应,A 中的任何一个元素都对应B 中的唯一一个元素,或者A 中的多个元素对应B 中的一个元素,这样的对应都是映射,而A 中的一个元素对应月中的多个元素的对应就不是映射.可以简单地说:“一对一〞“多对一〞的对应是映射,“一对多〞的对应不是映射.4.无究大∞是一个数吗无穷大∞仅是一个记号,不是一个数.用-∞,+∞作为区间一端或者两端的区间称为无穷区间,如{x |a <x <+∞}可用区间表示为〔a ,+∞〕.5.如何理解符号y =f 〔x 〕中的“f 〞符号y =f 〔x 〕中的“f 〞表示对应法那么,在不同的详细函数中,“f 〞的含义不一样,可以形象地把函数的对应法那么“f 〞看作一个“暗箱〞.例如y =f 〔x 〕=x 2,可以将其看作输入x ,输出x 2,于是“暗箱〞相当于一个“平方机〞的作用〔如以下列图〕,那么显然应该有f 〔a 〕=a 2,f 〔m +1〕=〔m +1〕2,f 〔x +1〕=〔x +1〕2. 【例题】函数.<,=,>=)0()0()0(02)(2x x x x x f ⎪⎩⎪⎨⎧ 求f 〔2〕,f 〔-3〕,f [f 〔-3〕]的值.解:f 〔2〕=22=4,f 〔-3〕=0,f [f 〔-3〕]=f 〔0〕=2.点评:函数的定义域的求法.〔1〕由函数的解析式确定函数的定义域.在函数的解析式中,自变量可能因为参与某种运算而使其取值范围受到限制.由这种限制要求就可以确定自变量只能取值的范围,也就求得了函数的定义域.这类限制主要有:①分式的分母不能为零.②开偶次方时,被开方数必须为非负数.③对数的真数必须大于零,底数必须为非1的正数.④一些特殊函数对自变量的规定〔以后学习〕.〔2〕由实际问题确定函数的定义域.有许多函数是反映消费生活的实际问题的,因此定义域除受解析式的制约外,还必须符合实际问题的情况与要求.如有些问题要求自变量只能取正数〔某些图形的边长、面积等〕,有些问题又要求自变量只能取正整数〔以件为单位的物品或者人数等〕.6.函数的表示法有几种函数的表示方法有三种,即解析法、列表法、图象法.里研究的函数主要是用解析式表示的函数,对解析法比较容易理解.列表法、图象法也是表示函数的方法.用列表法表示函数关系的优点是:不必通过计算就知道当自变量取某些值时的对应值.图象法的优点是能直观形象地表示出函数的变化情况.7.函数的图象都是连续的曲线吗这不一定,一般来说,假设自变量的取值是连续的,那么它的图象是连续的,如一次函数、二次函数,但假设自变量的取值不是连续的,那么它的图象就是一些孤立点.例如:y=5x,〔x {1,2,3,4}〕.有时函数的图象是由几段线段组成.8.如何由实际问题写出函数表达式〔1〕阅读理解,要读懂题意,理解实际背景,领悟其数学本质.〔2〕数学建模.即将应用题的材料陈述转化成数学问题,这就要抽象、归纳其中的数量关系,并恰当地把这种关系用数学式子表示出来.分段函数是一个函数还是几个函数分段函数仍是一个函数,只不过是根据自变量的不同范围,函数的表达式不同而已.本节内容中主要包括:函数的概念、函数的表示方法、映射.打破思路1.函数是数学中最重要的根本概念之一,高中对函数内容的学习是初中函数知识的深化和延伸,本节中,在学习集合的根底上,用集合对应的语言对函数重新加以定义,从根本上提醒了函数的本质:由定义域、值域、对应法那么三要素构成的整体,从而使学生认识到初中变量观点F定义的限制和重新认识函数的必要性.概念的教学是非常重要的,尤其是学生刚接触一种新的概念,老师给学生讲清楚,并通过师生的一共同讨论,帮助学生深入理解变得更为重要,要在学生的思想上、知识构造中打上深入的烙印,否那么后面的学习将会产生困难.2.函数是由其定义域、值域、对应法那么三要素构成的整体,并可用抽象符号f〔x〕来表示,由于f所代表的对应法那么不一定能用解析式表示,故本节介绍了函数的表示方法,除理解析法还有列表法和图象法,这三种表示函数的方法之间具有内在的联络.比方本节例3的数据可以用列表法给出,教学中可引导学生先列表,再求解析式,最后画图象.例4在本质上那么是训练由图象求解析式的过程等,认识函数的三种表示方法之间的联络并能互相转化,是对函数概念深化理解的重要步骤.3.映射是一种特殊的对应,学习这一定义时,应注意以下几点:〔1〕映射是由集合A,B以及从A到B的对应关系f所确定的.〔2〕在映射中,集合A中的“任一元素〞在集合B中都有“唯一〞的象,即不会存在集合A中的某一元素a在集合B中没有象,或者者不止一个象的情况.〔3〕在映射中,集合A与B的地位是不对等的.一般地,在映射中我们不要求B中的每一个元素都与A中的唯一元素相对应.因此,从A到B的映射与从B到A的映射是具有不同的要求的.本节由实际问题引出了对分段函数的认识,即对于自变量不同的取值范围,用不同的解析式表示同一个函数关系,故分段函数是一个函数而不是几个函数,教学中可举一些例子帮助学生理解.根据实际问题中的条件列出函数解析式的训练,是建立函数模型、研究实际问题的关键步骤,这种应用意识的培养和应用才能的进步应不断贯穿于以后的教学过程中.规律总结1.函数的三种表示法的比较〔1〕用解析法表示函数关系的优点是:函数的关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质.缺点是:函数值的对应关系必须通过计算才能得到,有时其计算量较大,而且并不是所有的函数关系都能用解析法表示出来.〔2〕用列表法表示函数关系的优点是:不必通过计算就知道当自变量取某些值时的函数的对应数值.缺点是:有时只能表示一局部的自变量与函数值的对应关系,而不能把所有的对应关系一一表示出来,而且有时所有表示的函数的性质较为隐蔽,不利于研究函数的性质.〔3〕用图象法表示函数关系的优点是:能直观形象地表示出函数的变化情况.缺点是:不能准确地表示自变量,对应的函数值的对应关系.2.映射是一种特殊的对应,它是研究函数的根底和工具.映射是现代数学的根本语言〔如同集合一样〕,用它来表达问题简洁明了.因此对于映射的学习重在准确理解和把握映射的概念............上,即抓住“取元任意性、成象唯一性〞这两点.映射是在函数的根底上引申、扩展的,而函数那么是一个特殊的映射.一方面,我们要擅长利用函数与映射这一关系来理解和解决问题,如以函数作为特例不难理解映射的概念;反过来,运用映射的语言来表达问题就简洁明了得多.另一方面,函数与映射的这一关系正是人类对客观事物认识由低级向高级飞跃的一个缩影.因此我们应掌握这种将低级认识扩展到高级认识的思维方法,掌握了这种方法也就掌握了创造和创造的方法.3.根本方法〔1〕函数及其同一性〔两函数“一样〞〕的断定两个函数当且仅当它们的定义域和对应关系完全一样时,才是同一个函数.判断函数的同一性,重要的是定义域和对应关系的本质,而不是表示它们的公式的外貌.〔2〕求函数定义域及定义域的应用定义域是函数的关键性特征,对于每个确定的函数,其定义域是确定的.但是,未必每个解析式都能在实数集R 上定义一个函数.例如,21x y --=就不能在R 上定义出函数来.又如x y -=1也不是定义域为R 的函数,然而它可以定义为R 的子集〔-∞,1]上的函数,这就产生了求定义域的问题.