全国高中数学联赛模拟试题(八)
中等数学全国高中数学联赛模拟题80套

第八届陈省身杯全国高中数学奥林匹克模拟题80套
全国高中数学联赛模拟题(1)2009-07
全国高中数学联赛模拟题(5)2009-11
全国高中数学联赛模拟题(6)2009-12
全国高中数学联赛模拟题(7)2010-01
全国高中数学联赛模拟题(16)2010-10
全国高中数学联赛模拟题(17)2010-11
全国高中数学联赛模拟题(18)2010-12
全国高中数学联赛模拟题(19)2011-01
全国高中数学联赛模拟题(23)2011-05
全国高中数学联赛模拟题(24)2011-06
全国高中数学联赛模拟题(25)2011-07
全国高中数学联赛模拟题(28)2011-10
全国高中数学联赛模拟题(29)2011-11
全国高中数学联赛模拟题(30)2011-12
全国高中数学联赛模拟题(31)2012-01。
历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
国高二数学联赛预赛模拟训练8试题

卜人入州八九几市潮王学校2021年全国高中数学联赛赛区预赛模拟训练〔八〕1、设等差数列{}n a 的前n 项和为n S ,假设15160,0S S ><,那么15121215,,,S S S a a a 中最大的是 2、在一次投篮测试中,每人只要投中3个即为合格,不用再投,不过每人至多只能投5次.一投篮命中率为23的球员,其测试合格的概率为_____________. 3、在ABC ∆中,三个角,,A B C 成等差数列,假设它们所对的边分别为,,a b c ,并且c a -等于AC 边上的高h ,那么sin 2C A -=_____________. 4、用[]x 表示不大于实数x 的最大整数.方程2lg[lg ]20x x --=的实根的个数是_____________. 5、正方体1111D C B A ABCD -棱长为1,O 为底面ABCD 的中心,M ,N 分别是棱CC 1和A 1D 1的中点.那么四面体1MNB O -的体积为.6、设()sin cos tan cot sec csc f x x x x x x x =+++++,其中x 为实数,那么|()|f x 的最小值为_________7、设P 是椭圆221169x y +=上异于长轴端点的任意一点,12,F F 分别是其左、右焦点,O 为中心,那么212||||||PF PF OP ⋅+=_____________.8、实数,x y 满足224545,x xy y -+=设22s x y =+,那么max min11S S +的值是_____________. 9、我们现给出规定:区间(),c d ,[],c d ,(],c d ,[),c d 的长度均为d c -,其中d c >.实数a b >,那么满足111x a x b+≥--的x 构成的区间的长度之和为___________ 10、5050050i j i j C C ≤<≤∑除以31的余数是___________ 11、设数列{}()n a n N ∈满足21=a ,221()2m n m n m n a a m n a a +-+-+=+,其中,m N m n ∈≥. 〔1〕证明:对一切n N ∈,有2122n n n a a a ++=-+;〔2〕证明:1220091111a a a +++<.12、抛物线C :212y x =与直线l :1y kx =-没有公一共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A ,B 为切点.(1)证明:直线AB 恒过定点Q ;(2)假设点P 与〔1〕中的定点Q 的连线交抛物线C 于M ,N 两点,证明:PM QM PN QN=. 13、函数21()(22)(21)ln 2f x x a x a x =-+++ (I)求f(x)的单调区间;(II)对任意的1235[,],,[1,2]22a x x ∈∈,恒有12111|()|()||2f x f x x x λ-≤-,求正实数λ的取值范围. 14、求方程22551y z t x +⨯-=的所有正整数解(,,,)x y z t。
高中数学竞赛模拟试题(含详细答案)

