不等式的应用教师用
高中数学第二章2.2基本不等式(第2课时)基本不等式的应用教师用书新人教A版必修第一册

第2课时 基本不等式的应用利用基本不等式证明不等式已知a ,b ,c ∈(0,+∞),且a +b +c =1.求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.【证明】 因为a ,b ,c ∈(0,+∞),a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bca,同理1b-1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,分别相乘, 得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8.当且仅当a =b =c =13时,等号成立.在本例条件下,求证:1a +1b +1c≥9.证明:因为a ,b ,c ∈(0,+∞),且a +b +c =1, 所以1a +1b +1c=a +b +c a +a +b +c b +a +b +cc=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立.利用基本不等式证明不等式的思路利用基本不等式证明不等式时,要先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有已知条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.1.已知a ,b 都是正实数,且ab =2,求证:(1+2a )(1+b )≥9. 证明:因为a ,b 都是正实数,且ab =2,所以2a +b ≥22ab =4,当且仅当a =1,b =2时,等号成立. 所以(1+2a )(1+b )=1+2a +b +2ab =5+2a +b ≥5+4=9. 即(1+2a )(1+b )≥9.2.已知a ,b ,c >0,求证:a 2b +b 2c +c 2a≥a +b +c .证明:因为a ,b ,c >0,所以利用基本不等式可得a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,所以a 2b +b 2c +c 2a +a +b +c ≥2a +2b +2c ,故a 2b +b 2c +c 2a≥a +b +c ,当且仅当a =b =c 时,等号成立.利用基本不等式解实际应用题某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管费及其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天支付的总费用最少?【解】 设该厂每x 天购买一次面粉,其购买量为6x 吨.由题意可知,面粉的保管费等其他费用为3×[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1)(元).设平均每天所支付的总费用为y 元,则y =1x [9x (x +1)+900]+6×1 800=9x +900x+10 809≥29x ·900x+10 809=10 989(元),当且仅当9x =900x,即x =10时,等号成立.故该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.利用基本不等式解决实际问题的思路利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型ax +bx≥2ab (a >0,b >0,x >0)上靠拢.1.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,且x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案:5 82.用一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:设矩形菜园的长为x m 、宽为y m , 则2(x +y )=36,x +y =18, 矩形菜园的面积为xy m 2. 由xy ≤x +y 2=182=9,可得xy ≤81, 当且仅当x =y ,即x =y =9时,等号成立.因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2.基本不等式的综合问题若不等式9x +a 2x ≥a +1(常数a >0)对一切正实数x 成立,求a 的取值范围.【解】 常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a +1≤9x +a 2x 的最小值,又9x +a 2x ≥6a ,当且仅当9x =a 2x,即x =a3时,等号成立. 故必有6a ≥a +1,解得a ≥15.所以a 的取值范围为a ≥15.(1)a ≤f (x )恒成立⇔a ≤f (x )的最小值. (2)a ≥f (x )恒成立⇔a ≥f (x )的最大值. [注]f (x )表示有关x 的代数值已知不等式(x +y )⎝ ⎛⎭⎪⎫4x +a y ≥16对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .1B .2C .4D .6解析:选 C.(x +y )(4x +a y)=4+a +⎝ ⎛⎭⎪⎫4y x +ax y ,因为x >0,y >0,a >0,所以4y x +ax y≥24y x ·axy=4a ,当且仅当4y x =axy时取等号.由已知可得4+a +4a ≥16,即a +4a -12≥0,解得a ≥2或a ≤-6(舍去),所以a ≥4,即a 的最小值为4.1.若a ,b ∈R ,判断大小关系:a 2+b 2________2|ab |.( ) A .≥ B .= C .≤D .>解析:选A.由基本不等式得a 2+b 2=|a |2+|b |2≥2|a ||b |=2|ab |,当且仅当|a |=|b |时,等号成立.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.解析:每年购买次数为400x次.所以总费用=400x·4+4x ≥2 6 400=160,当且仅当1 600x=4x ,即x =20时等号成立. 答案:203.已知a ,b ,c ,d 都是正数,求证:(ab +cd )(ac +bd )≥4abcd . 证明:由a ,b ,c ,d 都是正数,得ab +cd2≥ab ·cd , ac +bd2≥ac ·bd ,所以(ab +cd )(ac +bd )4≥abcd ,即(ab +cd )(ac +bd )≥4abcd .[A 基础达标]1.设a >0,b >0,则下列不等式中不一定成立的是( ) A .a +b +1ab≥2 2B.2aba +b≥ab C.a 2+b 2ab≥a +bD .(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4解析:选B.因为a >0,b >0, 所以a +b +1ab ≥2ab +1ab ≥22,当且仅当a =b 且2ab =1ab即a =b =22时取等号,故A 一定成立.因为a +b ≥2ab >0,所以2ab a +b ≤2ab2ab=ab ,当且仅当a =b 时取等号, 所以2aba +b≥ab 不一定成立,故B 不成立. 因为2ab a +b ≤2ab2ab=ab ,当且仅当a =b 时取等号, 所以a 2+b 2a +b =(a +b )2-2ab a +b =a +b -2ab a +b ≥2ab -ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b≥ab ,所以a 2+b 2ab≥a +b ,故C 一定成立.因为(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4,当且仅当a =b 时取等号,故D 一定成立,故选B.2.若0<a <b ,a +b =1,则a ,12,2ab 中最大的数为( )A .aB .2ab C.12D .无法确定解析:选C.因为0<a <b ,a +b =1,所以a <12,因为ab <⎝ ⎛⎭⎪⎫a +b 22=14,所以2ab <12,则a ,12,2ab 中最大的数为12,故选C.3.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件解析:选B.设每件产品的平均费用为y 元, 由题意得y =800x +x8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.4.已知a <b ,则b -a +1b -a+b -a 的最小值为( ) A .3 B .2 C .4D .1解析:选A.因为a <b ,所以b -a >0, 由基本不等式可得b -a +1b -a +b -a =1+1b -a +(b -a )≥1+21b -a·(b -a )=3, 当且仅当1b -a =b -a (b >a ),即当b -a =1时,等号成立,因此,b -a +1b -a+b -a 的最小值为3,故选A.5.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选C.由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,所以2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.6.已知y =4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 解析:y =4x +a x≥2 4x ·a x =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时y 取得最小值4a .又由已知x =3时,y 的最小值为4a , 所以a2=3,即a =36.答案:36 7.若a <1,则a +1a -1与-1的大小关系是________. 解析:因为a <1,即1-a >0, 所以-⎝⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a≥2 (1-a )·11-a=2.即a +1a -1≤-1. 答案:a +1a -1≤-1 8.(2019·扬州期末)如图,在半径为4(单位:cm)的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点A ,B 在直径上,顶点C ,D 在圆周上,则矩形ABCD 面积的最大值为________(单位:cm 2).解析:如图所示,连接OC ,设OB =x (0<x <4),则BC =OC 2-OB 2=16-x 2,AB =2OB =2x ,所以由基本不等式可得,矩形ABCD 的面积为S =AB ·BC =2x ·16-x 2=2(16-x 2)x 2≤(16-x 2)+x 2=16,当且仅当16-x 2=x 2时,即x =22时,等号成立. 答案:169.已知x >0,y >0,z >0.求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8.证明:因为x >0,y >0,z >0,所以y x +z x≥2yz x>0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0, 所以⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z≥8yz ·xz ·xyxyz=8,当且仅当x =y =z 时等号成立.10.