Quantifying the BGP routes diversity inside a tier-1
一种基于QoS保障的车联网路由管理策略

一种基于QoS保障的车联网路由管理策略发布时间:2022-07-13T08:13:07.631Z 来源:《福光技术》2022年15期作者:顾传力[导读] 路由管理在网络设备中的地位非常重要,随着网络特征的变化,路由配置难度急剧增加。
上海华为技术有限公司 201206摘要:路由管理在网络设备中的地位非常重要,随着网络特征的变化,路由配置难度急剧增加。
同时大量新业务类型的出现,数据量剧增,对业务QoS要求越来越高,承载转发各种业务数据的重任的路由管理,寻找最优路径的重要性越发体现出来。
车辆网错综复杂的网络节点位置管理,具有实时性变化特征,给寻找具有QoS要求的路由管理带来了很高的难度。
为此设计路径节点的动态权的QoS路由策略,达到QoS路由性能的目的。
本文提出一种基于QoS保障的车辆网路由管理动态权策略,根据实时网络状态数据,采用分径多流策略路由,保证了不同业务的服务质量,完善了网络路由管理的性能需求。
关键词:车联网路由管理服务质量动态权1 引言随着各种业务形态的不断出现,使得网络规模和流量持续爆发性增长,网络资源有限,扩容提速已经快达到极限,但是当前资源利用率却极不均衡。
此外不同场景的业务类型软件不仅对带宽提出要求,同时也会强烈要求服务质量(Quality-of-Service Based,QoS),如网络时延、丢包率和抖动等,故当前非常迫切地寻找一种能系统性地解决此问题的,满足实时性、高可靠性和流量自适应的路由管理机制。
传统网络形态的路由管理大部分是尽力而为(Best-effort)路由模式[1],其大部分是无连接模式,其关注点是业务的分布,高的吞吐率和ACK响应,并且以此来权衡评价路由优选;也有部分路由管理基于服务质量QoS的路由模式[2] [3],是基于数据包的服务质量来提供路由选择的路径转发管理过程,这种路由形态需要面向连接,并且要资源预留,才能满足数据包的服务质量要求。
需要服务质量保障的路由管理策略,一般都有相当的网络代价[4],如计算量的cpu损失和协议的cpu损失等。
路由协议中等难度试题(带答案)

从Static, RIP, OSPF, 和IS-IS几种协议学到了151.10.0.0/16路由,路由器将优选哪种协议?(A)A. StaticB. RIPC. OSPFD. IS-IS以下不会在路由表里出现的是。
(D)A、下一跳地址B、网络地址C、度量值D、MAC地址为了满足子网寻径的需要,路由表中应包含的元素有(D)。
A、源地址、子网掩码、目的网络地址B、源地址、目的网络地址、下一跳地址C、源地址、子网掩码、目的网络地址D、目的网络地址、子网掩码、下一跳地址以下论述中最能够说明RIPv1是一种有类别(classful)路由选择协议的是(A)。
A、RIPv1不能在路由选择刷新报文中携带子网掩码(subnet mask)信息B、RIPv1衡量路由优劣的度量值是跳数的多少C、RIPv1协议规定运行该协议的路由器每隔30秒向所有直接相连的邻居广播发送一次路由表刷新报文D、RIPv1的路由信息报文是UDP报文RIPv2 的更新被送到一个目的地址___C__.A. 224.0.0.5B. 224.0.0.6C. 224.0.0.9D. 224.0.0.10RIP 的更新将被送走,使用___D____.A. TCP port 250B. TCP port 520C. UDP port 250D. UDP port 520路由器A路由表中有3条路由信息如下:(1)10.1.1.0/24 (110/1000) through ospf;(2)10.1.0.0/16 (120/800)through ripv2;(3)10.1.0.0/16 (1/0)through static;选择哪条路径到10.1.1.1 ? (C)A:通过ospf,因最长匹配原则B:通过ripv2,因AD管理距离最大C:通过static,因cost值最小D:负载均衡,3条路径都走以下协议属于路由协议的是(A、B、C、G )A. RIPB. IS-ISC. OSPFD. PPPE. IPF. IPXG. BGP在rip中metric等于___C__为不可达A、8B、10C、15D、16IP数据报文在网络层选路时,是基于何种原则?(D )A.最长匹配B.最短匹配C.模糊匹配D.路由表序列匹配支持可变长子网掩码的路由协议有A. RIP v1B. RIP v2C. OSPFD. IS-ISRIP协议的度量值最大值为多少?(15)????A.14B.15C.16D.20下面哪一项正确描述了路由协议(C )A. 允许数据包在主机间传送的一种协议B. 定义数据包中域的格式和用法的一种方式C. 通过执行一个算法来完成路由选择的一种协议D. 指定MAC地址和IP地址捆绑的方式和时间的一种协议IGP的作用范围是(C)A. 区域内B. 局域网内C. 自治系统内D. 自然子网范围内RIPv2的响应消息缺省是如何进行广播的?(B )A. UnicastB. MulticastC. BroadcastD. Anycast在RIP协议中,计算metric值的参数是(D )A. MTUB. 时延C. 带宽D. 路由跳数OSPF解决路由环问题的方法有?( C )A. 矢量算法B. 路由保持法C. 最短生成树算法D. 定义路由权的最大值IGP 包括如下哪些协议A. RIPB. BGPC. IS-ISD. OSPF关于RIP V1和RIP V2,下列说法哪些正确?( B、C )A. RIP V1报文支持子网掩码B. RIP V2报文支持子网掩码C. RIP V2缺省使用路由聚合功能D. RIP V1只支持报文的简单口令认证,而RIP V2支持MD5认证下面哪些协议是可路由协议(routed protocol)? (A、B)A. IPB. IPXC. RIPD. NETBEUI什么时候RIP路由器发送一个请求信息? (C)A. 当路由进程终结时B. 当路由进程活跃时C. 在更新计时器结束时D. 在Hold-Down计时器结束时什么RIP功能将加速网络的收敛时间? (A )A. Triggered updatesB. Hold-downC. Split horizonD. Count to infinity哪个时间将开始,当本地路由器丢掉了4个OSPF hello更新信息?A. UpdateB. Hold-DownC. TimeoutD. Garbage Collection哪个RIPv2的增强使用了更新信息中的子网延码? (D )A. AuthenticationB. Multicast updatesC. Route tagD. Variable-length subnet masks距离矢量路由协议使用水平分割(split horizon)技术的目的是什么? (A)A. 避免在毗邻路由器之间产生路由环路B. 确保路由更新数据报文沿着接收路线方向发送C. 与保持间隔(holddown)机制协同工作,为保持间隔的计算提供更靠性D. 代替路由中毒(poison reverse)算法距离矢量协议包括哪个协议(A)A. RIPB. LDPC. IS-ISD. OSPF下列关于链路状态算法的说法正确的是:(B、C )A. 链路状态是对路由的描述B. 链路状态是对网络拓扑结构的描述C. 链路状态算法本身不会产生自环路由D. OSPF和RIP都使用链路状态算法关于矢量距离算法以下那些说法是错误的A. 矢量距离算法不会产生路由环路问题B. 矢量距离算法是靠传递路由信息来实现的C. 路由信息的矢量表示法是(目标网络,metric)D. 使用矢量距离算法的协议只从自己的邻居获得信息哪个距离矢量的概念保持不广播路由到下一跳邻居?A. Poisoned reverseB. Split horizonC. Count to infinityD. Hold-down以下关于距离矢量路由协议描述中错误的是(A)A、简单,易管理B、收敛速度快C、报文量大D、为避免路由环做特殊处理在距离矢量路由协议中,老化机制作用于()A、直接相邻的路由器的路由信息B、所有路由器的路由信息C、优先级低的路由器的路由信息D、优先级高的路由器的路由信息以下对于缺省路由描述正确的是(B、C)A. 缺省路由是优先被使用的路由B. 缺省路由是最后一条被使用的路由C. 缺省路由是一种特殊的静态路由D. 缺省路由是一种特殊的动态路由静态路由的优点包括(A 、C、D)A. 管理简单B. 自动更新路由C. 提高网络安全性D. 节省带宽E. 收敛速度快什么是默认路由?(D )A. 一种静态类型的路由B. 所有非路由数据包的目的地C. 最后求助的网关D. 所有上面的选项E. 没有一项描述是正确的什么路由缺省会送给IBGP邻居?()A. 在路由表中的所有激活路由B. 所有激活BGP路由C. 所有通过IBGP邻居学到的激活BGP路由D. 所有通过EBGP邻居学到的激活BGP路由什么时候应用缺省路由策略?A. 在评估每个策略期间During the evaluation of each applied policyB. 在显式引用时C. 在每个策略链开始时D. 在每个策略链结束时如果一个内部网络对外的出口只有一个,那么最好配置(A )A. 缺省路由B. 主机路由C. 动态路由OSPF协议中DR的作用范围是()A、整个运行OSPF的网络;B、一个area;C、一个网段;D、一台路由器;OSPF中不能直接计算出路由的LSA是:()A、Type-2 LSAB、Type-3 LSAC、Type-5 LSAD、Type-7 LSA哪个LSA类型代表AS外部链路广播?A. Type 1 LSAB. Type 2 LSAC. Type 3 or Type 4 LSAD. Type 5 LSA下面哪个路由器广播类型7的LSA?A. ABRB. ASBRC. DRD. BDROSPF路由器如何确认它的邻居已经接收了一条link-state update?A. 依赖底层的TCP 协议去回应收到.B. 接收带有incremented sequence number的link-state updateC. 接收带有相同sequence number it 的link-state updateD. 接收link-state 回应包,包扩其发送的LSA的头信息.在邻居信息中,哪个OSPF包用来汇总link-state database ?A. Link-state advertisementB. Database DescriptionC. Link-state requestD. Link-state update关于汇总链路广播(SLA)的哪个说法是正确的?(选出所有可能的选项)A. 