在实际寻找函数的定义域时,应当遵循以下规那么: ①分式的分母不应该是零;②偶次根式的根号里面的式子应该为非负数;③对数的真数应该是正的;④有限个函数的四那么运算得到的函数,其定义域是这有限个函数的定义域的交集〔作除法时还要排除使除式为零的x 值〕; ⑤对于由实际问题建立的函数,其定义域还应该受实际问题的详细条件制约.关于定义域的应用,常见的有如下几个方面:①求值域或者确定函数值的变化范围;②解析式的变形或者化简;③解不等式或者解方程;④求函数的最值.〔3〕求函数的值域及值域的应用最直接的方法是由函数的定义域通过对应关系求值域,有时也可根据详细情况采用以下适当的方法或者技巧:①化为二次函数,利用二次函数的最值确定所给函数的值域;②利用二次三项式的判别式求值域;③由图象,运用数形结合的方法求值域;④利用某些函数的值域,通过解不等式求得所给函数的值域;⑤采用换元法求值域;⑥在建立反函数概念后,可利用互为反函数的定义域与值域的互换关系求值域.〔4〕求函数表达式与函数记号的运用通常会遇到以下各种情形:①对于函数f 〔x 〕、ϕ〔x 〕,求形如f [ϕ〔x 〕]的表达式;②函数表达式的类型,根据函数所具有的某些性质或者约束条件确定表达式中的待定参数;③根据函数对应关系所满足的某些条件,求函数的表达式.在上述各种情形中,正确理解和运用函数记号,常常是疏通思路的关键.④函数的表示法通常有:解析法、列表法、图象法三种.⑤求函数的解析式的方法有:直接法、配凑法、换元法、消去法、定义法、待定系数法及特殊法等.〔5〕求函数值与画函数图象求函数值是学习函数概念必须掌握的最根本的但却是最重要的方法.例如画函数图象首先就要求函数值.一个函数y=f〔x〕可看成有序实数对〔x,y〕的集合.在直角坐标系中给出以每个有序实数对为其坐标的点,所有这些点的集合就是函数的图象.函数的图象表示法奠定了数形结合的根底.。
高中数学一轮复习训练:函数(Ⅱ) Word版含答案

高三数学单元练习题:函数(Ⅱ)一、填空题: 1、函数y =的定义域为 ▲ 。
2、已知全集U =AB 中有m 个元素,()()u uC A C B ⋃中有n 个元素.若A B ⋂非空,则A B ⋂的元素个数为 ▲ 个。
3、设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ▲ 。
4、函数)86(log 221+-=x x y 的单调递增区间是 ▲ 。
5、函数21)(++=x ax x f 在区间()+∞-,2上是增函数,那么a 的取值范围是 ▲ 。
6、已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是▲ 。
7、()(21),f x a x b R =-+设函数是上的减函数则a 的范围为 . 8、已知二次函数f(x)=4x2-2(p -2)x -2p2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f(c)>0,则实数p 的取值范围是 ▲ 。
9、二次函数f(x)的二次项系数为正,且对任意实数x 恒有f(2+x)=f(2-x),若 f(1-2x2)<f(1+2x -x2),则x 的取值范围是 ▲ 。
10、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ▲ 个。
11、设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为 ▲ 。
12、(2)k x ≤+[],a b ,且2b a -=,则k = ▲ 。
二、解答题:13、设函数()x e f x x=(1)求函数()f x 的单调区间; (2)若0k >,求不等式()(1)()0f x k x f x '+->的解集。
初中函数练习题及答案

初中函数练习题及答案初中函数练习题及答案函数是初中数学中一个重要的概念,它在数学中有着广泛的应用。
通过函数的学习,可以帮助学生培养逻辑思维能力和问题解决能力。
下面,我将为大家提供一些初中函数练习题及其答案,希望能帮助大家更好地理解和掌握函数的知识。
1. 已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数f(x)中,得到f(4) = 2(4) + 3 = 11。
所以f(4)的值为11。
2. 已知函数g(x) = 3x^2 - 2x,求g(-1)的值。
解答:将x = -1代入函数g(x)中,得到g(-1) = 3(-1)^2 - 2(-1) = 3 + 2 = 5。
所以g(-1)的值为5。
3. 已知函数h(x) = 5x - 1,求方程h(x) = 9的解。
解答:将h(x) = 9代入函数h(x)中,得到5x - 1 = 9。
解方程得到x = 2。
所以方程h(x) = 9的解为x = 2。
4. 已知函数k(x) = x^2 + 2x,求k(3)的值。
解答:将x = 3代入函数k(x)中,得到k(3) = 3^2 + 2(3) = 9 + 6 = 15。
所以k(3)的值为15。
5. 已知函数m(x) = 2x - 5,求方程m(x) = 0的解。
解答:将m(x) = 0代入函数m(x)中,得到2x - 5 = 0。
解方程得到x = 2.5。
所以方程m(x) = 0的解为x = 2.5。
通过以上的练习题,我们可以看到函数的应用非常广泛。
在解题过程中,我们需要根据函数的定义将给定的值代入函数中,然后进行计算。
这样可以得到函数在给定点上的函数值。
除了上述的练习题外,我们还可以通过绘制函数的图像来更好地理解函数的性质。
例如,我们可以绘制函数y = x^2的图像。
通过观察图像,我们可以发现函数的增减性、最值等性质。
在学习函数的过程中,我们还需要掌握一些函数的基本性质。
例如,函数的定义域、值域、奇偶性等。
函数的单调性的判断与证明练习题含答案

函数的单调性的判断与证明练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列函数中,在其定义域上为增函数的是( ) A.y =x 4B.y =2−xC.y =x +cos xD.y =−x 122. 下列函数中,既是奇函数,又在定义域内是增函数的是( ) A.y =x 3+1 B.y =x +1xC.y =−1xD.y =x|x|3. 下列函数在(0,+∞)上是增函数的是( ) A.f (x )=−2x +1 B.f (x )=1x C.f (x )=lg (x −1) D.f (x )=x 24. 已知函数f(x)=3x −(13)x ,则f(x)( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数5. 下列函数中,既是奇函数又在定义域上是增函数的为( ) A.y =2x B.y =−2x 2C.y =1xD.y =x6. 已知函数f(x)=3x −(13)x,则f(x)( ) A.是奇函数,且在R 上是增函数 B.是偶函数,且在R 上是增函数 C.是奇函数,且在R 上是减函数 D.是偶函数,且在R 上是减函数7. 