已知a >b >c 且2a -b +1b -c ≥ma -c恒成立,求实数m 的最大值. 解:由题意,a -b >0,b -c >0,a -c >0, 又2a -b +1b -c ≥m a -c ,即2(a -c )a -b +a -c b -c ≥m , 即2(a -b +b -c )a -b +a -b +b -cb -c≥m ,又2+2(b -c )a -b +1+a -bb -c ≥3+22(当且仅当a -b =2(b -c )时取等号).所以实数m 的最大值为3+2 2.[B 能力提升]11.若实数x >0,y >0,且x +4y =xy ,则x +y 的最小值为( ) A .7 B .8 C .9D .10解析:选C.根据题意,实数x >0,y >0,若x +4y =xy ,则1y +4x=1,x +y =(x +y )⎝ ⎛⎭⎪⎫1y +4x =x y +4yx+5≥2x y ×4yx+5=9, 当且仅当x =2y 时等号成立, 即x +y 的最小值为9,故选C.12.已知a >0,b >0,若不等式2a +1b ≥m2a +b 恒成立,则m 的最大值等于( )A .10B .9C .8D .7解析:选B.因为a >0,b >0,所以2a +1b ≥m 2a +b ⇔2(2a +b )a +2a +b b =5+2b a +2a b ≥m ,由a >0,b >0得,2b a +2a b ≥22b a ·2ab=4(当且仅当a =b 时取“=”).所以5+2b a +2ab≥9,所以m ≤9.故选B.13.已知正实数a ,b 满足a +b =4,求1a +1+1b +3的最小值. 解:因为a +b =4,所以(a +1)+(b +3)=8,所以8⎝ ⎛⎭⎪⎫1a +1+1b +3=[(a +1)+(b +3)]⎝⎛⎭⎪⎫1a +1+1b +3=b +3a +1+a +1b +3+2≥2b +3a +1·a +1b +3+2=4, 所以1a +1+1b +3≥12, 当且仅当a +1=b +3时,等号成立, 所以1a +1+1b +3的最小值为12. 14.(2019·福建莆田八中期中考试)某品牌电脑体验店预计全年购入360台电脑,已知该品牌电脑的进价为3 000元/台,为节约资金决定分批购入,若每批都购入x (x ∈N *)台,且每批需付运费300元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为k ),若每批购入20台,则全年需付运费和保管费7 800元.(1)记全年所付运费和保管费之和为y 元,求y 关于x 的函数;(2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台? 解:(1)由题意,得y =360x×300+k ×3 000x .当x =20时,y =7 800,解得k =0.04.所以y =360x ×300+0.04×3 000x =360x×300+120x (x ∈N *).(2)由(1),得y =360x×300+120x ≥2360×300x×120x =2×3 600=7 200.当且仅当360×300x=120x ,即x =30时,等号成立.所以要使全年用于支付运费和保管费的资金最少,每批应购入电脑30台.[C 拓展探究]15.志愿者团队要设计一个如图所示的矩形队徽ABCD ,已知点E 在边CD 上,AE =CE ,AB >AD ,矩形的周长为 8 cm.(1)设AB =x cm ,试用x 表示出图中DE 的长度,并求出x 的取值范围;(2)计划在△ADE 区域涂上蓝色代表星空,如果要使△ADE 的面积最大,那么应怎样设计队徽的长和宽.解:(1)由题意可得AD =4-x , 且x >4-x >0,可得2<x <4, 由CE =AE =x -DE ,在直角三角形ADE 中,可得AE 2=AD 2+DE 2, 即(x -DE )2=(4-x )2+DE 2, 化简可得DE =4-8x(2<x <4);(2)S △ADE =12AD ·DE=12(4-x )⎝ ⎛⎭⎪⎫4-8x =2⎝ ⎛⎭⎪⎫6-x -8x≤2⎝⎛⎭⎪⎫6-2x ·8x =12-82, 当且仅当x =22,4-x =4-22, 即队徽的长和宽分别为22,4-22时, △ADE 的面积取得最大值.。
专题11 一元一次不等式的应用(老师版)

专题11一元一次不等式的应用一.选择题1.(2分)(2021秋•港南区期末)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9B.8C.7D.6解:设打x折,根据题意得:1100×﹣700≥700×10%,解得:x≥7,即至多可以打7折.故选:C.2.(2分)(2021春•毕节市月考)2020年5月,毕节的所有学校复课之前必须购置一批防疫物资,其中有20支水银温度计,体温枪若干支.水银温度计每支5元,体温枪每支180元,如果总费用超过1000元,那么体温枪至少有()A.4支B.5支C.6支D.7支解:设购进体温枪x支,依题意,得:5×20+180x>1000,解得:x>5.又∵x为正整数,∴x的最小值为6,即体温枪至少有6支.故选:C.3.(2分)(2021春•武侯区校级期中)静怡准备用70元在文具店买A,B两种笔记本共7本,A种笔记本每本10元,B种笔记本每本8元,如果至少要买4本A种笔记本,请问静怡购买的方案有()A.2种B.3种C.4种D.5种解:设静怡准备买A种笔记本x本,则购买B种笔记本(7﹣x)本,根据题意可知,10x+8(7﹣x)≤70,7﹣x>0,解得,x<7,∵x≥4,∴4≤x<7,∴x可取4,5,6,∴共三有种方案.故选:B.4.(2分)(2021春•舞阳县期末)新冠病毒肺炎疫情防控期间,某校为达到开学复课标准,购进一批新桌椅.学校组织100名教师搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.40B.30C.20D.10解:设可搬桌椅x套,即桌子x把,椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得2x+≤100,解得x≤40.答:最多可搬桌椅40套.故选:A.5.(2分)(2021春•牡丹区期中)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折解:设商店可以打x折出售此商品,根据题意可得:,解得:x≥7,故选:B.6.(2分)(2018秋•慈溪市期末)某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有()A.152块B.153块C.154块D.155块解:设这批手表有x块,200×80+(x﹣80)×150>27000解得,x>153∴这批手表至少有154块,故选:C.7.(2分)(2018春•文山州期末)学校准备用3000元购买口琴和笛子作为校园歌手大赛的奖品,其中笛子每支80元,口琴每把200元,现已经购买笛子21支,最多还能购买()把口琴.A.5B.6C.7D.8解:设还能购买x把口琴,根据题意,得80×21+200x≤3000.解得x≤6.6.因为x是正整数,所以x最大值是6.即最多还能购买6把口琴.故选:B.8.(2分)(2016•合肥校级一模)甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=bC.a<b D.与a、b大小无关解:根据题意得到5×<3a+2b,解得a>b9.(2分)(2021春•青岛期末)某校20名同学去工厂进行暑假实践活动,每名同学每天可以加工甲种零件5个或乙种零件4个,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,加工乙种零件的同学至少为()A.11B.12C.13D.14解:设加工乙种零件的同学x人,则这天加工乙种零件有4x个,甲种零件有5(20﹣x)个,根据题意,得24×4x+16×5(20﹣x)≥1800,解得:x≥12.5,因为x是正整数,所以x最小值是13.即:加工乙种零件的同学至少为13人.故选:C.10.(2分)(2019春•稷山县期末)电话手表轻巧方便,一经推出倍受青睐.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022春•巴南区期末)临近端午,甲、乙两食品厂商分别承接制作白粽,肉粽和蛋黄粽的任务,甲厂商安排200名工人制作白粽和肉粽,每人只能制作其中一种粽子,乙厂商安排100名工人制作蛋黄粽,其中肉粽的人均制作数量比白粽的人均制作数量少20个,蛋黄粽的人均制作数量比肉粽的人均制作数量少20%,若本次制作的白粽、肉粽和蛋黄粽三种粽子的人均制作数量比肉粽的人均制作数量多20%,且制作白粽的人数不高于制作肉粽的人数的3倍,则本次可制作的粽子数量最多为m个,这里的m=13500.解:设白粽,肉粽和蛋黄粽的人均制作数量分别为:(a+20)个,a个,a(1﹣20%)个,甲厂安排x人制作白粽,(200﹣x)人制作肉粽,由题意得:x≤3(200﹣x).∴x≤150.∵=a×(1+20%).∴a=x.∴m=80a+x(a+20)+a(200﹣x)=20x+280a=20x+70x=90x.∴m随x增大而增大,∴当x=150时,m最大=90×150=13500个.故答案为:13500.12.(2分)(2022春•禅城区校级月考)某种家用小电器的进价为每件200元,以每件300元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的七折出售.解:设按标价的x折出售,依题意得:300×﹣200≥200×5%,解得:x≥7,∴最低可按标价的七折出售.故答案为:七.13.(2分)(2022春•电白区期末)一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答扣一分,在这次竞赛中小明获得优秀(不低于90分),则他至少答对了24道题.解:设小明答对了x道题,由题意得:4x﹣(30﹣x)×1≥90,解得:x≥24,即小明至少答对了24道题,故答案为:24.14.(2分)(2021秋•沙坪坝区校级期末)2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴.与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徽章的销售总额多2200元,则徽章和风铃销售总额的最大值是6100元.解:设徽章和抱枕的价格均为a元,风铃的价格为b元,公仔的销售数量为m件,则公仔的价格为2b元,徽章的销售数量为2m件,风铃和抱枕的销售数量均为(120﹣2m)件,由题意得:a(120﹣2m)+2bm﹣b(120﹣2m)﹣2ma=2200,整理得:2am﹣2bm=60a﹣60b﹣1100①,徽章和风铃的销售总额为:2ma+b(120﹣2m)=2am﹣2bm+120b②,把①代入②得:60a+60b﹣1100,∵a+b≤120,∴当a+b=120时,徽章和风铃销售总额最大,最大值为:60×120﹣1100=6100(元),故答案为:6100.15.(2分)(2021春•神木市期末)为扩大十四运影响力,充分展现陕西人文风貌,某县欲印制一批宣传册,该宣传册每本共10页,由A、B两种彩页构成,其中A种彩页4页,B种彩页6页.