类型3的LSA是汇总链路广播B. Totally stubby areas不接收汇总链路广播C. 类型4的LSAs是汇总链路广播D. Stub areas不接收汇总链路广播如果OSPF链路故障, 那种包广播网络的变化?A. Link-state advertisementB. Database DescriptionC. Link-state requestD. Link-state update下述那个不是OSPF网络中实施areas的原因?A. To scale the size of the networkB. To reduce the number of DRsC. To minimize processor utilizationD. To minimize database size在not-so-stubby area 中允许哪类LSA?A. NSSA externalB. SummaryC. AS externalD. Router下面那个路由器作为外部网络的网关?A. ABRB. ASBRC. DRD. BDR哪个路由器将转变Type 7 LSAs 到Type 5 LSAs?A. ABRB. ASBRC. DRD. BDR如果路由器有1个interface在骨干4个接口在非骨干域, 这个路由器是什么类型?A. ABRB. ASBRC. DRD. BDR路由器在接收到带不知道的邻居列表的hello packet 后将变为什么状态?A. InitB. StartC. DownD. 2-Way自治系统边缘路由器的定义是什么(ASBR)?A. 任何OSPF路由器连接到外部路由进程B. 任何OSPF路由器连接到内部路由进程C. 任何OSPF路由器连接到多个OSPF areasD. 任何OSPF路由器连接到单个OSPF areas4个OSPF路由器在同一时间上线. 基于显示的参数, 那个路由器会被选为DR?A. Priority = 50, router ID = 10.0.1.10B. Priority = 50, router ID = 10.0.100.100C. Priority = 25, router ID = 10.0.1.100D. Priority = 100, router ID = 1.0.1.10假设目前的DR 优先级为100. 何时它将会失去DR 响应的控制?A. 当有更高优先级的路由器进入网络B. 当有更高router ID的路由器进入网络C. 当有更高接口地址的路由器进入网络D. 当它停止发送hello packets哪个路由器产生Type 2 LSA?A. DRB. BDRC. ABRD. ASBR在broadcast网络中,哪个路由器作为备份节点?A. DRB. BDRC. ABRD. ASBR下面哪个使用了路由重注入技术?A. Stub areaB. Totally stubby areaC. ABRD. NSSA下面哪个术语代表一个路由器连接到了多个OSPF areas?A. ABRB. ASBRC. Type 2 LSAD. Stub router与普通的OSPF area相比,stub area有什么不同?A. 它不接收汇总的链路宣告B. 它不接收类型5的LSAs.C. 它使用了路由重注入D. 它是一个思考路由器特有的概念以下的哪个是所有的OSPF网络必须有的?A. 路由注入配置B. Area 0C. 一个制定的控制器D. 手动指定的接口cost当用一个Network summary LSA来表示一个非骨干Area的Router LSA的时候,会使用什么样的Metric?A. 使用router LSA的metric.B. 始终设置为0.C. 始终设置为最大值:16,777,215.D. ABR上该路由的metric值哪个组播地址是与All_OSPF_Routers相关联?A. 224.0.0.4B. 224.0.0.5C. 224.0.0.6D. 224.0.0.7下面的哪一个是OSPF接口metric的范围?A. 1到255B. 1到2046C. 1到63535D. 1到65535哪种LSA可以被ABR上使用普通的area-range summarize所聚合?A. Type 1 (Router LSA)B. Type 2 (Network LSA)C. Type 3 (Network Summary LSA)D. Type 4 (ASBR Summary LSA)E. Type 5 (AS-External LSA)F. Type 7 (NSSA External LSA)OSPF中,Attempt Neighbour 状态存在那种端口类型下?A. BroadcastB. Point-to-PointC. Point-to-MultipointD. NBMA在同一区域内(区域A),下列说法正确的是(A、B、C)A、每台路由器生成的LSA都是相同的B、每台路由器的区域A的LSDB都是相同的C、每台路由器根据该LSDB计算出的最短路径树都是相同的D、每台路由器根据该最短路径树计算出的路由都是相同的下列关于OSPF协议的说法正确的是(A、B、C、D)A、OSPF支持基于接口的报文验证B、OSPF支持到同一目的地址的多条等值路由C、OSPF是一个基于链路状态算法的边界网关路由协议D、OSPF发现的路由可以根据不同的类型而有不同的优先级在OSPF同一区域(区域A)内,下列说法正确的是_____A. 每台路由器生成的LSA都是相同的B. 每台路由器根据该最短路径树计算出的路由都是相同的C. 每台路由器根据该LSDB计算出的最短路径树都是相同的D. 每台路由器的区域A的LSDB(链路状态数据库)都是相同的在一个运行OSPF的自治系统之内:(A、C、D )A. 骨干区域自身也必须是连通的B. 非骨干区域自身也必须是连通的C. 必须存在一个骨干区域( 区域号为0 )D. 非骨干区域与骨干区域必须直接相连或逻辑上相连OSPF协议中的Hello报文的作用是:A.发现并维持邻居关系B.描述本地LSDB的情况C.向对端请求本端没有的LSA,或对端主动更新的LSAD.选举DR、BDRE.向对方更新LSAF.周期性地进行发送,监控链路状态OSPF协议是一种链路状态(Link-State)路由协议,以下哪些属性是属于链路状态路由协议的特性。
BGP的原理和实现

Open报文
Open报文是由报文头加如下结构构成的。
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
• BGP 的邻居列表(List of BGP neighbors)。
– BGP转发数据表或拓扑数据库(BGP forwarding table/database):
• 从每一个邻居学习所有网络的列表
(List of all networks learned from each neighbor)。
• 能包括多条路径到目标网络 (Can contain multiple pathways to destination networks )。 • 数据库中包括每一条路径的BGP属性
(Database contains BGP attributes for each pathway)
– IP路由表(IP routing table):
Unfeasible Routes Length
(不可达路由长度)
Withdrawn Routes
(撤销的路由) (路径属性) (网络层可达性信息)
Path Attribute Length
(路径属性总长度)
Path Attributes
Network Layer Reachability Information
M arker (16 byte )
Length (2 byte) Type ( 1 byte )
BGP水平分割规则

实验拓扑:实验说明:默认情况下,路由器自己学习到的IBGP路由绝不会传给其他IBGP邻居,目的是为了确保环路不在AS内产生。
BGP的水平分割是基于邻居关系的。
在这个实验中,只要验证R2和R3无法形成邻居关系就可以了。
水平分割的解决办法是让网络物理全互联或者逻辑全互联。
路由表输出:R1#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set20.0.0.0/24 is subnetted, 1 subnetsB 20.0.0.0 [200/0] via 192.168.1.2, 00:07:0410.0.0.0/24 is subnetted, 1 subnetsC 10.0.0.0 is directly connected, Loopback0C 192.168.1.0/24 is directly connected, Serial0/0C 192.168.2.0/24 is directly connected, Serial0/130.0.0.0/24 is subnetted, 1 subnetsB 30.0.0.0 [200/0] via 192.168.2.2, 00:06:18R2#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set20.0.0.0/24 is subnetted, 1 subnetsC 20.0.0.0 is directly connected, Loopback010.0.0.0/24 is subnetted, 1 subnetsB 10.0.0.0 [200/0] via 192.168.1.1, 00:07:12C 192.168.1.0/24 is directly connected, Serial0/0R3#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set10.0.0.0/24 is subnetted, 1 subnetsB 10.0.0.0 [200/0] via 192.168.2.1, 00:07:16C 192.168.2.0/24 is directly connected, Serial0/130.0.0.0/24 is subnetted, 1 subnetsC 30.0.0.0 is directly connected, Loopback0BGP表输出:R1#show ip bgpBGP table version is 4, local router ID is 10.0.0.1Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,r RIB-failure, S StaleOrigin codes: i - IGP, e - EGP, ? - incompleteNetwork Next Hop Metric LocPrf Weight