已知函数f (x )={x 2−ax,x ≥2,a x−1−2,x <2满足对于任意实数x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2>0成立,那么a 的取值范围是( )A.(1,4]B.(1,+∞)C.(1,2]D.[2,4]8. 给定下列函数,其中在区间(0,1)上单调递增的函数是( ) A.y =−12x 2B.y =|x 2−2x|C.y =(12)x+1D.y =x +1x9. 函数f (x )=e x +e −xe x −e −x 的部分图象大致是( )A. B.C. D.10. 已知函数f (x )={−x 2−4x,x ≥0,x 2−4x,x <0,若f (2−t )>f (t ),则实数t 的取值范围是( )A.(−∞,1)∪(2,+∞)B.(1,2)C.(−∞,1)D.(1,+∞)11. 已知定义在(−∞,0)∪(0,+∞)上的函数f (x ),且f (1)=1,函数f (x +1)的图象关于点(−1,0)中心对称,对于任意x 1,x 2∈(0,+∞),x 1≠x 2,都有x 12019 f (x 1)−x 22019 f (x 2)x 1−x 2>0成立.则f(x)≤1x 2019的解集为( )A.[−1,1]B.(−∞,−1]∪[1,+∞)C.(−∞,−1]∪(0,1]D.(−2019,2019)12. 定义在(0,+∞)上的函数f (x )满足:①对于任意的x ,y ∈(0,+∞),都有f (x ⋅y )=f (x )+f (y );②当x >1时,f (x )>0;③f(√6)=1,则关于x 的不等式f (x )−f (15−x )≥2的解集是( ) A.[2,3]B.[−√2,−1]∪[0,√2]C.[√2,+∞)D.(0,2]13. 函数f(x)=|x−3|的单调递增区间是________.14. 若f(x)=是定义在R上的减函数,则a的取值范围是________.15. 已知f(x)=x2+(b−2)x是定义在R上的偶函数,则实数b=________,此函数f(x)的单调增区间为________.16. 已知函数g(x)=x3+5x,若g(2a−1)+g(a+4)<0,则实数a的取值范围为________.17. 符号[x]表示不超过x的最大整数,如[π]=3,[−1.08]=−2,定义函数{x}=x−[x].给出下列四个命题:①函数{x}的定义域为R,值域是[0,1];有无数个解;②方程{x}=12③函数{x}是奇函数;④函数{x}是增函数.正确命题的序号是________.18. 若函数f(x)=kx2+(k−1)x+2是偶函数,则f(x)的递减区间是________.19. 已知函数,若对任意,有恒成立,则实数的取值范围是________.20. 已知f(x)=2x.x2+1(1)判断f(x)在[−1, 1]的单调性,并用定义加以证明;(2)求函f(x)在[−1, 1]的最值.21. 已知函数f(x)=−2x+1是定义在R上的奇函数.2x+a(1)求实数a的值;(2)判断函数f(x)的单调性,并利用定义证明.22. 已知f(x)=x,x∈(−2,2).x2+4(1)用定义证明函数f(x)在(−2,2)上为增函数;(3)若f(a+2)>f(2a−1),求实数a的取值范围.+m(m∈R)是奇函数.23. 已知函数f(x)=12x+1(1)求实数m的值;(2)判断f(x)的单调性(不用证明);(3)求不等式f(x2−x)+f(−2)<0的解集.24. 已知a>0,函数f(x)=1.1+a⋅3x(1)判断函数f(x)在R上的单调性,并证明;(2)设g(x)=f(x)f(−x),若对任意x∈[−1,1],g(x)≥f(2)恒成立,求a的取值范围.参考答案与试题解析函数的单调性的判断与证明练习题含答案一、 选择题 (本题共计 12 小题 ,每题 3 分 ,共计36分 ) 1.【答案】 C【考点】函数单调性的判断与证明 利用导数研究函数的单调性【解析】利用常见的幂函数,指数函数分析选项ABD 中函数的单调性,利用导数研究C 中函数的单调性即可得到答案. 【解答】解:A ,函数y =x 4在(0,+∞)上单调递增,在(−∞,0)上单调递减,不满足题意; B ,y =2−x=(12)x在定义域内单调递减,不满足题意;C ,∵ 函数y =x +cos x 的定义域为R ,且y ′=1−sin x ≥0, ∴ 函数y =x +cos x 在其定义域上单调递增,满足题意;D ,y =−x 12在定义域内单调递减,不符合题意. 故选C . 2. 【答案】 D【考点】函数单调性的判断与证明 函数奇偶性的判断【解析】利用函数奇偶性,单调性,逐项判定得解. 【解答】解:对于A ,设f (x )=x 3+1,f(−x)=−x 3+1≠−f (x ),不是奇函数,故不符合题意;对于B ,由题设知函数为奇函数,在(−1,0),(0,1)单调递减,在(−∞,−1),(1,+∞)单调递增,故不符合题意;对于C ,函数为奇函数,在(−∞,0),(0,+∞)分别单调递增,故不符合题意; 对于D ,y =x |x |={x 2,x ≥0,−x 2,x <0,可得函数为奇函数,且在定义域单调递增,故符合题意. 故选D . 3.【答案】 D【考点】函数单调性的判断与证明【解析】对于A:f (x )=−2x +1在定义域上单调递减,不符合题意; 对于B:f (x )=1x 函数在(−∞,0),(0,+∞)上单调递减,不符合题意;对于C:f (x )=lg (x −1),定义域为(1,+∞),不符合题意;对于D:f (x )=x 2,函数在(−∞,0)上单调递减,在(0,+∞)上单调递增,满足条件. 故选:D . 【解答】解:对于A ,f (x )=−2x +1在定义域上单调递减,不符合题意; 对于B ,f (x )=1x 函数在(−∞,0),(0,+∞)上单调递减,不符合题意;对于C ,f (x )=lg (x −1),定义域为(1,+∞),不符合题意;对于D ,f (x )=x 2,函数在(−∞,0)上单调递减,在(0,+∞)上单调递增,满足条件. 故选D . 4.【答案】 B【考点】函数单调性的判断与证明 函数奇偶性的判断【解析】本题主要考查函数的奇偶性和单调性. 【解答】解:易知函数f(x)的定义域为R , f(−x)=(13)x−3x =−f(x),所以为奇函数.因为y =(13)x 在R 上是减函数, 所以y =−(13)x 在R 上是增函数,又y =3x 在R 上是增函数,所以函数f(x)=3x−(13)x在R 上是增函数. 故选B . 5.【答案】 D【考点】函数奇偶性的判断函数单调性的判断与证明【解析】根据奇偶性及单调性,首先判断奇偶性,再判断单调性即可. 【解答】解:对于A ,函数y =2x 为非奇非偶函数,故A 不满足题意; 对于B ,函数y =−2x 2为偶函数,故B 不满足题意;对于C ,函数y =1x 为奇函数,在(−∞,0),(0,+∞)上为减函数,故C 不满足题意;对于D ,函数y =x 为奇函数,且在R 上是增函数,故D 满足题意. 故选D . 6. 【答案】 A【考点】函数奇偶性的判断函数单调性的判断与证明 【解析】 此题暂无解析 【解答】解:因为f(x)=3x−(13)x,且定义域为R ,所以f(−x)=3−x −(13)−x =(13)x −3x =−[3x −(13)x]=−f(x),即函数f(x)是奇函数.