已知A种彩页印刷费为2.5元/页,B彩页印刷费为1.5元/页,若要求这批宣传册的总印刷费不超过28500元,则最多能印制这种宣传册1500册.解:设能印制这种宣传册a册,由题意得:2.5×4a+1.5×6a≤28500,解得:a≤1500,即最多能印制这种宣传册1500册,故答案为:1500.16.(2分)(2021春•青山区期中)制作糕点的张师傅现有面粉460千克,武汉成为新冠肺炎的重灾区后,张师傅想把这些面粉制作成A、B两种型号的糕点,装盒后送给武汉的医护人员,已知每盒可以装2块A和4块B,而制作1块A需要0.05千克的面粉,制作1块B需要0.02千克面粉,每盒都装满,他最多能制作这样的糕点2555盒.解:设最多能生产这种盒装糕点的盒数是x盒,可得:(2×0.05+4×0.02)x≤460,解得:x≤2555,故答案为:2555.17.(2分)(2022春•五常市期末)用10元钱买一包牛奶钱不足,打九折后钱又有剩余,如果牛奶的标价是整数元,那么标价是11元.解:设牛奶的标价是x元,0.9x<10,且x>10,x<且x>10,10<x<11.1,x是整数,所以x=11.牛奶的标价是11元.18.(2分)(2021春•开州区期末)某公司以A、B两种材料,利用不同的搭配方式推出了两款产品,其中,甲产品每份含2克A、2克B;乙产品每份含2克A、1克B,甲乙两种产品每份成本价分别为A、B两种材料的成本之和,若甲产品每份成本为16元,公司在核算成本的时候把A、B两种材料单价看反了,实际成本比核算时的成本多760元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么公司每天的实际成本最多为860元.解:设每克A种食材的成本价为x元,每天销售m份甲产品,n份乙产品,餐厅每天实际成本为w元,则每100克B种食材的成本价为=(8﹣x)元,依题意,得:16m+(2x+8﹣x)n﹣16m﹣[2(8﹣x)+x]n=760,化简,得:xn=4n+380.∵w=16m+(2x+8﹣x)n=16m+xn+8n=16m+4n+380+8n=16m+12n+380,4m+3n≤120,∴w=16m+12n+380=4(4m+3n)+380≤4×120+380=860.∴餐厅每天实际成本最多为860元.故答案为:860.19.(2分)(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品320件.解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有,则24x=29y﹣200=19z﹣370=m,∵0<m≤1000,∴0<x≤41,6<y≤41,19<z≤72,∵x,y、z均为正整数,∴1≤x≤41,7≤y≤41,20≤z≤72,24x=29y﹣200化为:x=y﹣8+,∴5y﹣8=24n(n为正整数),∴5y=8+24n=8(1+3n),∴y=8k(k为正整数),5k=3n+1,∴7≤8k≤41,n=k+,∴1≤k≤5,1≤2k﹣1≤9,∵2k﹣1必为奇数且是3的整数倍.∴2k﹣1=3或2k﹣1=9,∴k=2或k=5,当k=2时,y=16,x=11,z=33(舍)∴k只能为5,∴y=40,x=40,z=70.∴8x=8×40=320.答:第一次购进A种纪念品320件.故答案为:320.20.(2分)(2021春•奉化区校级期中)我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了8辆公共汽车.解:设他们共租了x辆公共汽车.0<234﹣30×(x﹣1)<30,解得7.8<x<8.8,∴他们共租了8辆公共汽车.三.解答题(共10小题,满分60分,每小题6分)21.(6分)(2022春•渝中区校级月考)“感受生命律动,聆听花开声音”,鲁能巴蜀中学生物组老师组织初二年级同学开展“开心农场”活动.生物组老师准备去市场购买辣椒种子和樱桃萝卜种子,计划用492元购买两种种子共72袋.已知辣椒种子的售价为每袋6元,樱桃萝卜种子的售价为每袋8元.(1)求计划购买辣椒种子和樱桃萝卜种子各多少袋;(2)生物组老师去市场购买种子时,发现市场正在进行促销,辣椒种子的售价每袋下降了5a元,樱桃萝卜种子的售价每袋打八折,老师决定按原计划数量购买辣椒种子,而樱桃萝卜种子比原计划多购买了50a袋,这样实际使用的经费比原计划经费节省了至少15元.求a的最大值.解:(1)设计划购买辣椒种子x袋,樱桃萝卜种子y袋,根据题意,得,解得,答:计划购买辣椒种子42袋,樱桃萝卜种子30袋;(2)根据题意,得492﹣[42(6﹣5a)+8×0.8(30+50a)]≥15,解得a≤0.3,∴a的最大值为0.3.22.(6分)(2022春•城阳区期中)某校学生会组织七年级和八年级共100名同学参加垃圾分类志愿者活动,七年级学生平均没人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?解:设八年级有x名学生参加活动,则七年级参加活动的人数为(100﹣x)名,根据题意,得15(100﹣x)+20x≥1800.解得x≥60.所以x的最小值是60.答:至少需要60名八年级学生参加活动.23.(6分)(2022春•城阳区期中)2022年北京冬奥会掀起“一墩难求”热潮,由于供货紧张,某商场第一次采购雪容融10个和冰墩墩15个,采购总价为510元,第二次采购冰墩墩20个,采购雪容融数量是冰墩墩的,采购总价720元.(1)雪容融和冰墩墩的进货单价各是多少元?(2)商家决定采购冰墩墩的数量比雪容融数量的倍多15个,在采购总价不超过1290元的情况下,冰墩墩最多能购进多少个?解:(1)设雪容融的进货单价是x元,冰墩墩的进货单价是y元,根据题意,得.解得.答:雪容融的进货单价是12元,冰墩墩的进货单价是26元;(2)设雪容融能购进m个,则购进冰墩墩(m+15),根据题意,得12m+26(m+15)≤1290.解得m≤.所以m+15≤=41.因为m是正整数,所以(m+15)的最大值为41.答:冰墩墩最多能购进41个.24.(6分)(2022春•凌海市期中)“五一”期间甲、乙旅行社假期搞组团促销活动.甲旅行社说:“如果带队团长买全票一张,则其余的员工可享受半价优惠.”乙旅行社说:“包括团长在内全部按票价的六折优惠.”若全票价为2000元,两家旅行社的服务质量相同,根据员工的人数(不包括团长)你认为选择哪一家旅行社才比较合算?解:设员工为x人,选择甲旅行社费用为y1元,乙旅行社费用为y2元,由题意,得y1=2000×0.5x+2000,y1=1000x+2000.y2=0.6×2000(x+1),y2=1200x+1200.当y1>y2时,1000x+2000>1200x+1200,解得:x<4;当y1=y2时,1000x+2000=1200x+1200,解得:x=4;当y1<y2时,1000x+2000<1200x+1200,解得:x>4.综上所述,当员工少于4人时,选择乙旅行社合算;等于4人时,甲、乙两家一样合算;多于4人时,选择甲旅行社合算.25.(6分)(2022春•榆次区期中)电影《长津湖》以抗美援朝时的长津湖战役为背景,讲述了一段波澜壮阔的历史:72年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌,扭转战役局势,打出了军威国威.某中学为了培养学生的爱国主义情怀,准备先组织师生共100人进行观影活动,已知学生票每张38元,成人票每张60元,若总费用不超过4000元,最多可以安排几名教师参加此次观影活动?解:设可以安排x名教师参加此次观影活动,则根据题意,得60x+38(100﹣x)≤4000.解得.由于x为正整数,所以最多可以安排9名教师参加此次观影活动.26.(6分)(2022春•漳州期中)天运羽毛球馆有两种计费方案,如表,钟老师打算和朋友们周末去该羽毛球馆连续打球4小时,经球馆管理员测算后,告知他们包场计费会比人数计费便宜,则他们参与包场的人数至少为多少人?包场计费每场每小时50元,每人须另付入场费5元人数计费前两小时每人每小时10元,两小时之后每人每小时6元解:设他们参与包场的人数为x人,依题意,得:50×4+5x<10×2x+(4﹣2)×6x,解得:x>.又∵x为正整数,∴x的最小整数解为8.答:他们参与包场的人数至少为8人.27.(6分)(2022春•金水区校级期末)某公司40名员工到一景点集体参观,景点门票价格为30元/人.该景点规定满40人可以购买团体票,票价打八折,这天恰逢妇女节,该景点做活动,女士票价打五折,但不能同时享受两种优惠,请你通过计算帮助他们选择购票方案.解:设该公司参观者中有女士x人,选择购买女士五折票时所需费用为y1元,选择购买团体票时所需费用为y2元,y1=30×0.5x+30×(40﹣x)y 1=﹣15x+1200,y2=30×40×0.8即y2=960.由y1=y2,得﹣15x+1200=960,解得x=16;由y1>y2,得﹣15x+1200>960,解得x<16;由y1<y2,得﹣15x+1200<960,解得x>16.所以当女士恰好是16人时,两种方案所需费用相同;当女士人数少于16人时,购买团体票合算;当女士人数多于16人不超过40人时,购买女士五折票合算.28.(6分)(2022•同心县二模)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:品名甲型口罩乙型口罩价格进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?解:(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,则,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,则300×5+400(0.1m×36﹣30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.29.(6分)(2022秋•海曙区期中)哈六十九中校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求本次乙种笔记本最多购买多少个?解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元,由题意得:,解得.答:甲种笔记本的单价是3元;乙种笔记本的单价是5元;(2)设乙种笔记本购买a个,由题意得:3(2a﹣10)+5a≤320,解得:,∵a为整数,∴a取31.答:本次乙种笔记本最多购买31个.30.(6分)(2019春•滕州市期中)为了提倡低碳经济,某公司为了更好得节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:甲型乙型价格(万元/台)1210产量(吨/月)240180(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你设计一种最省钱的购买方案.解:(1)设购买节省能源的新设备甲型设备x台,乙型设备(10﹣x)台,根据题意得:12x+10(10﹣x)≤110,解得:x≤5,∵x取非负整数,∴x=0,1,2,3,4,5,∴有6种购买方案.(2)由题意:240x+180(10﹣x)≥2040,解得:x≥4,则x为4或5.当x=4时,购买资金为:12×4+10×6=108(万元),当x=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,应选购甲型设备4台,乙型设备6台11。
(word完整版)不等式的应用-教师版