Path *> 10.0.0.0/24 0.0.0.0 0 32768 i *>i20.0.0.0/24 192.168.1.2 0 100 0 i *>i30.0.0.0/24 192.168.2.2 0 100 0 iR2#show ip bgpBGP table version is 3, local router ID is 20.0.0.1Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,r RIB-failure, S StaleOrigin codes: i - IGP, e - EGP, ? - incompleteNetwork Next Hop Metric LocPrf Weight Path*>i10.0.0.0/24 192.168.1.1 0 100 0 i*> 20.0.0.0/24 0.0.0.0 0 32768 iR3#show ip bgpBGP table version is 3, local router ID is 30.0.0.1Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,r RIB-failure, S StaleOrigin codes: i - IGP, e - EGP, ? - incompleteNetwork Next Hop Metric LocPrf Weight Path*>i10.0.0.0/24 192.168.2.1 0 100 0 i*> 30.0.0.0/24 0.0.0.0 0 32768 i实验验证:从路由表中可以看到R1的路由表中有它通过IBGP学到的R2的路由条目,但它并没有将这条路由传递给R3,也没有将从R3学到的路由传递给R2。
量化与剪枝蒸馏

量化与剪枝蒸馏
量化与剪枝蒸馏是将深度神经网络中的模型进行优化的技术方法。
量化是将神经网络中的浮点数参数转换为低精度的整数或定点数参数的过程,可以大大减少模型存储空间和计算量,从而提高模型的运行效率。
剪枝是通过删除神经网络中的冗余连接和权重来减少模型的复杂度,从而减小模型的存储空间和计算量。
蒸馏是通过训练一个更小的模型来学习原始模型中的知识,从而在保持模型准确性的同时减小模型的存储空间和计算量。
结合量化、剪枝和蒸馏技术可以进一步优化神经网络模型,降低模型的存储空间和计算量,提高模型的运行效率,并且可以在较小的设备上使用更为高效的模型。
物流专业术语

物流专业术语范围本标准确定了物流活动中的基本概念术语、物流作业术语、物流技术装备与设施术语、物流管理术语及其定义.本标准适用于物流及相关领域的信息处理和信息交换,亦适用于相关的法规、文件;引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文;本标准出版时,所示版本均为有效;所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性;GB/T 1992--1985 集装箱名词术语neq ISO 830:1981GB/T 4122;1--1996 包装术语基础CB/T 17271--1998 集装箱运输术语中文索引AABC分类管理....................................6.9安全库存.......................................4.16B班轮运输.......................................5.34搬运...........................................4.22包装...........................................4.25保管...........................................4.12保税仓库.......................................5.5报关...........................................5.40报关行.........................................5.41C仓库...........................................5.1仓库布局.......................................6.4.仓库管理.......................................6.3叉车...........................................5.19储存...........................................4.11船务代理.......................................5.36D大陆桥运输.....................................5.33单元装卸.......................................4.24第三元物流.....................................3.25电子订货系统...................................6.10电子数据交换...................................3.31定量订货方式...................................6.7定牌包装.......................................4.27定期订货方式...................................6.8定制物流.......................................3.26堆码...........................................4.21F发货区.........................................5.14废弃物物流.....................................3.19分拣...........................................4.37G公路集装箱中转站...............................5.28 供应链.........................................3.29供应链管理.....................................6.21供应商库存.....................................6.26供应物流.......................................3.15共同配送.......................................4.35国际多式联运...................................5.32国际货物运输保险...............................5.39 国际货运代理...................................5.37国际铁路联运...................................5.31国际物流.......................................3.24H海关监管货物...................................5.7换算箱.........................................5.24回收物流.......................................3.18货场...........................................5.16货垛...........................................4.20货架...........................................5.17J集货...........................................4.39集装化.........................................4.31集装箱.........................................5.23集装箱货运站...................................5.29.集装箱码头.....................................5.30集装箱运输.....................................4.7集装运输.......................................4.6计算局付诸订货系统.............................6.25 监管仓库.......................................5.6拣选...........................................4.38检验...........................................4.43进出口商品检验.................................5.42 经常库存.......................................4.15经济订货批量...................................6.6K控湿储存区.....................................5.11.库存...........................................4.14库存控制.......................................6.5库存周期.......................................4.17.