又y =3x 在R 上是增函数,y =(13)x在R 上是减函数,所以f(x)=3x−(13)x在R 上是增函数.故选A . 7. 【答案】 C【考点】函数单调性的判断与证明 分段函数的应用 【解析】由已知可得函数f (x )是定义在R 上的增函数,则{a2≤2,a >1,4−2a ≥a −2,解得a 的取值范围.【解答】解:∵ 对于任意实数x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2>0成立,故函数f (x )是定义在R 上的增函数, 则{a 2≤2,a >1,4−2a ≥a −2,解得a ∈(1,2].故选C . 8.【答案】 B【考点】函数单调性的判断与证明 【解析】此题暂无解析 【解答】解:对于A ,y =−12x 2为二次函数,其图像的开口向下,对称轴是直线x =0, 所以y =−12x 2在区间(0,1)上单调递减;对于B ,当x ∈(0,1)时,y =|x 2−2x|=−x 2+2x ,因为抛物线y =−x 2+2x 的对称轴是直线x =1,且开口向下,所以函数y =|x 2−2x|在区间(0,1)上单调递增; 对于C ,y =(12)x+1=12⋅(12)x,因为0<12<1,所以函数y =(12)x+1在区间(0,1)上单调递减;对于D ,y =x +1x ≥2,当且仅当x =1时等号成立,所以由对勾函数的性质知函数y =x +1x 在区间(0,1)上单调递减. 故选B . 9.【答案】 A【考点】函数奇偶性的判断 函数图象的作法 函数单调性的判断与证明【解析】 此题暂无解析 【解答】解:由已知函数的定义域为{x|x ≠0},定义域关于原点对称, 由于f (x )+f (−x )=e x +e −xe x −e −x +e −x +e xe −x −e x =e x +e −x −e −x −e −xe x −e −x=0,即f (−x )=−f (x ),所以y =e x +e −xe x −e −x 是奇函数,排除选项B ; 因为y =e x +e −x e x −e −x=1+2(e x )2−1=1+2(e 2)x −1在(0,+∞)上为减函数,排除选项D ;当x =1时,f (1)=1+2e 2−1>0,排除选项C .故选A .10.【答案】 D【考点】函数单调性的判断与证明 函数单调性的性质【解析】 【解答】解:根据题意知,函数f (x )={−x 2−4x,x ≥0,x 2−4x,x <0,当x ≥0时,f (x )=−x 2−4x =−(x +2)2+4,则函数f (x )在[0,+∞)上单调递减,有f (x )≤f (0)=0. 当x <0时,f (x )=x 2−4x =(x −2)2−4,则函数f (x )在(−∞,0)上单调递减,有f (x )>f (0)=0. 综上可得函数f (x )在R 上为减函数. 若f (2−t )>f (t ),则2−t <t ,解得t >1,即实数t 的取值范围为(1,+∞). 故选D . 11.【答案】 C【考点】函数单调性的性质 函数奇偶性的判断 函数奇偶性的性质 函数单调性的判断与证明【解析】首先确定函数f (x )的奇偶性,再构造新函数g(x)=x 2019f(x),并确定奇偶性及单调性,即可解出不等式. 【解答】解:由于f(x +1)的图象关于点(−1,0)中心对称, 则f (x )的图象关于点(0,0)中心对称, 即函数f (x )在定义域上为奇函数, 令g (x )=x 2019f (x ),则g (−x )=(−x )2019f (−x )=x 2019f (x )=g (x ), 所以g (x )为偶函数,又x 1,x 2∈(0,+∞),x 1≠x 2, 都有x 12019f (x 1)−x 22019f (x 2)x 1−x 2>0,即可得函数g (x )在(0,+∞)为增函数, 由奇偶性与单调性的关系可得: 函数g (x )在(−∞,0)为增函数, 又g (1)=12019×f (1)=1,g (−1)=(−1)2019×f (−1)=−1×[−f (1)]=1 由f(x)≤1x 2019,当x >0时,x 2019f(x)≤1=g (1), 所以0<x ≤1;当x <0时,x 2019f(x)≥1=g (−1), 所以x ≤−1.综上可得:x∈(−∞,−1]∪(0,1].故选C.12.【答案】A【考点】函数新定义问题抽象函数及其应用函数单调性的判断与证明【解析】证明函数单调递增,f(6)=f(√6)+f(√6)=2,变换不等式为f(x)≥f(65−x),利用函数单调性解得答案.【解答】解:设0<x1<x2,则f(x2)−f(x1)=f(x2x1⋅x1)−f(x1)=f(x2x1)>0,即函数在(0,+∞)上单调递增.∵ f(√6)=1,∴ f(6)=f(√6)+f(√6)=2.∵ f(x)−f(15−x)≥2,∴ f(x)≥f(15−x )+f(6)=f(65−x),故满足{x>0,65−x>0,x≥65−x,解得x∈[2,3].故选A.二、填空题(本题共计 7 小题,每题 3 分,共计21分)13.【答案】[3,+∞)【考点】函数单调性的判断与证明函数的单调性及单调区间【解析】讨论去绝对值,即可得到函数,从而确定单调性.【解答】解:当x≥3时,f(x)=x−3,此时f(x)为增函数;当x<3时,f(x)=−(x−3)=−x+3,此时f(x)为减函数,所以f(x)的单调增区间为[3,+∞).故答案为:[3,+∞).14.【答案】[18,13) 【考点】函数单调性的性质函数单调性的判断与证明 对数函数的单调性与特殊点 【解析】根据分段函数的单调性可得{3a −1<03a −1)×1+4a ≥−a a >0×1+4a ≥−a ,解不等式组即可求解. 【解答】由题意知,{3a −1<03a −1)×1+4a ≥−a a >0×1+4a ≥−a解得{a <13a ≥8a >0,所以a ∈[18,13)故答案为:[18,13)15.【答案】 2,(0, +∞) 【考点】 偶函数函数单调性的判断与证明【解析】f(x)=x 2+(b −2)x 是定义在R 上的偶函数,对称轴为y 轴,进而求解. 【解答】解:f(x)=x 2+(b −2)x 是定义在R 上的偶函数, 对称轴为y 轴,则b =2,于是f(x)=x 2,单调增区间为(0, +∞). 故答案为:2;(0, +∞). 16.【答案】 a <−1 【考点】函数奇偶性的性质 函数奇偶性的判断 函数单调性的判断与证明 函数的单调性及单调区间 【解析】 此题暂无解析 【解答】解:∵g(−x)=−x3−5x=−g(x),∴函数g(x)是奇函数,且函数在R上单调递增,∴原不等式可化为g(a+4)<−g(2a−1)=g(1−2a),∴a+4<1−2a,解得a<−1.故答案为:a<−1.17.【答案】②【考点】函数的值域及其求法函数奇偶性的判断函数单调性的判断与证明【解析】根据函数的定义域、值域、奇偶性、单调性等知识逐一对四个命题进行正误判断. 