高中数学竞赛试题(模拟)一、选择题:(本大题共10个小题;每小题5分,共50分,在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知函数f(x)是R 上的奇函数,g(x)是R 上的偶函数,若129)()(2++=-x x x g x f ,则=+)()(x g x f ( )A .1292-+-x x B .1292-+x xC .1292+--x xD . 1292+-x x2.有四个函数:① y=sinx+cosx ② y= sinx-cosx ③ y=x x cos sin ⋅ ④ xxy cos sin = 其中在)2,0(π上为单调增函数的是 ( )A .①B .②C .①和③D .②和④3.方程x xx x x x ππ)1(12122-+=-+-的解集为A(其中π为无理数,π=3.141…,x 为实数),则A 中所有元素的平方和等于 ( ) A .0 B .1C .2D .44.已知点P(x,y)满足)(4)sin 4()cos 4(22R y x ∈=-+-θθθ,则点P(x,y)所在区域的面积为 A .36π B .32π C .20π D .16π ( )5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为 ( ) A .9 B .12 C .15 D .186.已知数列{n a }为等差数列,且S 5=28,S 10=36,则S 15等于 ( ) A .80B .40C .24D .-487.已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是 ( )A .)2,12(--B .)12,2(--C .)12,0[-D .)12,0(-8.过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S ,S max 和S min 分别为S 的最大值和最小值,则minmaxS S 的值为 ( ) A .23 B .26 C .332 D .362 9.设7log ,1sin ,82.035.0===z y x ,则x 、y 、z 的大小关系为 ( )A .x<y<zB .y<z<xC .z<x<yD . z<y<x10.如果一元二次方程09)3(222=+---b x a x 中,a 、b 分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P= ( )A .181 B .91 C .61 D .1813 二、填空题(本大题共4个小题,每小题8分,共32分)11.设P 是椭圆191622=+y x 上异于长轴端点的任意一点,F 1、F 2分别是其左、右焦点,O 为中心,则=+⋅221||||||OP PF PF ___________.12.已知△ABC 中,==,,试用、的向量运算式子表示△ABC 的面积,即S △ABC = ____________________.13.从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3534,则n=__________.14.有10名乒乓球选手进行单循环赛,比赛结果显示,没有和局,且任意5人中既有1人胜其余4人,又有1人负其余4人,则恰好胜了两场的人数为____________个.三、解答题(本大题共5个小题,15-17题每小题12分,18题、19题每小题16分,共68分) 15.对于函数f(x),若f(x)=x,则称x 为f(x)的“不动点”,若x x f f =))((,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即x x f x A ==)(|{}})]([|{x x f f x B ==.(1). 求证:A ⊆B(2).若),(1)(2R x R a ax x f ∈∈-=,且φ≠=B A ,求实数a 的取值范围.16.某制衣车间有A 、B 、C 、D 共4个组,各组每天生产上衣或裤子的能力如下表,现在上衣及裤子要配套生产(一件上衣及一条裤子为一套),问在7天内,这4个组最多能生产多少套?17.设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n ) 求证:对于任何正整数n ,都有 nnn n a a 111+≥+18.在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为257. (1).建立适当的坐标系,求顶点C 的轨迹方程.(2).过点A 作直线与(1)中的曲线交于M 、N 两点,求||||BN BM ⋅的最小值的集合.19.