库房...........................................5.8快速反应.......................................6.22L冷藏区.........................................5.9冷冻区.........................................5.10冷链...........................................4.42理货...........................................5.38立体仓库.......................................5.3联合运输.......................................4.2连续库存补充计划...............................6.24 料棚...........................................5.15零库存技术.....................................6.13.流通加工.......................................4.41绿色物流.......................................3.20M门到门.........................................4.8P配送...........................................4.34配送需要计划...................................6.17 配送中心.......................................4.36配送资源计划...................................6.18 拼箱货.........................................4.10Q企业物流.......................................3.21企业资源计划...................................6.20 前置期或提前期.............................4.18全集装箱船.....................................5.26S散装化.........................................5.32社会物流.......................................3.22生产物流.......................................3.16收货区.........................................5.13输送区.........................................5.20甩挂运输.......................................4.5T特种货物集装箱.................................5.25铁路集装箱.....................................5.27. 托盘...........................................5.18托盘包装.......................................4.30 W温度可控区.....................................5.12 无形损耗.......................................3.33 物料需要计划...................................6.15 物流...........................................3.2物流成本.......................................3.7.物流成本管理...................................6.14. 物流单证.......................................3.13 物流管理.......................................3.8物流活动.......................................3.3物流技术.......................................3.6物流联盟.......................................3.14 物流模数.......................................3.5物流企业.......................................3.12 物流网络.......................................3.10 物流信息.......................................3.11 物流战略.......................................6.1物流战略管理...................................6.2. 物流中心.......................................3.9物流资源计划...................................6.19. 物流作业.......................................3.4物品...........................................3.1物品储备.......................................4.13. X箱式车.........................................5.22销售包装.......................................4.26 销售物流.......................................3.17 虚拟仓库.......................................5.4虚拟物流.......................................3.27Y业务外包.......................................6.27 有效客户反应...................................6.23 有形损耗.......................................3.32 运输...........................................4.1运输包装.......................................4.29. Z增值物流服务...................................3.28 整箱货.........................................4.9直达运输.......................................4.3直接换装.......................................4.33制造资源计划...................................6.16中性包装.......................................4.28中转运输.......................................4.4装卸...........................................4.23准时制.........................................6.11准时制物流.....................................6.12自动导引车.....................................5.21自动化仓库.....................................5.2租船运输.......................................5.35组配...........................................4.40英文索引AABC classification......................................6.9 Article.................................................3.1Article reserves........................................4.13 Assembly................................................4.40 Automatic guided vehicle AGV .........................5.21 Automatic warehouse.....................................5.3.BBar code................................................3.30Boned warehouse.........................................5.6Box car.................................................5.22CCargo under custom's supervision........................5.8 Chill space.............................................5.9Cold chain..............................................4.42 Combined transport......................................4.2 Commodity inspection....................................5.42 Computer assisted ordering CAO .......................6.25 Container...............................................5.23 Container freight station CFS ........................5.29 Container terminal......................................5.30 Container transport.....................................4.7 