整数解问题【例1】 在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s ,引爆员点着导火索后,至少以每秒_____米的速度才能跑到600m 或600m 以外的安全区域?【答案】3m/s【例2】 一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或 90分以上)则小明至少答对了 道题.【答案】24【例3】 现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆【答案】C【例4】 初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( )A .2个B .3个C .4个D .5个【答案】C【例5】 工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前两天超额完成,问后几天每天平均至少要完成多少土方?【解析】设后几天每天平均完成x 土方,根据题意,得:60(612)300x +--≥,解得80x ≥, 每天平均至少挖土80土方.【答案】每天平均至少挖土80土方【例6】 小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?不等式的应用知识讲解【解析】设他行走剩下的一半路程的速度为x ,则122.4 1.260x -≥所以6x ≥. ∴他行走剩下的一半路程的速度至少为6千米/小时.【答案】6千米/小时.【例7】 若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像?【解析】设有x 位同学参加照像,根据题意得:20 1.5(2)4x x +-≤,解得 6.8x ≥,所以至少应有7名同学参加照像.【答案】7【例8】 某工人9月份计划生产零件180个,前10天每天平均生产6个,后经改进生产技术,提前2天并且超额完成任务,这个工人改进技术后平均每天至少生产零件多少个?【解析】这个工人改进技术后平均每天至少生产零件x 个,根据题意得:610(30102)180x ⨯+-->,263x >,这个工人改进技术后平均每天至少生产零件7个.【答案】7个【例9】 八戒去水果店买水果,八戒有45元,买了5斤香蕉,若香蕉每斤3元,西瓜每个8元,请问八戒至多能买几个西瓜?【解析】设八戒买了x 个西瓜,则35845x ⨯+≤,解得154x ≤,故八戒至多买3个西瓜. 【答案】3个【例10】 在保护地球爱护家园活动中,校团委把一批树苗分给初三⑴班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵). ⑴ 设初三⑴班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示). ⑵ 初三⑴班至少有多少名同学?最多有多少名【解析】⑴ 242x +;⑵ ()1242315x x +--<≤,则4044x <≤,至少有41名同学;最多有44名同学.【答案】⑴ 242x +;⑵ 至少有41名同学;最多有44名同学.【例11】 某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B 型车多少辆?【例12】【解析】设至少还需要B 型车x 辆,依题意得20515300x ⨯+≥解得1133x ≥,∴14x =.【答案】14【例13】 商业大厦购进某种商品l000件,售价定为进价的125%.现计划节日期间按原售价让利l0%,至多售出l00件商品;而在销售淡季按原定价的60%大甩卖.为使全部商品售完后赢利,在节日和淡季之外要按原定价销售出至少多少件商品?【解析】设进价为a 元,按原定价售出x 件,节日让利售出y 件(0100y <≤).依题意有125%125%(1a x a y ⋅⋅+⋅⋅⋅-10%)(1000)125%60%1000x y a a +--⋅⋅⋅>,整理得432000x y +>,由于0100y <≤,所以425x >,因此按原定价至少销售426件.【答案】426件求范围以及具体数目问题【例14】 一堆有红、白两种颜色的球各若干个,已知白球的个数比红球少,但白球个数的2倍比红球多.若把每一个白球都记作“2”,每一个红球都记作“3”,则总数为60,那么,白球与红球各有多少个?【解析】设白球有x 个,红球有y 个,依题意有22360x y xx y <<⎧⎨+=⎩,解得7.512x <<又由26033(20)x y y =-=-,知x 是3的倍数.故白球共有9个,红球共有l4个.【答案】白球共有9个,红球共有l4个.【例15】 “六一"儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的小朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?【解析】设该小学有x 个班,则奥运福娃共有()105x +套.由题意,得()()1051314105131x x x x ⎧+<-+⎪⎨+>-⎪⎩解之,得1463x <<. ∵x 只能取整数,所以5x =,此时10555x +=.【答案】5个班级,55套福娃【例16】 某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人?【解析】共有22人.设x 人得3分,y 人得4分,则得5分的共有26x y --人,则可知:()34526 4.82613x y x y x y ++--⨯⎧⎪⎨⎪⎩≥≥≥解得13x y ==,,所以2622x y --= 即得5分的共有22人.【答案】得5分的共有22人.【例17】 暑假期间小张一家为体验生活品质,自驾汽车外出旅游,计划每天行驶相同的路程.如果汽车每天行驶的路程比原计划多19公里,那么8天内它的行程就超过2200公里;如果汽车每天的行程比原计划少12公里,那么它行驶同样的路程需要9天多的时间.求这辆汽车原来每天计划的行程范围(单位:公里).【解析】设原计划每天的行程为x 公里,由题意,应有:8(19)22008(19)9(12)x x x +>⎧⎨+>-⎩,解得256260x x >⎧⎨<⎩答:所以这辆汽车原来每天计划的行程范围为超过256公里且不到260公里.【答案】这辆汽车原来每天计划的行程范围为超过256公里且不到260公里.【例18】 有人问一位老师他所教的班有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位同学在操场踢足球".试问:这个班共有多少学生?【答案】设该班共有x 名学生,由题意可得()6247x x x x -++<,∴3628x<,即56x <又∵x 、2x、4x 、7x 都是整数,∴28x = 答:这个班有28名学生方案决策问题【例19】 2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?【解析】(1)设预定男篮门票x 张,则乒乓球门票()15x -张.得:()10005001512000x x +-=,解得:9x = ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为()152y -张,得8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩解得:2545714y ≤≤. 由y 为正整数可得5y =,1525y -=【答案】 (1)男篮门票9张,则乒乓球门票6张; (2)乒乓球、足球门票、男篮门票各5张.【例20】 某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元,在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.⑴请写出此车间每天所获利润y (元)与x (人)之间的关系式;⑵若要使每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?【解析】(1)依题意,得()()150626052040026000020y x x x x =⨯+⨯-=+≤≤.(2)依题意得,4002600024000x -+≥.解得5x ≤,2020515x -=-=.答:至少要派15名工人去制作乙种零件才合适. 【答案】(1)()()150626052040026000020y x x x x =⨯+⨯-=+≤≤(2)至少要派15名工人去制作乙种零件才合适.【例21】 某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【解析】(1)设企业每套奖励x 元,由题意得:20060%150450x +⨯≥.解得: 2.78x ≥.因此,该企业每套至少应奖励2.78元;(2)设小张在六月份加工y 套,由题意得:20051200y +≥, 解得200y ≥.【答案】(1)2.78元;(2)200【例22】 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A B ,两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?【解析】(1)由题意:()()6001201550001152x x x x +-⎧⎪⎨-⎪⎩≤≥ 解得:2053x ≤≤∵x 为整数,∴56x =,∴共两种购票方案:方案一:A种船票5张,B种船票10张方案二:A种船票6张,B种船票9张(2)因为B种船票价格便宜,因此B种船票越多,总购票费用少.∴第一种方案省钱,为5600120104200⨯+⨯= (元)【答案】(1)共两种购票方案:方案一:A种船票5张,B种船票10张方案二:A种船票6张,B种船票9张(2)第一种方案省钱【例23】某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80元的总利润(利润=售价—进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案.【解析】(1)商品进了x件,则乙种商品进了80x-件,依题意得()+-⨯=1080301600x x解得:40x=即甲种商品进了40件,乙种商品进了804040-=件.(2)设购买甲种商品为x件,则购买乙种商品为()80x-件,依题意可得:()()()-+--≤≤6001510403080610x x解得:38≤x≤40即有三种方案,分别为:第一种方案:甲38件,乙42件;第二种方案:甲39件,乙41件;第三种方案:甲40件,乙40件.【答案】(1)甲种商品进了40件,乙种商品进了40件.(2)有三种方案,分别为:第一种方案:甲38件,乙42件;第二种方案:甲39件,乙41件;第三种方案:甲40件,乙40件.【例24】 某饮料厂开发了A B ,两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A B ,两种饮料共100瓶.设生产A 种饮料x 瓶,解答下列问题:⑴ 有几种符合题意的生产方案?写出解答过程;⑵ 如是A 种饮料每瓶的成本为2.60元,B 种饮料每瓶的成本为2.80元,这两种饮料成本总额为y 元,请写出y 与x 之间的关系式,并说明x 取何值会使成本总额最低?原料名称 饮料名称甲乙A 20克40克B30克 20克【解析】⑴ 设生产A 种饮料x 瓶,生产B 种饮料100x -瓶.则()()2030100280040201002800x x x x ⎧+-⎪⎨+-⎪⎩≤≤,解得2040x ≤≤,由x 为整数,共有21组解, 所有符合题意的生产方案共有21种.⑵ ()2.6 2.8100y x x =+-,整理得0.2280y x =-+,∵x 的系数为0.2-, ∴y 随x 的增大而减小.