已知三棱锥O-ABC 的三条侧棱OA 、OB 、OC 两两垂直,P 是底面△ABC 内的任一点,OP 与三侧面所成的角分别为α、β、γ. 求证:33arcsin32≤++<γβαπ参考答案一、选择题: ADCBC CCCBA 二、填空题:11. 25 12.13. 4 14. 1 三、解答题:15.证明(1).若A=φ,则A ⊆B 显然成立;若A ≠φ,设t ∈A ,则f(t)=t,f(f(t))=f(t)=t,即t ∈B,从而 A ⊆B. 解 (2):A 中元素是方程f(x)=x 即x ax =-12的实根.由 A ≠φ,知 a=0 或 ⎩⎨⎧≥+=∆≠0410a a 即 41-≥aB 中元素是方程 x ax a =--1)1(22 即 0122243=-+--a x x a x a 的实根 由A ⊆B ,知上方程左边含有一个因式12--x ax ,即方程可化为 0)1)(1(222=+-+--a ax x a x ax因此,要A=B ,即要方程 0122=+-+a ax x a ① 要么没有实根,要么实根是方程 012=--x ax ② 的根. 若①没有实根,则0)1(4222<--=∆a a a ,由此解得 43<a 若①有实根且①的实根是②的实根,则由②有 a ax x a +=22,代入①有 2ax+1=0.由此解得 a x 21-=,再代入②得,012141=-+a a 由此解得 43=a . 故 a 的取值范围是 ]43,41[-16.解:A 、B 、C 、D 四个组每天生产上衣与裤子的数量比分别是:76,117,129,108,且11712910876>>> ① 只能让每天生产上衣效率最高的组做上衣,生产裤子效率最高的组做裤子,才能使做的套数最多.由①知D 组做上衣效率最高,C 组做裤子效率最高,于是,设A 组做x 天上衣,其余(7-x)天做裤子;B 组做y 天上衣,其余(7-y)天做裤子;D 组做7天上衣,C 组做7天裤子.则四个组7天共生产上衣 6×7+8x+9y (件);生产裤子11×7+10(7-x)+12(7-y) (条)依题意,有 42+8x+9y=77+10(7-x)+12(7-y),即 769x y -=. 令 μ= 42+8x+9y=42+8x+9(769x -)=123+x 72 因为 0≤x ≤7,所以,当x=7时,此时y=3, μ取得最大值,即μmax =125.因此,安排A 、D 组都做7天上衣,C 组做7天裤子,B 组做3天上衣,4天裤子,这样做的套数最多,为125套.17.证明:令 10=a ,则有 11-++=k k k a a a ,且 ),2,1(1111 =+=+-+k a aa a k k k k 于是 ∑∑=+-=++=nk k k nk k k a aa a n 11111由算术-几何平均值不等式,可得nn n a a a a a a 132211+⋅⋅⋅≥ +n n n a aa a a a 113120+-⋅⋅⋅ 注意到 110==a a ,可知nn n nn a a a 11111+++≥,即 nnn n a a 111+≥+18.解:(1) 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系,设 |CA|+|CB|=2a(a>3)为定值,所以C 点的轨迹是以A 、B 为焦点的椭圆,所以焦距 2c=|AB|=6.因为 1||||182||||236||||2|)||(|||||26||||cos 22222--=--+=-+=CB CA a CB CA CB CA CB CA CB CA CB CA C又 22)22(||||a a CB CA =≤⋅,所以 2181cos a C -≥,由题意得 25,25718122==-a a. 此时,|PA|=|PB|,P 点坐标为 P(0,±4).所以C 点的轨迹方程为)0(1162522≠=+y y x (2) 不妨设A 点坐标为A(-3,0),M(x 1,y 1),N(x 2,y 2).当直线MN 的倾斜角不为900时,设其方程为y=k(x+3) 代入椭圆方程化简,得 0)1169(83)16251(2222=-+++k x k x k 显然有 △≥0, 所以 222122212516400225,2516150k k x x k k x x +-=+-=+而由椭圆第二定义可得25165311442553125251614453125251614481251645025259)(325)535)(535(||||22222222212121+-⋅+=+-+=+-+++=++-=--=⋅k k kk k k k k x x x x x x BN BM只要考虑251653114422+-k k 的最小值,即考虑2516531144251612++-k 取最小值,显然. 