Containerization........................................4.31 Containerized transport.................................4.6 Continuous replenishment program CRP .................6.24 Conveyor................................................5.20Cross docking...........................................4.33 Customized logistics....................................3.26 Customs broker..........................................5.41 Customs declaration.....................................5.40Cycle stock.............................................4.15D Distribution............................................4.34 Distribution center.....................................4.36 Distribution logistics..................................3.17 Distribution processing.................................4.41 Distribution requirements planning DRP ...............6.17 Distribution resource planning DRP II ................6.18 Door-to-door............................................4.8Drop and pull transport.................................4.5EEconomic order quantity EOQ ..........................6.6 Efficient customer response ECR ......................6.23 Electronic data interchange EDI ......................3.31 Electronic order system EOS ..........................6.10 Enterprise resource planning ERP .....................6.20 Environmental logistics.................................3.20 Export supervised warehouse.............................5.7 External logistics......................................3.22FFixed-interval system FIS ............................6.8Fixed-quantity system FQS ............................6.7Fork lift truck.........................................5.19Freeze space............................................5.10Full container load FCL ..............................4.9Full container ship.....................................5.26 G Goods collection........................................4.39Goods shed..............................................5.15Goods shelf.............................................5.17Goods stack.............................................4.20Goods yard..............................................5.16HHanding/carrying........................................4.22 Humidity controlled space...............................5.11IIn bulk.................................................4.32Inland container depot..................................5.28 Inspection..............................................4.43 Intangible loss.........................................3.33Internal logistics......................................3.21 International freight forwarding agent..................5.37 International logistics.................................3.24 International multimodal transport......................5.32 International through railway transport.................5.31 International transportation cargo insurance............5.39Inventory...............................................4.14 Inventory control.......................................6.5 Inventory cycle time....................................4.17JJoint distribution......................................4.35Just in time JIT .....................................6.11Just-in-time logistics..................................6.12 LLand bridge transport...................................5.33Lead-time ..............................................4.18Less than container load LCL .........................4.10 Liner transport.........................................5.34 Loading and unloading ..................................4.23 Logistics...............................................3.2Logistics activity......................................3.3Logistics alliance......................................3.14 Logistics center........................................3.9 Logistics cost..........................................3.7Logistics cost control..................................6.14 Logistics documents.....................................3.13 Logistics enterprise....................................3.12 Logistics information...................................3.11 Logistics management....................................3.8 Logistics modulus.......................................3.5 Logistics network.......................................3.10 Logistics operation.....................................3.4 Logistics resource planning LRP ......................6.19 Logistics strategy......................................6.1 Logistics strategy management...........................6.2 Logistics technology....................................3.6MManufacturing resource