【解答】解:①函数{x}的定义域是R,但是0≤x−[x]<1,故函数{x}的值域为[0,1),故①错误;,②∵{x}=x−[x]=12∴x=[x]+1,2∴x=1.5,2.5,3.5,⋯,应为无数多个,故②正确;③∵函数{x}的定义域是R,而{−x}=−x−[−x]≠−{x},{−x}=−x−[−x]≠{x},∴函数{x}是非奇非偶函数,故③错误;④函数{x}在每一个单调区间上是增函数,但在整个定义域上不是增函数,故④错误.综上所述,②正确.故答案为:②.18.【答案】(−∞, 0]【考点】函数奇偶性的性质函数单调性的判断与证明【解析】根据偶函数的性质求出k值,再根据二次函数的图象即可求出其单调减区间.【解答】解:因为f(x)为偶函数,所以f(−x)=f(x).即kx2−(k−1)x+2=kx2+(k−1)x+2,所以2(k−1)x=0,所以k=1.则f(x)=x2+2,其递减区间为(−∞, 0].故答案为:(−∞, 0].19.【答案】加加加(−∞,−1]【考点】函数单调性的判断与证明函数单调性的性质函数的图象【解析】可先将f(x+m)+mf(x)<0采用代入法转化为常规表达式,采用分类讨论去绝对值的方式,来进一步探讨不等式是否成立,进一步确定参数m的范围【解答】f(x+m)+mf(x)<0可等价转化为(x+m)|x+m|+m|x|<0对任意x≥1恒成立,当m≥0时,不等式转化为(x+m)2+mx2<0对任意x≥1恒成立,显然无解;当me(−1,0)时,不等式转化为(x+n)2+mx2<0,即(m+1)x2−2mx+m2<0,显然当x→+y时不成立;当m=−1时,(x+m)|x+m|+mx||x|<0⇔(x−1)2−x2<0,即1−2x<0对任意x≥1恒成立,经检验,恒成立;当m<−1时,(x+m)||+m||+mx||x|<0⇔(x+m)|(−m)|+mx2对任意x≥1恒成立尚需进一步讨论,当1<x<−m时,不等式等价于−(x−m)2+nx2<0即(m−1)x2−2mx−m2<0Δ=4m2+4m2(m−1)=4m3<0,令y=(m−1)x2−2mx−m2,函数开口向下,则(m−1)x2−2mx−m2<0恒成立;当x>−m时,(x+m)|x+m|+m|x|<0⇔(xxm)2mx0,即(m+1)2−2mx+m2< 0此时对应的对称轴为x=−mm+1<1,又−mn+1<−m,则y=(m+1)x2−2mx+m2在区间[−m,+∞]为减区间,即y=(m−1)x2−2mx+m2≤y(−n)=m3<0恒成立;综上所述,当m∈(−∞,−1]时,对任意x≥1,有f(x+m)+nf(x)<0恒成立故答案为:(−∞,−1]三、解答题(本题共计 5 小题,每题 10 分,共计50分)20.【答案】解:(1)函数f(x)在[−1.1]上单调递增;证明如下:设任意−1<x1<x2<1,则f(x1)−f(x2)=2x1x12+1−2x2x22+1=2x1x22+2x1−2x2x12−2x2(x12+1)(x22+1)=2(x1−x2)(1−x1x2)(x12+1)(x22+1)<0,故函数f(x)在[−1.1]上单调递增;(2)由(1)的结论,f(x)在区间[−1,1]上单调递增,则f(x)的最大值f(1)=1,最小值f(−1)=−1.【考点】函数单调性的判断与证明函数单调性的性质【解析】(1)利用定义法证明函数的单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(2)由(1)根据函数的单调性即可解答.【解答】解:(1)函数f(x)在[−1.1]上单调递增;证明如下: 设任意−1<x 1<x 2<1,则f(x 1)−f(x 2)=2x 1x 12+1−2x2x 22+1=2x 1x 22+2x 1−2x 2x 12−2x 2(x 12+1)(x 22+1)=2(x 1−x 2)(1−x 1x 2)(x 12+1)(x 22+1)<0,故函数f(x)在[−1.1]上单调递增;(2)由(1)的结论, f (x )在区间[−1,1]上单调递增,则f (x )的最大值f(1)=1,最小值f (−1)=−1. 21. 【答案】 解:(1)f (−x )=−2−x +12−x +a=2x −1a⋅2x +1,由f (−x )=−f (x )得: 2x −1a⋅2x +1=−−2x +12x +a⇒2x +a =a ⋅2x +1,解得a =1.验证,当a =1时,f (x )=−2x +12x +1,f (−x )=−2−x +12−x +1=2x −12x +1=−f (x )满足题意,∴ a =1.(2)f (x )为减函数. 证明:由(1)知f (x )=−2x +12x +1=22x +1−1,在R 上任取两个不相等的实数x 1,x 2,且x 1<x 2, f(x 1)−f(x 2)=22x 1+1−22x 2+1=2×2x 2−2x 1(2x 1+1)⋅(2x 2+1).由y =2x 为R 上的增函数,x 1<x 2,2x 2>2x 1, ∴ 2x 2−2x 1>0,(2x 1+1)⋅(2x 2+1)>0, 则f (x 1)−f (x 2)>0,∴ f (x 1)>f (x 2), ∴ 函数f (x )为减函数. 【考点】函数奇偶性的性质函数单调性的判断与证明 【解析】 无 无 【解答】 解:(1)f (−x )=−2−x +12−x +a=2x −1a⋅2x +1,由f (−x )=−f (x )得: 2x −1a⋅2x +1=−−2x +12x +a⇒2x +a =a ⋅2x +1,解得a =1.验证,当a =1时,f (x )=−2x +12x +1,f (−x )=−2−x +12−x +1=2x −12x +1=−f (x )满足题意,∴ a =1.(2)f (x )为减函数. 证明:由(1)知f (x )=−2x +12x +1=22x +1−1,在R 上任取两个不相等的实数x 1,x 2,且x 1<x 2, f(x 1)−f(x 2)=22x 1+1−22x 2+1=2×2x 2−2x 1(2x 1+1)⋅(2x 2+1).由y =2x 为R 上的增函数,x 1<x 2,2x 2>2x 1, ∴ 2x 2−2x 1>0,(2x 1+1)⋅(2x 2+1)>0, 则f (x 1)−f (x 2)>0,∴ f (x 1)>f (x 2), ∴ 函数f (x )为减函数. 22.【答案】(1)证明:任取x 1,x 2∈(−2,2),且x 1<x 2,所以f(x 1)−f(x 2)=x 1x 12+4−x2x 22+4=(x 2−x 1)(x 1x 2−4)(x 12+4)(x 22+4).因为−2<x 1<x 2<2,所以x 2−x 1>0,x 1x 2−4<0,则f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)在(−2,2)上为增函数.(2)解:由(1)知,f(x)在(−2,2)上单调递增,又f(a +2)>f(2a −1),所以{−2<a +2<2,−2<2a −1<2,a +2>2a −1,解得{−4<a <0,−12<a <32,a <3,即−12<a <0,所以a 的取值范围是(−12,0). 