当k=0时,||||⋅取最小值16.当直线MN 的倾斜角为900时,x 1=x 2=-3,得 16)534(||||2>=⋅BN BM 但)0(1162522≠=+y y x ,故0≠k ,这样的M 、N 不存在,即||||⋅的最小值的集合为空集.19.证明:由 题意可得 1sin sin sin 222=++γβα,且α、β、 )2,0(πγ∈所以 )cos()cos()2cos 2(cos 21sin sin 1sin 222γβγβγβγβα-+=+=--= 因为 )cos()cos(γβγβ+>-,所以 )](2[sin )(cos sin 222γβπγβα+-=+>当2πγβ≥+时,2πγβα>++.当2πγβ<+时,)(2γβπα+->,同样有 2πγβα>++故 2πγβα>++另一方面,不妨设 γβα≥≥,则 33sin ,33sin ≤≥γα 令 βγα2211sin )33(1sin ,33sin --==, 则 1sin sin sin12212=++γβα)cos()cos()cos()cos(sin 11112γαγαγαγαβ-+=-+=因为 γαγα-≤-11,所以 )cos()cos(11γαγα-≥- 所以 )cos()cos(11γαγα+≥+ 所以 11γαγα+≤+如果运用调整法,只要α、β、γ不全相等,总可通过调整,使111γβα++增大. 所以,当α=β=γ=33arcsin时,α+β+γ取最大值 333arcsin . 综上可知,33arcsin32≤++<γβαπ。
全国高中数学联赛模拟试卷习题练习习题试卷习题试卷试题一.doc.doc

全国高中数学联赛模拟试题( 一)第一试一、选择题 ( 共 36 分 )1. 在复平面上,非零复数z1,z2在以 z=i 对应的点为圆心,1 为半径的圆上,z1 z2 的实π部为零, argz 1=6,则 z2=( )3 3 3 3 3 3 3 3A. -2+2 iB. 2-2iC. -2+2 iD. 2-2 i2. 已知函数 f(x) = log a(ax 2- x+1 ) 在 [1 ,2] 上恒正,则实数 a 的取值范围是 ( )21 5 3 1 5 3 1A.( , )B.( ,+∞ )C.( , ) ∪( ,+∞ )D.( ,+∞ )2 8 2 2 8 2 23. 已知双曲线过点M(-2, 4) 和 N(4,4) ,它的一个焦点为 F (1 , 0) ,则另一个焦点 F1 2的轨迹方程是( )(x -1) 2 (y - 4) 2A.+=1(y≠0)或x=1(y≠0)2516(x -1) 2(y - 4) 2B.+=1(x≠0)或x=1(y≠0)16252 2(x -4)(y - 1)C.+=1(y≠0)或y=1(x≠0)2516(x -4) 2(y - 1) 2D.+=1(x≠0)或y=1(x≠0)16254.已知正实数a,b 满足a+ b= 1,则M=1+ a2+1+ 2b的整数部分是( )A.1B.2C.3D.45.一条笔直的大街宽度为 40 米,一条人行横道穿过这条街,并与街道成一定的角度,人行横道长度为50 米,与大街边缘结合部的宽度为15 米,则人行横道的宽度为 ( )A.9 米B.10 米C.12 米D.15 米6. 一条铁路原有m个车站,为适应客运需要新增加n(n > 1) 个车站,结果客运车票增加了58 种( 注:从甲站到乙站和从乙站到甲站需要两种不同的车票) ,那么原有车站的个数为A.12B.13C.14D.15 ( )二、填空题 ( 共 54 分 )7. 长方形 ABCD的长 AB 是宽 BC的 2 3倍,把它折成无底的正三棱柱,使AD与 BC重合,折痕线 EF, GH分别交原来长方形对角线AC于 M、 N,则折后截面 AMN与底面 AFH所成的角是 _____.8. 在△ ABC中,a,b,c 是角 A,B,C的对边,且满足 a2+ b2= 2c2,则角 C 的最大值是_____.。
全国高中数学联赛模拟试题及参考答案

全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
16.2021年全国高中数学联赛模拟卷(八)(一试二试,附详细解答)