planning MRP II ...............6.16 Material requirements planning MRP ...................6.15 Military logistics......................................3.23NNeutral packing.........................................4.28OOrder cycle time........................................4.19Order picking...........................................4.38 Outsourcing.............................................6.27PPackage/packaging.......................................4.25 Packing of nominated brand..............................4.27 Pallet..................................................5.18 Palletizing.............................................4.30QQuick response QR ....................................6.22RRailway container yard..................................5.27 Receiving space.........................................5.13 Returned logistics......................................3.18SSafety stock............................................4.16Sales package...........................................4.26 Shipping agency.........................................5.36 Shipping by chartering..................................5.35 Shipping space..........................................5.14 Sorting.................................................4.37Specific cargo container................................5.25 Stacking................................................4.21 Stereoscopic warehouse..................................5.4 Storage.................................................4.12 Storehouse..............................................5.2 Storing.................................................4.11Supply chain............................................3.29 Supply chain management SCM ..........................6.21 Supply logistics........................................3.15T Tally...................................................5.38Tangible loss...........................................3.32 Temperature controlled space............................5.12 Third-part logistics TPL .............................3.25 Through transport.......................................4.3 Transfer transport......................................4.4 Transport package.......................................4.29 Transportation..........................................4.1 Twenty-feet equivalent unit TEU ......................5.24 UUnit loading and unloading..............................4.24VValue-added logistics service...........................3.28 Vendor managed inventory VMI .........................6.26 Virtual logistics.......................................3.27Virtual warehouse.......................................5.5W Warehouse...............................................5.1 Warehouse layout........................................6.4 Warehouse management....................................6.3ZZero-inventory technology...............................6.133.基本概念术语3.1 物品article经济活动中涉及到实体流动的物质资料3.2 物流logistics物品从供应地向接收地的实体流动过程;根据实际需要,将运输、储存、装卸、搬运、包装、流通加工、配送、信息处理等基本功能实施有机结合;3.3 物流活动logistics activity物流诸功能的实施与管理过程;3.4 物流作业logistics operation实现物流功能时所进行的具体操作活动;3.5 物流模数logistics modulus物流设施与设备的尺寸基准;3.6 物流技术logistics technology物流活动中所采用的自然科学与社会科学方面的理论、方法,以及设施、设备、装置与工艺的总称;3.7 物流成本logistics cost物流活动中所消耗的物化劳动和活劳动的货币表现;3.8 物流管理logistics management为了以最低的物流成本达到用户所满意的服务水平,对物流活动进行的计划、组织、协调与控制;3.9 物流中心logistics center从事物流活动的场所或组织,应基本符合以下要求:a 主要面向社会服务;b物流功能健全;c完善的信息网络;d辐射范围大;e少品种、大批量;f存储\吞吐能力强;g物流业务统一经营、管理;3.10 物流网络logistics network物流过程中相互联系的组织与设施的集合;3.11 物流信息logistics information反映物流各种活动内容的知识、资料、图像、数据、文件的总称;3.12 物流企业logistics enterprise从事物流活动的经济组织;3.13 物流单证logistics documents物流过程中使用的所有单据、票据、凭证的总称;3.14 物流联盟logistics alliance两个或两个以上的经济组织为实现特定的物流目标而采取的长期联合与合作;3.15 供应物流supply logistics为生产企业提供原材料、零部件或其他物品时,物品在提供者与需求者之间的实体流动; 3.16 生产物流production logistics生产过程中,原材料、在制品、半成品、产成品等,在企业内部的实体流动;3.17销售物流distribution logistics生产企业、流通企业出售商品时,物品在供与需方之间的实体流动;3.18 回收物流returned logistics不合格物品的返修、退货以及周转使用的包装容器从需方返回到供方所形成的物品实体流动;3.19 废弃物物流waste material logistics将经济活动中失去原有使用价值的物品,根据实际需要进行收集、分类、加工、包装、搬运、储存等,并分送到专门处理场所时形成的物品实体流动;3.20 绿色物流environmental logistics在物流过程中抑制物流对环境造成危害的同时,实现对物流环境的净化,使物流资料得到最充分利用;3.21 企业物流internal logistics企业内部的物品实体流动;3.22 社会物流external logistics企业外部的物流活动的总称;3.23 军事物流military logistics用于满足军队平时与战时需要的物流活动;3.24 国际物流international logistics不同国家地区之间的物流;3.25 第三方物流third-part logistics TPL由供方与需方以外的物流企业提供物流服务的业务模式;3.26 定制物流customized logistics根据用户的特定要求而为其专门设计的物流服务模式;3.27 虚拟物流virtual logistics以计算机网络技术进行物流运作与管理,实现企业间物流资源共享和优化配置的物流方式; 3.28 增值物流服务value-added logistics service在完成物流基本功能基础上,根据客户需要提供的各种延伸业务活动;3.29 供应链supply chain生产及流通过程中,涉及将产品或服务提供给最终用户活动的上游与下游企业,所形成的网链结构;3.30 条码bar