【考点】函数单调性的判断与证明 函数单调性的性质【解析】(2)根据函数的单调性的定义,采用作差法判断−2<x 1<x 2<2时f(x 1)−f(x 2)的符号,即可证明.(3)根据(2)中的结论得到关于a 的不等式组,求解即可. 【解答】(1)证明:任取x 1,x 2∈(−2,2),且x 1<x 2,所以f(x 1)−f(x 2)=x 1x 12+4−x2x 22+4=(x 2−x 1)(x 1x 2−4)(x 12+4)(x 22+4).因为−2<x 1<x 2<2,所以x 2−x 1>0,x 1x 2−4<0,则f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)在(−2,2)上为增函数.(2)解:由(1)知,f(x)在(−2,2)上单调递增,又f(a +2)>f(2a −1),所以{−2<a +2<2,−2<2a −1<2,a +2>2a −1,解得{−4<a <0,−12<a <32,a <3,即−12<a <0,所以a 的取值范围是(−12,0).23. 【答案】 解:(1)由f (x )=12x +1+m 的定义域为R ,可得f (0)=12+m =0,可得m =−12. 经验证,m =−12符合题意. ∴ m =−12,f (x )=12x +1−12.(2)∵ y =2x 为增函数,∴ y =2x +1为增函数,且2x +1>1, 所以y =12x +1为减函数,可得f (x )=12x +1−12在R 上为减函数. (3)由f(x 2−x)+f(−2)<0,可得f(x 2−x)<−f(−2), 即f(x 2−x)<f(2),由f (x )=12x +1−12在R 上为减函数,所以x 2−x >2,即x 2−x −2>0,所以x <−1或x >2, 故解集为(−∞, −1)∪(2, +∞). 【考点】函数奇偶性的性质函数单调性的判断与证明 函数单调性的性质【解析】(1)根据函数奇偶性的性质,利用f(0)=0进行求解即可. (2)根据函数单调的性质进行判断即可.(3)根据函数奇偶性和单调性的性质进行转化求解即可. 【解答】解:(1)由f (x )=12x +1+m 的定义域为R ,可得f (0)=12+m =0,可得m =−12. 经验证,m =−12符合题意.∴ m =−12,f (x )=12x +1−12.(2)∵ y =2x 为增函数,∴ y =2x +1为增函数,且2x +1>1, 所以y =12x +1为减函数,可得f (x )=12x +1−12在R 上为减函数.(3)由f(x 2−x)+f(−2)<0,可得f(x 2−x)<−f(−2), 即f(x 2−x)<f(2),由f (x )=12x +1−12在R 上为减函数,所以x 2−x >2,即x 2−x −2>0,所以x <−1或x >2, 故解集为(−∞, −1)∪(2, +∞). 24.【答案】(1)证明:当a >0时,f(x)在R 上单调递减. 任取x 1<x 2,f(x 1)−f(x 2)=a(3x 2−3x 1)(1+a⋅3x 1)(1+a⋅3x 2),由于x 1<x 2,所以3x 2−3x 1>0,所以f(x 1)−f(x 2)>0,故f(x)在R 上单调递减. (2)解:依题意,g(x)=11+a⋅3x ⋅11+a⋅3−x =1a(3x +13x )+a 2+1(x ∈[−1,1]).令t =3x ,t ∈[13,3],所以y =t +1t 在[13,1]上单调递减,在[1,3]上单调递增, 且当t =13和t =3时,y =103,而当t =1时,y =2,所以y =t +1t∈[2,103].因为a >0,所以a(3x +13x )+a 2+1≤103a +a 2+1,故g(x)=1a(3x +13x )+a 2+1≥1103a+a 2+1.因为对任意x ∈[−1,1],g(x)≥f(2)=19a+1恒成立, 所以1103a+a 2+1≥19a+1,即103a +a 2+1≤9a +1, 化简得a 2−173a ≤0,解得0<a ≤173,故a 的取值范围是(0,173].【考点】函数单调性的判断与证明 函数恒成立问题 【解析】【解答】(1)证明:当a >0时,f(x)在R 上单调递减. 任取x 1<x 2,f(x 1)−f(x 2)=a(3x 2−3x 1)(1+a⋅3x 1)(1+a⋅3x 2), 由于x 1<x 2,所以3x 2−3x 1>0,所以f(x 1)−f(x 2)>0,故f(x)在R 上单调递减. (2)解:依题意,g(x)=11+a⋅3x ⋅11+a⋅3−x =1a(3x +13x )+a 2+1(x ∈[−1,1]).令t =3x ,t ∈[13,3],所以y =t +1t 在[13,1]上单调递减,在[1,3]上单调递增, 且当t =13和t =3时,y =103,而当t =1时,y =2,所以y =t +1t ∈[2,103]. 因为a >0, 所以a(3x +13x )+a 2+1≤103a +a 2+1,故g(x)=1a(3x +13x )+a 2+1≥1103a+a 2+1.因为对任意x ∈[−1,1],g(x)≥f(2)=19a+1恒成立, 所以1103a+a 2+1≥19a+1,即103a +a 2+1≤9a +1, 化简得a 2−173a ≤0,解得0<a ≤173,故a 的取值范围是(0,173].。
函数探究题型-含答案

函数探究题型一、知识梳理1、求函数解析式正比例与反比例自变量取值范围(1)分母(2)偶次根式被开方数(3)题目特殊要求2、画函数图像列表、描点、连线注:过整数点、渐进线3、函数的性质2.1对称性2.2增减性2.3极大值、极小值4、函数与方程的解交点个数与方程解的个数5、函数与不等式的解6、常考函数(1)函数的平移左加右减、上加下减(2)反比例函数变形(3)对勾函数(4)绝对值函数(5)幂函数及变形强化练习1.参照学习函数的过程与方法,探究函数y =的图象与性质.因为y =,即y =﹣+1,所以我们对比函数y =﹣来探究.列表:﹣描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.2.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥,且当x=1或x=4时,y的值均为.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象(3)结合画出的函数图象,解决问题:①当x=,,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.(4)写出函数的两条性质①②3.已知y=y1﹣y2,其中y1与x﹣1成反比例,y2=x+b,下表给出了自变量x与函数y 的一些对应值.(1)求函数y与x的函数关系式,并写出自变量x的取值范围;(2)补全表格m=,n=;(3)在如图所示的平面直角坐标系中,根据表中数据描出相应的点,画出函数图象;(4)根据图象直接写出y1≥y2时,自变量x的取值范围.﹣﹣(5)写出函数的两条性质①②4.