当40x =时,成本总额最低.【答案】(1)21;(2)0.2280y x =-+,当40x =时,成本总额最低.【例25】 开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小 亮用31元买了同样的钢笔2支和笔记本5本. ⑴ 求每支钢笔和每本笔记本的价格;⑵ 校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.【解析】⑴ 设每支钢笔x 元,每支笔记本y 本.3182531x y x y +=⎧⎨+=⎩,∴35x y =⎧⎨=⎩. ⑵ 设购买钢笔a 支,笔记本b 个.4835200a b a b b a+=⎧⎪+⎨⎪⎩≤≥,∴2028a b ⎧⎨⎩≥≤,则共有五种购买方案20,21,22,23,2428,27,26,25,24a b =⎧⎨=⎩.【答案】(1)每支钢笔3元,每支笔记本5本.(5)五种方案:20,21,22,23,2428,27,26,25,24 ab=⎧⎨=⎩【例26】2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.⑴某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.⑵若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?【解析】⑴设搭配A种造型x个,则B种造型为(50)x-个,依题意,得:8050(50)34904090(50)2950x xx x+-≤⎧⎨+-≤⎩,解得:3331xx≤⎧⎨≥⎩,∴3133x≤≤∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.⑵(法1):由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元)(法2):方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=(元)【答案】(1)可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)方案③成本最低,最低成本为:42720(元)【例27】在车站开始检票时,有a名旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队同步练习检票进站,设旅客按固定的速度增加,检票中检票的速度也是固定的,若开放一个检票口,则需要30分钟才可将等候检票的旅客全部检票完毕;若开放两个检票口,则需要10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?【解析】设检票开始后每分钟增加旅客为x 人,检票速度为每个检票口每分钟检票y 人,5分钟内检票完毕要同时开放n 个检票口依题意得30301021055a x ya x y a x n y +=⎧⎪+=⨯⎨⎪+≤⋅⎩①②③②3⨯-①,得15a y =,代入①便得30a x =,再把所求的x 、y 代入③便有63a aa n +≤⋅ 因为0a >,所以11163n +≤⋅,即 3.5n ≥,n 取最小的整数,所以4n =答:至少需要同时开放4个检票口.【答案】至少需要同时开放4个检票口【例28】 某高速公路收费站有m (0m >)辆汽车排队等候通过,假设通过收费站得车流量保持不变,每个收费窗口的收费检票的速度也是不变的,若开放一个收费窗口,则需20min 才能将原来排队等候的汽车以及后来到的汽车全部收费通过。
2023年高三一轮复习专题一基本不等式及其应用-教师版

高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。
7.5不等式的综合应用(教师版)

科 目 数学 年级 高三 备课人 高三数学组 第 课时 7.5不等式的综合应用【典型例题】一、简单线性规划的实际应用:例1、(2012 四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A.1800元B.2400元C.2800元D.3100元*2122120,0,x y x y x y x y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩,最大利润为max 300400,430044002800z x y z =+=⨯+⨯=.变式训练:(2012 江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:年产量/亩 年种植成本/亩 每吨售价黄瓜 4吨 1.2万元 0.55万元韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A.50,0B.30,20C.20,30D.0,50501.20.9540,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,最大收入为40.5560.3 1.20.90.9z x y x y x y =⨯+⨯--=+,则z 在区间(30,20)处取最大值.二、基本不等式的简单应用:例2、某养殖厂需定期购买饲料,已知该厂每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管与其他费用为平均每千克每天0.03元,购买饲料每次支付运费300元.假定当天所买饲料当天用不需要保管与其他费用.(1)求该厂多少天购买一次饲料才能使平均每天支付的总费用最少?(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时其价格可享受八五折优惠(即为原价的85%),问该厂是否可以考虑利用此优惠条件?若考虑优惠条件,则应如何安排可使平均每天所支付的费用最少?(1)设该厂应隔*()x x N ∈天购买一次饲料,平均每天支付的总费用为y .由于饲料的保管与其他费用每天比前一天少2000.036⨯=元,故x 天饲料的保管与其他费用总共是:26(1)6(2)...633x x x x -+-++=-元所以21300(33300)200 1.83357417y x x x x x=-++⨯=++≥ 当且仅当3003,10x x x ==即时取等号 (2)若厂家利用此优惠条件,则至少25天购买一次饲料,设该厂利用此优惠条件,每隔*(25,)x x x N ≥∈天购买一次饲料,平均每天支付的总费用为z , 则:2*1300(33300)200 1.80.853303,(25,)z x x x x x N x x=-++⨯⨯=++≥∈ 由于23003z x'=-+,故当25x ≥时,0z '>,即函数z 在[25,)+∞为增函数. 故当25x =时,z 有最小值min 390417z =<故该厂可以接受此优惠条件变式训练:某厂家拟在2013年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用m 万元(0m ≥)满足31k x m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2013年该产品的利润y 万元表示为年促销费用m (万元)的函数;(2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?(1)当0m =时,1x =,故2k =;所以231x m =-+; 而每件产品的销售价格为8161.5x x +⨯元 因此81616[1.5](816)[(1)]29,(0)1x y x x m m m x m +=⨯-++=-+++≥+ (2)16[(1)]2921629211y m m =-+++≤-+=+,当且仅当16(1),31m m m =+=+即万元时取等号.【课后反思】。
高教版数学教案——不等式的应用

不等式的应用教学目标:1.使学生会列不等式解简单的实际问题。
2.培养学生利用数学知识解决实际问题的能力。
3.在教师引导下,学生进行自学,培养学生的自学能力和正确的学习习惯。
教学重点:利用均值定理求最值解决实际问题的类型题。
培养学生利用数学知识解决实际问题的能力。
教学难点:正确、合理地列不等式。
在教师引导下,学生自学情况的及时反馈。
教学过程:一、引入新课在许多问题中,需要设未知数,列不等式求解。
大家对列方程解应用题很熟悉,我们知道,列方程解应用题一般有“审、设、列、解、答”五个步骤,请同学具体说一下这五步的内容。
(学生回答、补充,教师强调应审题认真、设元合理、列式正确、解答准确、答案明确。
)列不等式求解应用题与列方程解应用题的思考方法,解题步骤相似,只是第三、四步改成列不等式和解不等式。
列不等式解应用题,需要的综合应用不等式等知识,我们先复习一下已学过的有关不等式知识。
1.均值定理(>0,>0),当且仅当=时,等号成立。
2.如果两个正数的和是定值,则两数的积有最大值,当且仅当两数相等时,两数的积取最大值。
如果两个正数的积是定值,则两数的和有最小值,当且仅当两数相等时,两数的和取最小值。
二、新课教学自学第79~81页,注意在读题之后,先回答如下问题再看解题过程。
例1: 1.条件中100 m的绳子做什么用?2.长与宽应满足什么条件?3.求谁的最大值?与长、宽的关系是什么?例2: 1.利润是怎样产生的?2.如果把条件改为“每月获得利润20 000元”,这道题怎么做?3.“至少”的含义是什么?4.不等式解应用题与列方程解应用题的异同点是什么?例3: 1.决定明年生产量的因素有哪些?反映在列不等式时怎样同时满足这些因素?2.找出条件中的关键性词语?它们的含义是什么?学生自学后,请学生回答以上问题。
并提出解题时用到了哪些不等式知识?最后就出现问题进行讲解、答疑?三、课堂练习:第64页习题2—3第1,4,5题。
基本不等式的教学方法

基本不等式的教学方法基本不等式是数学中重要的概念之一,它在解决实际问题、证明数学定理等方面具有广泛的应用。
为了有效地教授基本不等式,教师需要采用适合学生理解和掌握的方法。
本文将介绍几种有效的基本不等式的教学方法,并探讨它们的优缺点。
一、实际问题引入法将基本不等式与实际问题相结合,可以帮助学生更好地理解其概念和应用。
教师可以选择一些具有实际意义的问题,如经济学中的成本与收益问题、几何学中的面积与周长问题等,将这些问题转化为不等式的形式,然后引导学生进行思考和解决。
通过实际问题的引入,学生可以更加直观地理解基本不等式的意义和用途。
优点:能够激发学生的学习兴趣,提高他们对基本不等式的兴趣和积极性。
同时,通过解决实际问题,学生可以将数学知识与实际应用相结合,增强其数学思维的能力。
缺点:实际问题的引入需要耗费大量的教学时间,有可能导致基本不等式的概念和性质没有得到充分的讲解和理解。
二、图形表示法利用图形表示法来教授基本不等式,可以帮助学生形象地理解不等式的含义和关系。
教师可以使用数轴图或平面图,将不等式中的各种数值用点、线段或面积来表示,从而让学生对不等式的大小关系有直观的感受。
例如,给定一个简单的不等式"2x + 1 > 5",教师可以在数轴上绘制x=2和x=3的位置,然后让学生观察和比较不等式的符号、解集等。
优点:通过图形表示法,学生可以更加形象地理解不等式的意义和解集的范围,有助于提高他们的空间想象力和几何思维能力。
缺点:图形表示法需要较多的绘图和演示工作,以及相关的几何知识,对于教师的教学技能要求较高。
三、示例分析法通过分析一些具体的示例,可以帮助学生逐步掌握基本不等式的处理方法和技巧。