code由一组规则排列的条、空及字符组成的,用以表示一定信息的代码;同义词:条码符号bar code symbolGB/T 4122.1-1996中4.173.31 电子数据交换electronic data interchange EDI通过电子方式,采用标准化的格式,利用计算机网络进行结构数据的传输和交换;3.32 有形消耗tangible loss可见或可测量出来的物理性损失、消耗;3.33 无形消耗intangible loss由于科学技术进步而引起的物品贬值;物流作业术语4.1 运输transportation用设备和工具,将物品从一地点向另一地点运送的物流活动;其中包括集货、分配、搬运、中转、装入、卸下、分散等一系列操作; GB/T 4122.1-1996中4.174.2 联合运输combined transport一次委托,由两家以上运输企业或用两种以上运输方式共同将某一批物品运送到目的的运输方式;4.3 直达运输through transport物品由发运地到接收地,中途不需要换装和在储存场所停滞的一种运输方式;4.4中转运输transfer transport物品由生产地运达最终使用地,中途经过一次以上落地并换装的一种运输方式;4.5 甩挂运输drop and pull transport用牵引车拖带挂车至目的地,将挂车甩下后,换上新的挂车运往另一个目的地的运输方式; 4.6 集装运输containerized transport使用集装器具或利用捆扎方法,把裸装物品、散粒物品、体积较小的成件物品,组合成为一定规格的集装单元进行的运输;4.7 集装箱运输container transport以集装箱为单元进行货物运输的一种货运方式; GB/T17271-1998中3.2.14.8 门到门door-to-door承运人在托运人的工厂或仓库整箱接货,负责运抵收货人的工厂或仓库整箱交货;GB/T 17271-1998中3.2.14.9 整箱货full container load FCL一个集装箱装满一个托运人同时也是一个收货人的工厂或仓库整箱交货;GB/T 17271-1998中3.2.4.24.10 拼箱货less than container load LCL一个集装箱装入多个托运人或多个收货人的货物;GB/T 17271-1998中3.2.4.34.11 储存storing保护、管理、贮藏物品; GB/T 4122.1-1996中4.24.12 保管storage对物品进行保存及对其数量、质量进行管理控制活动;4.13 物品储存article reserves储存起来以备急需的物品;有当年储存、长期储存、战略储备之分;4.14 库存inventory处于储存状态的物品;广义的库存还包括处于制造加工状态和运输状态的物品;4.15 经常库存cycle stock在正常的经营环境下,企业为满足日常需要而建立的库存;4.16 安全库存safety stick为了防止由于不确定性因素如大量突发性订货、交货期突然延期等而准备的缓冲库存; 4.17 库存周期inventory cycle time在一定范围内,库存物品从入库到出库的平均时间;4.18 前置期或提前期lead time从发出订货单到货物的时间间隔;4.19 订货处理周期order cycle time从收到订货单到将所订货物发运出去的时间间隔;4.20 货垛goods stack为了便于保管和装卸、运输,按一定要求分门别类堆放在一起的一批物品;4.21 堆码stacking将物品整齐、规则地摆放成货垛的作业;4.22 搬运handing/carrying在同一场所内,对物品进行水平移动为主的物流作业;4.23 装卸loading and unloading物品在指定地点以人力或机械装入运输设备或卸下; GB/T 4122.1-1996中4.54.24 单元装卸unit loading and unloading用托盘、容器或包装物见小件或散装物品集成一定质量或体积的组合件,以便利用机械进行作业的装卸方式;4.25 包装package/packaging为在流通过程中保护产品、方便储运、促进销售,按一定技术方面而采用的容器、材料及辅助物等的总体名称;也指为了达到上述目的而采用容器、材料和辅助物的过程中施加一定技术方法等的操作活动; GB/T 4122.1-1996中2.14.26 销售包装sales package又称内包装,是直接接触商品进入零售网点和消费者或用户直接见面的包装;4.27 定牌包装packing of nominated brand买方要求卖方在出口商品/包装上使用买方指定的牌名或商标的做法;4.28 中性包装neutral packing在出口商品及其内外包装上都不注明生产国别的包装;4.29 运输包装transport package以满足运输贮存要求为主要目的的包装;它具有保障产品的安全,方便储运装卸,加速交接、点验等作用; GB/T 4122.1-1996中2.54.30 托盘包装palletizing以托盘为承载物,将包装件或产品堆码在托盘上,通过捆扎、裹包或胶粘等方法加以固定,形成一个搬运单元,以便用机械设备搬运; GB/T 4122.1-1996中2.174.31 集装化containerization用集装器具或采用捆扎方法,把物品组成标准规格的单元货件,以加快装卸、搬运、储存、运输等物流活动;4.32 散装化containerization用专门机械、器具进行运输、装卸的散装物品在某个物流范围内,不用任何包装,长期固定采用吸扬、抓斗等机械、器具进行装卸、运输、储存的作业方式;4.33 直接换装cross docking物品在物流环节中,不经过中间仓库或站点,直接从一个运输工具换载到另一个运输工具的物流衔接方式;4.34 配送distribution在经济合理区域范围内,根据用户要求,对物品进行拣选、加工、包装、分割、组配等作业,并按时送达指定地点的物流活动;4.35 共同配送joint distribution由多个企业联合组织实施的配送活动;4.36 配送中心distribution center从事配送业务的物流场所或组织,应基本符合下列要求:a 主要为特定的用户服务;b 配送功能健全;c 完善的信息网络;d 辐射范围小;e 多品种、小批量;f 以配送为主,储存为辅;4.37 分拣sorting将物品按品种、出入库先后顺序进行分门别类推放的作业;4.38 拣选order picking按订单或出库单的要求,从储存场所选出物品,并放置指定地点的作业;4.39 集货goods collection将分散的或小批量的物品集中起来,以便进行运输、配送的作业;4.40 组配assembly配送前,根据物品的流量、流向及运输工具的载质量和容积,组织安排物品装载的作业; 4.41 流通加工distribution processing物品在从生产地到使用地的过程中,根据需要施加包装、分割、计量、分拣、刷标志、拴标签、组装等简单作业的总称;4.42 冷链cold chain为保持新鲜食品及冷冻食品等的品质,使其在从生产到消费的过程中,始终处于低温状态的配有专门设备的物流网络;4.43 检验inspection根据合同或标准,对标的物品的品质、数量、包装等进行检查、验收的总称;物流技术装备与设施术语5.1 仓库warehouse保管、储存物品的建筑物和场所的总称;5.2 库房storehouse有屋顶和围护结构,供储存各种物品的封闭式建筑物;5.3 自动化仓库automatic warehouse由电子计算机进行管理和的控制,不需人工搬运作业,而实现收发作业的仓库;5.4立体仓库stereoscopic warehouse采用高层货架配以货箱或托盘储存货物,用巷道队垛起重机及其他机械进行作业的仓库; 5.5 虚拟仓库virtual warehouse建立在计算机和网络通讯技术基础上,进行物品储存、保管和远程控制的物流设施;可实现不同状态、空间、时间、货主的有效调度和统一管理; 5.6保税仓库boned warehouse经海关批准,在海关监管下,专供存放未办理关税手续而入境或过境货物的场所;5.7 出口监管仓库export supervised warehouse经海关批准,在海关监管下,存放已按规定领取了出口货物许可证或批件,已对外买断结汇并向海关办完全部出口海关手续的货物的专用仓库;5.8 海关监管货物cargo under custom's supervision在海关批准范围内接受海关查验的进出口、过境、转运、通关货物,以及保税货物和其他尚未办结海关手续的进出境货物;5.9 冷藏区chill space仓库的一个区域,其温度保持在0'C~10.C范围内;5.10 冷冻区freeze space仓库的一个区域,其温度保持在0'C以下;5.11 控湿储存区humidity controlled space仓库内配有湿度调制设备,使内部湿度可调的库房区域;5.12 温度可控区temperature controlled space温度可根据需要调整在一定范围内的库房区域;5.13 收货区receiving space到库物品入库前核对检查及进库准备的地区;5.14 发货区shipping space物品集中待运地区;5.15 料棚goods shed供储存某些物品的简易建筑物,一般没有或只有部分围壁;5.16 货场goods yard用于存放某些物品的露天场地;5.17 货架goods shelf用支架、隔板或托架组成的立体储存货物的设施;5.18 托盘pallet用于集装、堆放、搬运和运输的放置作为单元负荷的货物和制品的水平平台装置;GB/T 4122.1-1996中4.275.19 叉车fork lift truck具有各种叉具,能够对货物进行升降和移动以及装卸作业的搬运车辆;5.20 输送机conveyor对物品进行连续运送的机械;5.21 自动导引车automatic guided vehicle AGV能够自动行驶到指定地点的无轨搬运车辆;5.22 箱式车box car除具备普通车的一切机械性能外,还必须具备全封闭的箱式车身和便于装卸作业的车门; 5.23 集装箱container是一种运输设备,应满足下列要求:a 具有足够的强度,可长期反复使用;b 适于一种或多种运输方式运送,途中转运时,箱内货物不需换装;c 具有快速装卸和搬运的装置,特别便于从一种运输方式转移到另一种运输方式;d 便于货物装满和卸空;e 具有1立方米及以上的容积;集装箱这一术语不包括车辆和一般包装; GB/T 1992-1985中1.15.24 换算箱twenty-feet equivalent unit TEU又称标准箱;Twenty-feet equivalent unit TEU以20英尺集装箱作为换算单位;GB/T 17271-1998中3.2.4.85.25 