已知函数,探究函数图象和性质过程如下:(1)下表是y与x的几组值,则解析式中的m=,表格中的n=(2)在平面直角坐标系中描出表格中各点,并画出函数图象:(3)若A(x1,y1)、B(x2,y2)、C(x3,y3)为函数图象上的三个点,其中x2+x3>4且﹣1<x1<0<x2<2<x3<4,则y1、y2、y3之间的大小关系是;(4)若直线y=k+1与该函数图象有且仅有一个交点,则k的取值范围为.(5)写出函数的两条性质①②5.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是.(2)列表:表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①;②.y=2x-36. 在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧<-≥=)0a (a )0a (a a .结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx-3|+b 中,当x=2时,y= -4当x=0时,y= -1. (1)求这个函数的表达式; (2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函3x 21y -=的图象如图 所示,结合你所画的函数图象,直 接写出不等式3x 21b 3kx -≤+-的 解集.7.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.8.已知函数2x b2ax y 1+-+=,其自变量的取值范围是x>-2,当x=2时,y 1=-2;当x=6时,y 1=-5.(1)根据给定的条件,求出a 、b 的值和y 1的函数解析式;(2)根据你所求的函数解析式,选取适当的自变量x 完成下表,并在下面的平面直角坐标系中描点并画出函数的大致图象.(3)请画出y 2=x-4的图象,并结合图象直接写出:当y 1>y 2时,x 的取值范围是 .9.某班“数学兴趣小组”对函数的函数图象与性质进行了探究,探究过程如下,请补充完整.(1)函数的自变量x的取值范围是;下表是y与x的几组对应值.﹣则表格中的m=;(2)如图,在平面直角坐标系中,画出该函数的图象;(3)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数图象,写出一条该函数的其它性质;(4)该函数的图象关于点(,)成中心对称,若直线y=m与该函数的图象无交点,请求出m的取值范围.10.参考答案1.参照学习函数的过程与方法,探究函数y =的图象与性质.因为y =,即y =﹣+1,所以我们对比函数y =﹣来探究.列表:﹣描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而增大;(填“增大”或“减小”)②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【解答】解:(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=的图象是由y=﹣的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称.(填点的坐标)故答案为增大,上,1,(0,1)(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.2.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥,且当x=1或x=4时,y的值均为.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象(3)结合画出的函数图象,解决问题:①当x=,,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:y2<y1<y3;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是1<k≤,此时,x的取值范围是≤x≤8.【解答】解:(1)设,y2=k2(x﹣2),则,由题意得:,解得:,∴该函数解析式为,故答案为:,(2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为:y2<y1<y3,②观察图象得:x≥,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤,此时x的范围是:≤x≤8.故答案为:1<k≤,≤x≤8.3.已知y=y1﹣y2,其中y1与x﹣1成反比例,y2=x+b,下表给出了自变量x与函数y的一些对应值.(1)求函数y与x的函数关系式,并写出自变量x的取值范围;(2)补全表格m=,n=;(3)在如图所示的平面直角坐标系中,根据表中数据描出相应的点,画出函数图象;(4)根据图象直接写出y1≥y2时,自变量x的取值范围.﹣﹣【解答】解:(1)y1与x﹣1成反比例,设y1=,∴y=y1﹣y2=﹣x+b,令x=0,则﹣k+b=﹣1,令x=﹣1,则﹣++b=,∴k=2,b=1,∴y=﹣x+1,(x≠1);(2)当x=﹣2时,m=,当x=3时,n=,故答案为,;(3)如图:(4)当y1≥y2,∴y≥0,当y=0时,x=或x=,结合函数图象可知x≤或1<x≤;4.已知函数,探究函数图象和性质过程如下:(1)下表是y与x的几组值,则解析式中的m=﹣3,表格中的n=(2)在平面直角坐标系中描出表格中各点,并画出函数图象:(3)若A(x1,y1)、B(x2,y2)、C(x3,y3)为函数图象上的三个点,其中x2+x3>4且﹣1<x1<0<x2<2<x3<4,则y1、y2、y3之间的大小关系是y1<y3<y2;(4)若直线y=k+1与该函数图象有且仅有一个交点,则k的取值范围为k<﹣1或k =3.【解答】解:(1)将表格中(﹣5,)代入函数y=中,得m=﹣3将x=5代入函数y=﹣(x﹣2)2+4中,得y=,即n=故答案为:﹣3,;(2)如图所示,(3)∵﹣1<x1<0,即﹣2<x1﹣1<﹣1,﹣1<<﹣,<<3,∴<y1<3∵0<x2<2,∴﹣2<x2﹣2<0,<4,即﹣>﹣1∴﹣+4>3 即y2>3>y1∵2<x3<4,在对称轴右侧,∴y随着x的增加而减小,∴3<y3<4,∴y3>y1又∵x2+x3>4且x2<2<x3且对称轴为x=2,∴(2﹣x2)﹣(x3﹣2)=4﹣(x2+x3)<0∴2﹣x2<x3﹣2即x3距离对称轴更远,∴y3<y2综上所述,y1<y3<y2故答案为y1<y3<y2(4)直线y=k+1为平行于x轴的直线,观察图象可知,k+1<0或k+1=4时,与该函数图象有且仅有一个交点,∴k<﹣1或k=3故答案为k<﹣1或k=35.吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是一切实数.(2)列表:表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.【解答】解:(1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.