2021年全国高中数学联赛模拟卷(八)第一试(考试时刻:80分钟 总分值:120分)姓名:_____________考试号:______________得分:____________一、填空题(共8题,每题8分,64分) 一、已知函数)0(1222<+++=b x c bx x y 的值域为]3,1[,那么=+c b 。
解:0, 将)0(1222<+++=b x c bx x y 代入31≤≤y 得不等式⎪⎩⎪⎨⎧≥-+-≥-++030122c bx x c bx x ∴⎪⎩⎪⎨⎧≤--=∆≤--=∆0)3(40)1(42121c b c b 又函数的值域为]3,1[,函数值能取到1和3,即 112,3122222=+++=+++x c bx x x c bx x 有解,故⎪⎩⎪⎨⎧≥--=∆≥--=∆0)3(40)1(42121c b c b 得c =2,b =2。
二、已知,R a ∈而且a x x a +>-222)0(>a ,那么a 的取值范围是 。
解:⎩⎨⎧<+≥-002)1(22a x x a ⎪⎩⎪⎨⎧+>-≥+≥-22222)(2002)2(a x x a a x x a]22,22[,0,0),0,32(,0a a a a a a -<Φ=->解集为,解集为解集为。
3、设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,那么集合 },1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积 为 。
解:N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得。
为此,只要考虑在第一象限的面积就能够够了。
由题意可得,N M 的图形在第一象限的面积为A =613121=-。
因此N M 的图形面积为32。
全国高中数学联赛模拟训练题.docx

的交点为交、C.现有以A为焦点,过B、C且开口向左的抛物线,抛物线的顶点坐标当椭圆的离心率e满足|<^2<1,求实数秫的取值范围.四、(20分)。
、b、c均为实数,奸b, b?c, c^a.证明:2/M.2C|+"-M|+|C3-24<2.2 \a - b\ + \b - c\ + \c - a\五、(20分)已知fi^x^ax^+b^+cx^+dx,满足(i)。
、》、c、d均大于0; (ii)对于任一个{-2, -1,0,1,2},/3)为整数;(iii,/(5)=70.试说明,对于每个整数X, Rr)是否为整数.弟—试—、(50分)设K为、AB C的内心,点G、瓦分别为边A3、AC的中点,直线AC与GK交于点B2,直线AB于BiK交于点C2.若△AB2C2于△ABC的面积相等,试求ZCAB.二、(50 分) 设w = cosy + isin,/(.V)=(.V-M')(A'-VV3)(.V-VV7)(A'-M'9).求证:/U)为一整系数多项式,且Rx)不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参旁答案第一试(3 ,目、三、1,兰士 .四、证略.五、是.第二试一、60°;二、证略.三、100.I 4 J金国高甲够样联赛模拟试茎(^)ZvZv 、_41弟一试一、选择题:(每小题6分,共36分)1、设log力是一个整数,且log a - > log a4b > \og b a2,给出下列四个结论b®— > 4b > a2;②logaZ?+log*=0;③OV Q V^VI;④沥一1=0.b 」」其中正确结论的个数是(A) 1 (B) 2 (C) 3 (D) 4金国高中够样联赛模拟试茎(^)ZvZv 、_41弟一试一、选择题:(每小题6分,共36分)1、a、0是异面直线,直线c与a所成的角等于c与。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学联赛模拟试题(八)
第一试
一、选择题:(每小题6分,共36分)
1、设集合M ={-2,0,1},N ={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,
都有x +f (x )+xf (x )是奇数,则这样的映射f 的个数是 (A )45
(B )27
(C )15
(D )11
2、已知sin2 =a ,cos2 =b ,0< <4π,给出⎪
⎭⎫ ⎝⎛+4tan πθ值的五个答案:
①a b
-1; ②b a
-1;
③a b
+1;
④b a +1;
⑤11-++-b a b a .