教师可以选择一些简单的不等式示例,如"x + 2 > 6"、"3x - 5 < 7"等,然后引导学生按照一定的步骤进行分析和解答。
教师可以预先给出解答的步骤和方法,然后引导学生进行类似的思考和应用。
基本(均值)不等式与其他知识相结合的9种方式(教师版)

基本(均值)不等式与其他知识相结合的9种方式基本(均值)不等式是解决函数、立体几何、三角函数、数列、向量、解三角形等知识领域重要的方法之一.本资料整理高一知识融合试题,试题偏难,仅供强基计划学生选用.一、不等式与三角函数1.已知α+β+γ=π,β为锐角,tan α=3tan β,则1tan γ+1tan α的最小值为()A.12B.43C.32 D.34解析:∵α+β+γ=π,∴tan γ=-tan (α+β)=-tan α+tan β1-tan αtan β=-4tan β1-3tan 2β,∴1tan γ+1tan α=3tan 2β-14tan β+13tan β=9tan 2β+112tan β=34tan β+19tan β≥34×23=12,当且仅当tan β=19tan β即tan β=13时取等号,所以1tan γ+1tan α的最小值为12.故选:A .二、不等式与数列2.阅读:已知a 、b ∈(0,+∞),a +b =1,求y =1a +2b的最小值.解法如下:y =1a +2b =(1a +2b )(a +b )=b a +2ab +3≥3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时取到等号,则y =1a +2b的最小值为3+2 2.应用上述解法,求解下列问题:(1)已知a ,b ,c ∈(0,+∞),a +b +c =1,求y =1a +1b+1c 的最小值;(2)已知x ∈(0,12),求函数y =1x +81-2x的最小值;(3)已知正数a 1、a 2、a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1,求证:S =a 21a 1+a 2+a 22a 2+a 3+a 23a 3+a 4+⋯+a 2na n +a 1≥12.解析:(1)∵a +b +c =1,∴y =1a +1b +1c =(a +b +c )(1a +1b +1c )=3+(b a +a b +c a +a c +c b+bc )≥3+2b a ⋅a b +2c a ⋅a c +2c b ⋅b c =9,当且仅当a =b =c =13时取等号.即y =1a +1b+1c 的最小值为9.(2)y =22x +81-2x =(22x +81-2x )(2x +1-2x )=10+2⋅1-2x 2x +8⋅2x1-2x,而x ∈(0,12),∴2⋅1-2x 2x +8⋅2x1-2x≥22(1-2x )2x ⋅8⋅2x 1-2x =8,当且仅当2(1-2x )2x =8⋅2x 1-2x ,即x =16∈(0,12)时取到等号,则y ≥18,∴函数y =1x +81-2x的最小值为18.(3)∵a 1+a 2+a 3+…+a n =1,∴2S =(a 12a 1+a 2+a 22a 2+a 3+a 32a 3+a 4+⋯+a n2a n +a 1)[(a 1+a 2)+(a 2+a 3)+…+(a n +a 1)]=(a 21+a 22+⋯+a 2n )+[a 21a 1+a 2(a 2+a 3)+a 22a 2+a 3(a 1+a 2)+⋯+a 2n a n +a 1(a 1+a 2)+a 21a 1+a 2(a 3+a 4)+⋯]≥(a 21+a 22+⋯+a 2n )+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当a 1=a 2=⋯=a n =1n 时取到等号,则S ≥12.三、不等式与立体几何3.已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AD ⊥平面ABC ,∠BAC =120°,AD =2,若球O 的表面积为20π,则三棱锥A -BCD 的体积的最大值为()A.33B.233C.3D.23【解析】设球O 的半径为R ,AB =x ,AC =y ,由4πR 2=20π,得R 2=5.如图:设三角形ABC 的外心为G ,连接OG ,GA ,OA ,可得OG =12AD =1,则AG =R 2-1=2.在ΔABC 中,由正弦定理可得:BCsin120°=2AG =4,即BC =23,由余弦定理可得,BC 2=12=x 2+y 2-2xy ×(-12)=x 2+y 2+xy ≥3xy ,∴xy ≤4.则三棱锥A -BCD 的体积的最大值为13×12×4×sin120°×2=233.故选:B .4.如图,在三棱锥S -ABC 中,SA ⊥面ABC ,AB ⊥BC ,E 、F 是SC 上两个三等分点,记二面角E -AB -F 的平面角为α,则tan α()A.有最大值43B.有最大值34C.有最小值43D.有最小值34【解析】将三棱锥放入长方体中,设AB =a ,BC =b ,AS =c ,如图所示:过E 作EN ⊥平面ABC 与N ,NM ⊥AB 与M ,连接ME ,则∠EMN 为二面角E -AB -C 的平面角,设为α1,则NE =13c ,MN =23b ,故tan α1=c2b .同理可得:设二面角F -AB -S 的平面角为α2,tan α2=b 2c.tan α=tan π2-α1-α2 =1-tan α1tan α2tan α1+tan α2=34c 2b+b2c ≤34,当c 2b=b 2c ,即b =c 时等号成立.故选:B .5.如图,已知四面体ABCD 为正四面体,AB =22,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为()A.1B.2C.2D.22【解析】把正四面体补为正方体,如图,根据题意,KL //BC ,LM //GH ,KL BC =AL AB ,LM AD =BLAB ,所以KL =AL ,LM =BL ,故KL +LM =AL +BL =22,S 截面=KL ⋅LM ≤KL +LM 2 2=2,当且仅当KL =LM 时成立,故选:C .四、不等式证明6.设x ,y ,z >0,a =4x +1y ,b =4y +1z ,c =4z +1x,则a ,b ,c 三个数()A.都小于4B.至少有一个不大于4C.都大于4D.至少有一个不小于4【解析】假设三个数4x +1y <4且4y +1z <4且4z +1x<4,相加得:1x +4x +1y +4y +1z+4z <12,由基本不等式得:1x +4x ≥4;1y +4y ≥4;1z+4z ≥4;相加得:1x +4x +1y +4y +1z+4z ≥12,与假设矛盾;所以假设不成立,三个数4x +1y 、4y +1z 、4z +1x 至少有一个不小于4.故选:D .7.已知a ,b ,c ∈R ,a 2+b 2+c 2=1.1 证明:-12≤ab +bc +ca ≤1.2 证明:a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 ≤23.【解析】1 证明:由a +b +c 2=a 2+b 2+c 2+2ab +2bc +2ca =1+2ab +2bc +2ca ≥0,得ab +bc +ca ≥-12.另一方面,a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,所以2a 2+2b 2+2c 2≥2ab +2bc +2ca ,即ab +bc +ca ≤1.所以-12≤ab +bc +ca ≤1.2 证明:a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 =a 21-a 2 +b 21-b 2 +c 21-c 2 =1-a 4+b 4+c 4 ,因为a 4+b 4+c 4=a 2+b 2+c 2 2-2a 2b 2-2b 2c 2-2c 2a 2≥1-a 4+b 4+b 4+c 4+c 4+a 4 ,即3a 4+b 4+c 4 ≥1,则a 4+b 4+c 4≥13,所以a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 ≤23.8.已知a ,b ,c 为正数,且满足a +b +c =1. 证明:(1)1a +1b+1c ≥9;(2)ac +bc +ab -abc ≤827.【解析】(1)a +b +c =1,故1a +1b +1c =a +b +c a +a +b +c b+a +b +cc =3+b a +a b +c a +a c +c b+b c ≥3+2+2+2=9,当a =b =c =13时等号成立.(2)易知1-a >0,1-b >0,1-c >0.ac +bc +ab -abc =1-a +b +c +ac +bc +ab -abc =1-a 1-b 1-c≤1-a +1-b +1-c 3 3=827.当a =b =c =13时等号成立.9.设实数x ,y 满足2x +y =1.1 若2y -1 -2x <3,求x 的取值范围;2 若x >0,y >0,求证:1x +2y -2xy ≥152.【解析】1 由2x +y =1,得y =1-2x ,所以不等式2y -1 -2x <3,即为4x -1 -2x <3,所以有1-4x +2x <3x <0 或0≤x ≤141-4x -2x <3 或x >144x -1-2x <3解得-1<x <0或 0≤x ≤14 或14<x <2,所x 的取值范围为x ∈-1,2 .2 ∵x >0,y >0,2x +y =1所以1x +2y =1x +2y 2x +y =4+y x +4xy≥4+4=8当且仅当y x =4x y ,即2x =y =12时取等号.又-2xy ≥-2x +y 2=-12,当且仅当2x =y =12时取等号,所以1x +2y -2xy ≥152,当且仅当2x =y =12时取等号.10.1在锐角ΔABC 中,证明:(1)tan A +tan B +tan C =tan A tan B tan C ;(2)tan A ⋅tan B ⋅tan C ≥3 3.证明:(1)∵tan C =-tan (A +B )=tan A +tan Btan A tan B -1∴tan A +tan B +tan C =tan A tan B tan C ,(2)解法1:∵y =tan x ,x ∈(0,π2)是凸函数,∴tan A tan B tan C ≥3 3.解法2:∵tan A tan B tan C ≤(tan A +tan B +tan C 3)3,∴tan A tan B tan C ≥33五、最值问题11.设x>0,y>0且x+y=4,则x2x+1+y2y+2的最小值是A.167B.73C.2310D.94【解析】∵x+y=4,∴(x+1)+(y+2)=7∴x2x+1+y2y+2=x+12-2x+1+1x+1+y+22-4y+2+4y+2=1+1x+1+4y+2=1+1x+1+4 y+2x+17+y+27=1+17+47+y+27(x+1)+4(x+1)7y+2≥127+2×27= 16712.已知实数a>0,b>1满足a+b=5,则2a+1b-1的最小值为()A.3+224 B.3+424 C.3+226 D.3+426【解析】因为a>0,b>1满足a+b=5,则2a+1b-1=(2a+1b-1)a+b-1×14=143+2b-1a+ab-1≥14(3+22)当且仅当2b-1a=ab-1时取等号,故选:A.13.