故答案为:一切实数;(2)m=,n=,y=x-3故答案为:;;(3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x =2对称.故答案为:该函数有最小值没有最大值;该函数图象关于直线x =2对称6. 解:(1)将x=2时,y= -4和分别代入y=|kx-3|+b 中,得⎪⎩⎪⎨⎧-=+--=+-1b 34b 3k 2解得:⎪⎩⎪⎨⎧-==4b 23k ∴这个函数的表达式是 43x 23y --=……(3分) (2)函数图象如答图……(5①当x<2时,y 随x当x>2时,y随x的增大而增大.②当x=2时,函数有最小值,最小值是-4. ……(7分)(3)不等式的解集是1≤x≤4……(10分)7.函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴.(2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小.【解答】解:(1)A(0,2),B(﹣2,0),函数y=﹣2|x+2|的对称轴为x=﹣2;(2)将函数y=﹣2|x|的图象向上平移2个单位得到函数y=﹣2|x|+2的图象;将函数y=﹣2|x|的图象向左平移2个单位得到函数y=﹣2|x+2|的图象;(3)将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x ﹣3|+1的图象.所画图象如图所示,当x2>x1>3时,y1>y2.8.已知函数2x b2ax y 1+-+=,其自变量的取值范围是x>-2,当x=2时,y 1=-2;当x=6时,y 1=-5.(1)根据给定的条件,求出a 、b 的值和y 1的函数解析式;(2)根据你所求的函数解析式,选取适当的自变量x 完成下表,并在下面的平面直角坐标(3)请画出y 2=x-4的图象,并结合图象直接写出:当y 1>y 2时,x 的取值范围是 . 解:(1)∵当x=2时,y 1=-2;当x=6时,y 1=-5. ∴⎪⎩⎪⎨⎧+-+=-+-+=-26b 2a 6522b 2a 22,解得⎩⎨⎧=-=8b 1a ∴a 的值为-1,b 的值为8, y 1的函数解析式为2x 82x y 1+-+-=.……3分. (2)列表:……5分描点,连线,画出图象如图所示. ……8分(3)画出y 2=x-4的图象,如图所示.当y 1>y 2时,x 的取值范围是-1<x<2. ……10分9.某班“数学兴趣小组”对函数的函数图象与性质进行了探究,探究过程如下,请补充完整.(1)函数的自变量x的取值范围是;下表是y与x的几组对应值.﹣则表格中的m=;(2)如图,在平面直角坐标系中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数图象,写出一条该函数的其它性质;(4)该函数的图象关于点(1,1)成中心对称,若直线y=m与该函数的图象无交点,请求出m的取值范围.【解答】解:(1)函数的自变量x的取值范围是x≠1;x=4时,y=+4=,∴m=.故答案为.(2)函数图象如图所示:(3)x>2时y随x的增大而增大.(答案不唯一)(4)①该函数的图象关于点(1,1)成中心对称;直线y=m与该函数的图象无交点,则m的取值范围为﹣1<m<3;故答案为1,1.10.(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.1 以下程序的输出结果是A)1,6,3,1,3
B)1,6,3,2,3
C)1,6,3,6,3
D)1,7,3,2,3
main()
{ int i=1, j=3;
printf(“%d,”,i++);
{ int i=0;
i+=j*2;
printf(“%d,%d,”,i,j);
}
printf(“%d,%d”,i,j);
}
12.2以下程序的输出结果是A) 1 2 3 4
B) 4 3 2 1
C)0 0 0 0
D) 4 4 4 4
main()
{ int a[]={1,2,3,4},i,x=0;
for(i=0;i<4;i++) { sub(a,&x); printf(“%d”,x); } printf(“\n”);
}
sub(int *s, int *y)
{ static int t=3;
*y=s[t]; t--;
}
12.3以下程序的输出结果是
A)8,17
B)8,16
C)8,20
D)8,8
main()
{ int k=4,m=1,p;
p=func(k,m);
printf(“%d,”,p);
p=func(k,m);
printf(“%d\n”,p);
}
func(int a, int b)
{ static int m,i=2;
i+=m+1;
m=i+a+b;
return m;
}
12.4以下程序的输出结果是A)34756
B)23445
C)35745
D)12345
void fun(int *s)
{ static int j=0;
do
s[j]+=s[j+1];
while(++j<2);
}
main()
{ int k,a[10]={1,2,3,4,5};
for(k=1;k<3;k++) fun(a);
for(k=0;k<5;k++) printf(“%d”,a[k]); }
12.5以下程序的输出结果是
A) 3
B) 6
C) 5
D) 4
f(int a)
{ int b=0;
static int c=3;
a=c++, b++;
return a;
}
main()
{ int a=2,i,k;
for(i=0;i<2;i++) k=f(a++);
printf(“%d\n”,k);
}
12.6以下程序的输出结果是
A) 1
B) 2
C)7
D)10
int m=13;
int fun2(int x,int y)
{ int m=3;
return (x*y-m);
}
main()
{ int a=7,b=5;
printf(“%d\n”,fun2(a,b)/m);
}
12.7 C语言中,形参的缺省的存储说明是A)auto
B)static
C)register
D)extern
12.8 以下叙述中不正确的是
A)一个变量的作用域开始位置完全取决于变量定义语句的位置B)全局变量可以在函数以外的任何位置进行定义
C)局部变量的生存期只限于本次函数调用,因此不可能将局部变量的运算结果保存至下一次调用
D)一个变量说明为static存储类型是为了限制其他编译单位的引用
12.9以下程序的输出结果是2,5,1,2,3,-2
main()
{ int a=3,b=2,c=1;
c-=++b;
b*=a+c;
{ int b=5,c=12;
c/=b*2;
a-=c;
printf(“%d,%d,%d,”,a,b,c)’
a+=--c;
}
printf(“%d,%d,%d”,a,b,c);
}
12.10以下程序的输出结果是2468 void fun()
{ static int a;
a+=2;
printf(“%d”,a);
}
main()
{ int cc;
for(cc=1;cc<=4;cc++) fun();
printf(“\n”);
}。