其中正确的是: (A )①②⑤
(B )②③④
(C )①④⑤
(D )③④⑤
3、若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,
则正方体的一条对角线贯穿的小长方体的个数是 (A )64
(B )66
(C )68
(D )70
4、递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,
或者是若干个3的幂之和,则此数列的第100项为 (A )729
(B )972
(C )243
(D )981
5、14951C C C C +++++m n n n n (其中
⎥⎦⎤
⎢⎣⎡-=41n m ,[x ]表示不超过x 的最大整数)的值为
(A )4cos
2π
n n
(B )
4sin
2πn n
(C )⎪
⎭⎫ ⎝⎛+-4cos 22211πn n
n (D )⎪⎭⎫ ⎝
⎛+-4sin 22211πn n
n 6、一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是
(A )8568
(B )2142 (C )2139 (D )1134
二、填空题:(每小题9分,共54分)
1、过椭圆1232
2=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),
并延长PH 到Q ,使得HQ = PH ( ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是 .
2、已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角 (0< <90°)的直线l ,则这样的直线l 的条数是f ( )= .
3、不等式(
)
9
221142
2
+<+-x x
x 的解集为 .
4、设复数z 满足条件|z -i|=1,且z ≠0,z ≠2i ,又复数 使得i 2i 2-⋅
-z z
ωω为实数,则复数 -2的辐角主值的取值范围是 .
5、设a 1,a 2,…,a 2002
均为正实数,且21
21212120022
1=
++++++a a a ,则a 1a 2…a 2002的最小值是 .
6、在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为
“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为 .
三、(20分)
已知数列{a n }是首项为2,公比为21
的等比数列,且前n 项和为S n .
(1) 用S n 表示S n +1;
(2) 是否存在自然数c 和k ,使得c S c
S k k --+1>2成立.
四、(20分)
设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF |=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.
五、(20分)
已知定义在R +上的函数f (x )满足
(i )对于任意a 、b ∈R +,有f (ab )=f (a )+f (b ); (ii )当x >1时,f (x )<0;
(iii )f (3)=-1.
现有两个集合A 、B ,其中集合A ={(p ,q )|f (p 2+1)-f (5q )-2>0,p 、q
∈R +},集合B ={(p ,q )|f (q p )+21
=0,p 、q ∈R +}.试问是否存在p 、q ,
使∅≠B A ,说明理由.
第二试
一、(50分)
如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N
的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若P
O Q O S S △⊙32π=
,
求证:∠POQ =60°.
二、(50分)
已知数列a 1=20,a 2=30,a n +2=3a n +1-a n (n ≥1).求所有的正整数n ,使得1+5a n a n +1是完全平方数.
Q
三、(50分)
设M为坐标平面上坐标为(p·2002,7p·2002)的点,其中p为素数.求满足下列条件的直角三角形的个数:
(1)三角形的三个顶点都是整点,而且M是直角顶点;
(2)三角形的内心是坐标原点.
参考答案
第一试一、选择题:
二、填空题:
1、
⎪
⎪
⎭
⎫
⎢
⎣
⎡
1,
3
3
;2、
()
⎪
⎪
⎪
⎩
⎪⎪
⎪
⎨
⎧
︒
<
<
︒
︒
=
︒
<
<
︒
︒
=
︒
<
<
︒
=
90
0,4
60
,3
60
30
,2
30
,1
30
0,0
α
α
α
α
α
α
f
;
3、
⎪
⎭
⎫
⎝
⎛
⎪
⎭
⎫
⎢⎣
⎡
-
8
45
,0
0,
2
1
;4、
⎪
⎭
⎫
⎢⎣
⎡
-π
π,
3
4
arctan
;
5、40022002;
6、
⎪⎪
⎭
⎫
⎝
⎛
-
+
+
+
63
142
7
8
9
10
2
11
1n
n
.
三、(1)
2
2
1
1
+
=
+n
n
S
S
;(2)不存在.
四、
1
9
2
2
=
+y
x
.
五、不存在.
第二试
一、证略;
二、n=3.
三、p≠2,7,11,13时,324个;p=2时,162个;p=7,11,13时,180个.。