设a>b>0,则ab+4b2+1b a-b的最小值是()A.2B.3C.4D.6【解析】因为a>b>0⇒a-b>0;所以ab+4b2+1b(a-b)=ab-b2+1b(a-b)+b2+4b2=b(a-b)+1b(a-b)+b2+4b2≥2b(a-b)×1b(a-b)+2b2×4b2=2+4=6.当且仅当b(a-b)=1b(a-b),b2=4b2时取等号,∴ab+4b2+1b(a-b)的最小值为6.故选:D.六、不等式与函数14.已知f x =2x-2+x+1.(1)求不等式f x <6的解集;(2)设m,n,p为正实数,且m+n+p=f2 ,求证:mn+np+pm≤3.【解析】(1)不等式2x-2+x+1<6等价于不等式组x<-1-3x+3<6或-1≤x≤2-x+5<6或x>23x-3<6,所以不等式2x-2+x+1<6的解集为-1,3;(2)证明:因为m+n+p=3,所以m+n+p2=m2+n2+p2+2mn+2mp+2np=9,因为m,n,p为正实数,所以由基本不等式m2+n2≥2mn(当且仅当m=n时等号成立),同理m2+p2≥2mp,p2+n2≥2pn,所以m2+n2+p2≥mn+mp+np,所以m+n+p2=m2+n2+p2+2mn+2mp+2np=9≥3mn+3mp+3np,所以mn+mp+np≤3.15.已知函数f x =2x -3 -x -m -1的定义域为R .(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数a ,b ,c 满足a 2+b 2+c 2=t 2,求1a 2+1+1b 2+2+1c 2+3的最小值.【解析】(1)∵函数f x =2x -3 -x -m -1的定义域为R .∴2x -3 -x -1≥m 对任意的x ∈R 恒成立,令g x =2x -3 -x -1,则g x =x -7,x ≥3 5-3x ,0<x <3 5-x ,x ≤0,结合g x 的图像易知g x 的最小值为-4,所以实数m 的取值范围-∞,-4 .(2)由(1)得t =-4,则a 2+b 2+c 2=16,所以a 2+1 +b 2+2 +c 2+3 =22,1a 2+1+1b 2+2+1c 2+3=1a 2+1+1b 2+2+1c 2+3a 2+1 +b 2+2 +c 2+3 22=3+b 2+2a 2+1+a 2+1b 2+2+c 2+3a 2+1+a 2+1c 3+3+c 2+3b 2+2+b 2+2c 2+322≥3+2b 2+2a 2+1×a 2+1b 2+2+2c 2+3a 2+1×a 2+1c 2+3+2c 2+3b 2+2×b 2+2c 2+322=922,当且仅当a 2+1=b 2+2=c 2+3=223,即a 2=193,b 2=163,c 2=133时等号成立,∴1a 2+1+1b 2+2+1c 2+3的最小值为922.七、不等式与向量16.若非零向量m ,n 满足|m -e |-m ⋅e =|n -e |-n ⋅e =1(e 为单位向量),且m ⊥n ,则|m -n|的最小值是()A.1B.2C.4D.8【解析】由非零向量m ,n 满足m ⊥n ,可设m =(a ,0),n=(0,b ),其中a ,b 均不为0.因为e 为单位向量,可设e =(cos θ,sin θ),因为|m -e |-m ⋅e=(a -cos θ)2+sin 2θ-a cos θ=1,所以a 2-2a cos θ+cos 2θ+sin 2θ=1+2a cos θ+a 2cos 2θ,即a sin 2θ=4cos θ①,同理,由|n -e |-n ⋅e=1可得b cos 2θ=4sin θ②,由①②,可得a 2+b 2=16cos 2θsin 4θ+16sin 2θcos 4θ=16cos 4θ+sin 2θcos 2θsin 4θ+ sin 4θ+sin 2θcos 2θcos 4θ=161tan 4θ+1tan 2θ+tan 4θ+tan 2θ ≥16×(2+2)=64当且仅当tan 2θ=1时,等号成立,所以当tan 2θ=1时,|m -n |min =8,故选:D .17.已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF =λAB +56AD ,则AF 的最小值为___________.【解析】由题可知,平行四边形ABCD 的图象如下:设DF =kDE ,∴AF =AD +DF =AD +kDE =AD+k DC +CE ,∵DC =AB ,CE =12DA,则AF =AD +kAB +12kDA ,所以AF =kAB +AD -12kAD =kAB +1-12k AD ,又∵AF =λAB +56AD ,则有:k =λ1-12k =56,解得:k =λ=13,即AF =13AB +56AD ,∵平行四边形ABCD 的面积为93,即∵AB ⋅AD sin 2π3=93,∴AB ⋅AD =18,∴AF 2=13AB +56AD2=19AB 2+59AB ⋅AD +2536AD 2,即:∴AF 2=19AB 2+59AB ⋅AD cos ∠BAD +2536AD2,∴AF 2=19AB 2+59×18×-12 +2536AD 2=19AB2+2536AD 2-5,即:AF2=19AB2+2536AD 2-5,∵19AB 2+2536AD 2≥219AB 2×2536AD 2=2×518×18=10,即19AB 2+2536AD 2≥10,所以19AB 2+2536AD2-5≥5,∴AF 2≥5,∴AF ≥5,当且仅当:19AB 2=2536AD2时,取等号,∴AF 的最小值为 5.18.平面向量a ,b ,c 满足|a |≤1,|b |≤1,|2c -(a +b )|≤|a -b |,则|c |的最大值为_______.【解析】由绝对值不等式的性质可知,已知中|2c -(a +b )|≤|a -b |,可得|2c |-|a +b |≤|a -b |,即|2c |≤|a+b |+|a -b |,将a ,b 的起点移到同一点,以a ,b 为边构造平行四边形,则a +b ,a -b 为平行四边形的两条对角线,在平行四边形ABCD 中,|AC |2=|AB +AD |2=|AB |2+|AD |2+2|AB |⋅|AD|cos ∠BAD ,由余弦定理可知|BD |2=|AB |2+|AD |2-2|AB |⋅|AD |cos ∠BAD ,则|AC |2+|BD |2=2|AB |2+2|AD |2,显然|AC |+|BD |若取最大值,则|AB |,|AD |应为最大1,即|AC |2+|BD |2=4⇒|AC |+|BD | 2-2|AC ||BD |=4⇒|AC |+|BD | 22-2=|AC ||BD |由基本不等式可知|AC |+|BD | 22-2=|AC ||BD |≤|AC |+|BD |24⇒|AC |+|BD | 2≤8⇒|AC |+|BD |≤22当且仅当|AC |=|BD |时取等号,所以当|a |=1,|b |=1且|a +b |=|a -b |时,|a +b |+|a -b|取得最大值22,则|2c |≤|a +b |+|a -b |≤22,即|c |≤2,所以|c |的最大值为2.故答案为:2八、不等式与解三角形19.在锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ΔABC 的面积为S ,若sin (A +C )=2Sb 2-c 2,则tan C +12tan (B -C )的最小值为()A.2B.2C.1D.22【解析】因为sin (A +C )=2S b 2-c 2,即sin B =2Sb 2-c 2,所以sin B =ac sin Bb 2-c 2,因为sin B ≠0,所以b 2=c 2+ac ,由余弦定理b 2=a 2+c 2-2ac cos B ,可得a -2c cos B =c ,再由正弦定理得sin A -2sin C cos B =sin C ,因为sin A -2sin C cos B =sin (B +C )-2sin C cos B =sin (B -C ),所以sin (B -C )=sin C ,所以B -C =C 或B -C +C =π,得B =2C 或B =π(舍去).因为ΔABC 是锐角三角形,所以0<C <π20<2C <π20<π-3C <π2,得π6<C <π4,即tan C ∈(33,1),所以tan C +12tan (B -C )=tan C +12tan C ≥2,当且仅当tan C =22,取等号.故选:A20.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =6,点O 为其外接圆的圆心.已知BO ·AC=15,则当角C 取到最大值时△ABC 的面积为()A.35B.25C.30D.56【解析】设AC 中点为D ,则BO ⋅AC =BD +DO ⋅AC =BD ⋅AC =12BC +BA⋅BC -BA=12BC 2-12BA 2 ,∴12a 2-12c 2=15,即c =6,由c <a 知角C 为锐角,故cos C =a 2+b 2-c 22ab =30+b 212b =112b +30b≥112×2b ⋅30b =306,当且仅当b =30b,即b =30时cos C 最小,又y =cos x 在0,π2 递减,故C 最大.此时,恰有a 2=b 2+c 2,即△ABC 为直角三角形,S △ABC =12bc =35,故选A .21.在△ABC 中,已知AB ·AC =9,sin B =cos A sin C ,S △ABC =6,P 为线段AB 上的点,且CP =x CA CA +y CBCB ,则xy 的最大值为________.【解析】由sin B =cos A sin C 得b =c b 2+c 2-a 22bc⇒a 2+b 2=c 2⇒S ΔABC =12ab =6所以由AB ·AC =9得AC 2=9,∴b =3,a =4又P 为线段AB 上的点,且CP =x CA CA +y CBCB ,所以x b+y a =1,∴x3+y 4=1,∴1≥2x 3⋅y 4∴xy ≤3,当且仅当x =32,y =2时,等号成立即xy 的最大值为3.22.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =35c ,则tan A -B 的最大值为A.32B.34C.32D.3【解析】∵a cos B -b cos A =35c ∴由正弦定理,得sin A cos B -sin B cos A =35sin C ,∵C =π-(A +B )⇒sin C =sin (A +B ),,∴sin A cos B -sin B cos A =35(sin A cos B +cos A sin B ),整理,得sin A cos B =4sin B cos A ,同除以cos A cos B ,得tan A =4tan B ,由此可得tan (A -B )=tan A -tan B 1+tan A tan B =3tan B 1+4tan 2B=31tan B+4tan B ,∵A 、B 是三角形内角,且tan A 与tan B 同号,∴A 、B 都是锐角,即tan A >0,tan B >0,∵1tan B+4tan B ≥21tan B ⋅4tan B =4tan (A -B )=31tan B+4tan B ≤34,当且仅当1tan B =4tan B ,即tan B =12时,tan (A -B )的最大值为34.故选B .23.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为()A.55B.255C.355D.53【解析】因为a 2+b 2+2c 2=8,所以a 2+b 2=8-2c 2,由余弦定理得cos C =a 2+b 2-c 22ab =8-3c 22ab,即2ab cos C =8-3c 2①由正弦定理得S =12ab sin C ,即2ab sin C =4S ②由①,②平方相加得4ab 2=8-3c 2 2+4S 2≤a 2+b 2 2=8-2c 2 2,所以4S 2≤8-2c 2 2-8-3c 2 2=16-5c 2 c 2≤1516-5c 2+5c 222=645,即S 2≤45,所以S ≤255,当且仅当a 2=b 2且16-5c 2=5c 2即a 2=b 2=125,c 2=85时,取等号.故选:B24.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 交于点M ,N ,且AM =xAB ,AN =yAC,x ,y >0 ,则3x +y 的最小值是()A.83B.72C.52D.43+233【解析】因为M ,G ,N 三点共线,故AG =tAM +1-t AN ,因为AM =xAB ,AN =yAC ,所以AG =txAB+1-tyAC ,又G 为重心,故AG =13AB +13AC ,而AB ,AC 不共线,所以tx =13,1-t y =13,也即是1x +1y=3.3x +y =133x +y 1x +1y =134+y x +3x y,由基本不等式可以得到:y x +3x y ≥23,当且仅当x =3+39,y =33+13等号成立,故3x +y 的最小值为43+233,故选D .25.已知O 是△ABC 的外心,∠C =45°,OC =2mOA +nOB ,(m ,n ∈R ),则1m 2+4n2的最小值为____.【解析】OC =2mOA +nOB ∴OC 2=2mOA +nOB 2=4m 2OA 2+n 2OB 2+4mnOA ⋅OB∠C =45°∴∠AOB =90°∴OA ⋅OB=0故4m 2+n 2=11m 2+4n 2=1m 2+4n 2 4m 2+n 2=4+n 2m 2+16m 2n 2+4≥216+8=16当n 2m 2=16m 2n 2即n 2=12,m 2=18时等号成立,故答案为:1626.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2=4bc sin A +π6,则tan A +tan B +tan C 的最小值是______.【解析】由余弦定理,得b 2+c 2=a 2+2bc cos A ,则由b 2+c 2=4bc sin A +π6 ,得a 2+2bc cos A =4bc sin A +π6=2bc (3sin A +cos A ),所以a 2=23bc sin A ,由正弦定理,得sin 2A =23sin B ⋅sin C ⋅sin A ,所以sin A =23sin B sin C ,所以sin (B +C )=23sin B sin C ,sin B cos C +cos B sin C =23sin B sin C ,tan B +tan C =23tan B tan C .因为tan A =-tan (B +C )=tan B +tan Ctan B tan C -1,所以tan A +tan B +tan C =tan A ⋅tan B ⋅tan C ,则tan A +tan B +tan C =tan B +tan C tan B tan C -1⋅tan B ⋅tan C =23tan B tan Ctan B tan C -1⋅tan B ⋅tan C .令tan B ⋅tan C -1=m ,而tan B ⋅tan C -1=tan B tan A +tan Ctan A,∴m >0则tan B ⋅tan C =m +1,tan A +tan B +tan C =23(m +1)2m =23m 2+2m +1 m =23m +1m+2 ≥23(2m ⋅1m +2)=83,当且仅当m =1时,等号成立,故tan A +tan B +tan C 的最小值为83.27.已知ΔABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a cos C -c cos A =35b ,则tan (A -C )的最大值为______.【解析】因为a cos C -c cos A =35b ,由正弦定理得sin A cos C -sin C cos A =35sin B ,又B =π-(A +C ),所以sin A cos C -sin C cos A =35sin [π-(A +C )],即sin A cos C -sin C cos A =35sin (A +C ),所以5sin A cos C -5sin C cos A =3sin A cos C +3cos A sin C ,所以2sin A cos C =8cos A sin C ,当cos C ≤0或cos A ≤0时,等式不成立,所以A ,C ∈(0,π2),所以tan A =4tan C ,所以tan (A -C )=tan A -tan C 1+tan A tan C =3tan C 1+4tan 2C =31tan C+4tan C 又tan C >0,所以1tan C +4tan C ≥21tan C ⋅4tan C =4,当且仅当1tan C =4tan C ,即tan C =12时,等号成立,所以tan (A -C )=31tan C +4tan C ≤34,所以tan (A -C )的最大值为34.28.已知ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos A+b +2c cos B =0,则sin2B ⋅tan 2C 的取值范围是__________.【解析】a cos A+b +2c cos B =0,即a cos B +b cos A +2c cos A =0,即sin A cos B +sin B cos A +2sin C cos A =0,sin C 1+2cos A =0,sin C ≠0,故1+2cos A =0,A =3π4,故B +C =π4.sin2B ⋅tan 2C =cos2C ⋅sin 2C cos 2C =2cos 2C -1 1-cos 2C cos 2C =3-2cos 2C +1cos 2C,C ∈0,π4 ,故t =cos 2C ∈12,1 ,故y =3-2t +1t,根据双勾函数性质知:函数在12,22上单调递增,在22,1 上单调递减.故y max =3-22,当t =1时,y =0,当t =12时,y =0,故sin2B ⋅tan 2C ∈0,3-22 .故答案为:0,3-22 .九、不等式与恒成立问题29.正数a,b满足1a+9b=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)【解析】∵a>0,b>0,1a+9b=1,∴a+b=(a+b)1a+9b=10+b a+9a b≥10+2b a⋅9a b=16当且仅当3a=b,即a=4,b=12时,“=”成立,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则-x2+4x+18-m≤16,即-x2+4x+2≤m对任意实数x恒成立,∵-x2+4x+2=-(x-2)2+6≤6∴m≥6实数m的取值范围是[6,+∞)30.数列a n中,a1=12,a n+1=na nn+1na n+1n∈N*,若不等式4n2+1n+-1nλa n≥0恒成立,则实数λ的取值范围为__________.【解析】由数列 a n满足a1=12,a n+1=na n(n+1)(na n+1)(n∈N x),两边取倒数可得:1(n+1)a n+1-1nan=1,∴数列1nan是等差数列, 公差为1, 首项为2∴1nan =2+(n-1)=n+1,∴a n=1n(n+1)由4n2+1n+(-1)nλa n≥0恒成立,得(-1)n⋅1n(n+1)λ≥-4n2-1n=-4-nn2,当n为偶数时,λ≥-(n+1)(n+4)n=-(n+4n+5), 则λ≥-9,当n为奇数时,λ≤n+4n+5,则λ≤283,∴实数λ的取值范围为-9,283。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、知识聚焦:
1.列不等式解应用题的一般步骤:
(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式;
(5)求出不等式的解;(6)在不等式的解中 找出符合题意的值;(7)写出答案.
二、经典例题:
例1、x 取什么值时,代数式2x -5的值(1)大于0? (2)不大于0?
例2、爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外的安全地区,导火索至少需要多长?
例3、某数的一半大于它的相反数的3
1加1,求这个数的范围。
例4、当K 是什么自然数时,方程
6)(533
2+-=-k x k 的解是负数。
答案:1.(1)25>
x ;(2)25≤x ; 2. 16cm ; 3. 56>x ; 4. 0或1或2; 三、基础演练:
1.x 为何值时:(1)28+-x 是非负数;(2)2)2(3+x 的值不是正数;(3)2x 与x 的差不大于4;(4)82
5-x 的值小于7+x 的值;(5)411--x 的值不小于8
)1(3+x 的值。
2.乘某城市的一种出租汽车起步价都是10元(即行驶路程在5km 以内都需付10元),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计)。
现在某人乘这种出租汽车从甲地到乙地,支付车费17.2元,从甲地到乙地的路程大约是多少?
3.求大于75的两位整数,使它的个位数字比十位数字大1.
4.k 是什么正整数时,方程2x +k = 18- 8(x +k )的解是非负数.
答案:1. (1)41
≤x ;(2)2-≤x ;(3)8-≥x ;(4)10<x ;(5)57
≤x .
2. 1110≤s ;
3. 78或89;
4. 1或2.
四、能力提升:
1.x 为何值时:(1)-3x + 2的值是正数; (2)x 的相反数大于x 的2倍;
(3)2x
与x 的相反数的和不大于5.
2.求5231x
-<-的非负整数解。
3.m 是什么自然数时,关于x 的方程18-8(m +x )=2x + m 的解不小于零?
4.某次数学测验,共有16道选择题,评分办法是:答对一道给6分,答错一道倒扣2分,不答则不给分,某学生有一道题未答,那么这位学生至少答对多少道题,成绩才能在60分以上?
5.超级市场内,一罐柠檬茶和一瓶1公斤橙汁的价钱分别是5元和12元.•如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,问她最多可以买多少罐柠檬茶?
答案:1. (1)3
2<x ;(2)0<x ;(3)10-≥x ; 2. 0,1,2, 3;3. 0,1,2; 4. 12; 5. 她最多可以买5罐柠檬茶.
五、个性天地:
(LX00015)夏令营中,营员们要拍照合影留念。
若一张彩色底片需0.57元,冲印一张需0.35元,每人预订一张,出钱不超过0.45元,问参加合影的同学至少应有几人?
(FYN00015)已知,|2a -24|+(3a - bk )2=0,那么k 取什么值时,b 为负数.
(ZZY00015)一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?
答案:(LX00015)6;(FYN00015)0<k ;(ZZY00015)30;。