特种货物集装箱specific cargo container用以装运特种物品用的集装箱; GB/T 4122.1-1996中1.15.26 全集装箱船full container ship舱内设有固定式或活动式的格栅结构,舱盖上和甲板上设置固定集装箱的系紧装置, 便于集装箱左翼及定位的船舶;GB/T GB/T17271-1998中3.1.1.15.27 铁路集装箱场railway container yard进行集装箱承运、交付、装卸、堆存、装拆箱、门到门作业,组织集装箱专列等作业的场所;GB/T GB/T17271-1998中3.1.3.65.28 公路集装箱中转站inland container depot具有集装箱中转运输与门到门运输和集装箱货物的拆箱、装箱、仓储和接取、送达、装卸、堆存的场所;GB/T GB/T17271-1998中3.1.3.95.29 集装箱货运站container freight station CFS拼箱货物拆箱、装箱、办理交接的场所;5.30 集装箱码头container terminal专供停靠集装箱船、装卸集装箱用的码头;GB/T GB/T 17271-1998中3.1.2.25.31 国际铁路联运international through railway transport使用一份统一的国际铁路联运票据,由跨国铁路承运人办理两国或两国以上铁路的全程运输,并承担运输责任的一种连贯运输方式;5.32 国际多式联运international multimodal transport按照多式联运合同,以至少两种不同的运输方式,由多式联运经营人将货物从一国境内的接管地点运至另一国境内指定交付地点的货物运输;5.33 大陆桥运输land bridge transport用横贯大陆的铁路或公路作为中间桥梁,将大陆两端的海洋运输连接起来的连贯运输方式; 5.34 班轮运输liner transport在固定的航线上,以既定的港口顺序,按照事先公布的船期表航行的水上运输方式;5.35 租船运输shipping by chartering根据协议,租船人向船舶所有人租凭船舶用于货物运输,并按商定运价,向船舶所有人支付运费或租金的运输方式;5.36 船务代理shipping agency根据承运人的委托,代办与船舶进出有关的业务活动;5.37 国际货运代理international freight forwarding agent接受进出口货物收货人、发货人的委托,以委托人或自己的名义,为委托人办理国际货物运输及相关业务,并收取劳务报酬的经济组织;5.38 理货tally货物装卸中,对照货物运输票据进行的理点数、计量、检查残缺、指导装舱积载、核对标记、检查包装、分票、分标志和现场签证等工作;5.39 国际货物运输保险international transportation cargo insurance在国际贸易中,以国际运输中的货物为保险标的的保险,以对自然灾害和意外事故所造成的财产损失获得补偿;5.40 报关customs declaration由进出口货物的收发货人或其代理人向海关办理进出境手续的全过程;5.41 报关行customs broker专门代办进出境保管业务的企业;5.42 进出口商品检验commodity inspection确定进出口商品的品质、规格、重量、数量、包装、安全性能、卫生方面的指标及装运技术和装运条件等项目实施检验和鉴定,以确定其是否与贸易合同、有关标准规定一致,是否符合进出口国有关法律和行政法规的规定;简称"商检";物流管理术语6.1 物流战略logistics strategy为寻求物流的可持续发展,就物流发展目标以及达成目标的途径与手段而制定的长远性、全局性的规划与谋略;6.2 物流战略管理logistics strategy management物流组织根据已制定的物流战略,付诸实施和控制的过程;6.3 仓库管理warehouse management对库存物品和仓库设施及其布局等进行规划、控制的活动;6.4仓库布局warehouse layout在一定区域或库区内,对仓库的数量、规模、地理位置和仓库设施、道路等各要素进行科学规划和总体设计;6.5 库存控制inventory control在保障供应的前提下,使库存物品的数量最少进行的有效管理的技术经济措施;6.6 经济订货批量economic order quantity EOQ通过平衡采购进货成本和保管仓储成本核算,以实现总库存成本最低的最佳订货量;6.7定量订货方式fixed-quantity system FQS当库存量下降到预定的最低的库存数量订货点时,按规定数量一般以经济订货批量为标准进行订货补充的一种库存管理方式;6.8 定期订货方式fixed-quantity system FIS按预先确定的订货间隔期间进行订货补充的一种库存管理方式;6.9 ABC分类管理ABC classification将库存物品按品种和占用资金的多少分为特别重要的库存A类、一般重要的库存B类和不重要的库存C类三个等级,然后针对不同等级分别进行管理与控制;6.10 电子订货系统Electronic order system EOS不同组织间利用通讯网络和终端设备以在线联结方式进行订货作业与订货信息交换的体系; 6.11 准时制just in time JIT在精确测定生产各工艺环节作业效率的前提下按订单准确的计划,消除一切无效作业与浪费为目标的一种管理模式;6.12 准时制物流just-in-time logistics一种建立在JIT管理理念基础上的现代物流方式;6.13 零库存技术zero-inventory logistics在生产与流通领域按照JIT组织物资供应,使整个过程库存最小化的技术的总称;6.14 物流成本管理logistics cost control对物流相关费用进行的计划、协调与控制;6.15 物料需要计划material requirements planning MRP一种工业制造企业内的物资计划管理模式;根据产品结构各层次物品的从属和数量关系,以每个物品为计划对象,以完工日期为时间基准倒排计划,按提前期长短区别各个物品下达计划时间的先后顺序;6.16 制造资源计划manufacturing resource planning MRP II从整体最优的角度出发,运用科学的方法,对企业的各种制造资源和企业生产经营各环节实行合理有效地计划、组织、控制和协调,达到既能连续均衡生产,又能最大限度地降低各种物品的库存量,进而提高企业经济效益的管理方法;6.17 配送需要计划distribution requirements planning DRP一种既保证有效地满足市场需要,又使得物流资源配置费用最省的计划方法,是MRP原理与方法在物品配送中的运用;6.18 配送资源计划distribution resource planning DRP II一种企业内物品配送计划系统管理模式;是在DRP的基础上提高各环节的物流能力,达到系统优化运行的目的;6.19 物流资源计划logistics resource planning LRP以物流为基础手段,打破生产与流通界限,集成制造资源计划、分销需要计划以及功能计划而形成的物资资源优化配置方法;6.20 企业资源计划enterprise resource planning ERP在MRP II 的基础上,通过反馈的物流和反馈的信息流、资金流,把客户需要和企业内部的生产经营活动以及供应商的资源整合在一起,体现完全按用户需要进行经营管理的一种全新的管理方法;6.21 供应链管理supply chain management SCM利用计算机网络技术全面规划供应链中的商流、物流、信息流、资金流等,并进行计划、组织、协调与控制;6.22 快速反映Quick response QR物流企业面对多品种、小批量的买方市场,不是储备了"产品",而是准备了各种"要素",在用户提出要求时,能以最快速度抽取"要素",及时"组装",提供所需服务或产品;6.23 有效客户反映efficient customer responseECR以满足顾客要求和最大限度降低物流过程费用为原则,能及时做出准确反应,使提供的物品供应或服务流程最佳化的一种供应链管理战略;6.24 连续库存补充计划continuous replenishment program CRP利用及时准确的销售时点信息确定已销售的商品数量,根据零售商或批发商的库存信息和预先规定的库存补充程序确定发货补充数量和配送时间的计划方法;6.25 计算机付诸订货系统computer assisted ordering CAO基于库存和客户需要信息,利用计算机进行自动订货管理的系统;6.26 供应商管理库存vendor managed inventory VMI供应商等上游企业基于其下游客户的生产经营、库存信息,对下游客户的库存进行管理与控制;6.27 业务外包outsourcing企业为了获得不单纯利用不、内部资源更多的竞争优势,将其非核心业务交由合作企业完成; 资料来源:http://vip.6to23/our56/study/html/tjzl/wlbz/wlglsy.htm。
关于BGP路由协议的研究与应用 论文

摘要本论文主要叙述的是BGP-4(Border Gateway Protocol-4,中文名为边界网关协议)版本的协议,提供一系列BGP配置案例,包括在BGP路由之间建立对等关系、将IGP(interior Gateway Protocols)内部网关协议路由注入BGP、将BGP注入IGP等基本配置,并从管理和维护的角度讨论从而使学习BGP连接变得的更易管理。
研究BGP路由协议,先必须了解BGP路由协议及其他路由协议的基本原理及作用,在做网络工程时,选择不同的路由协议直接决定了该网络的好与坏。
必须掌握BGP基本连接属性及重要的拓展属性,通过大量的实验熟悉和了解这些属性的意义和作用。
本论文中的设计使用了我国Internet组网框架,集合BGP路由协议的特点模拟现实的网络构建的网络拓扑,在设计中,主要介绍了网络工程中所使用工具,并对BGP 路由协议的基本配置、路由黑洞的产生及解决、Local_Preference属性及MED(Multi Exit Disc)属性进行了详细介绍,并对测试结果进行了详细说明,并加入了通过做工程而得到的结论及心得。
这里我要说明一下,BGP不是单纯的路由协议,它很少单独用于网络当中,许多时候是和IGP互操的,这就说明了学习BGP比学习IGP难的地方,BGP 路由表是独立于IGP路由表的,但是这两个表之间可以进行信息的交换,这就是前面提到的“再分布”技术(Redistribution)。
信息的交换有两个方向:从BGP注入IGP,以及从IGP注入BGP.前者是将AS外部的路由信息传给AS内部的路由器,而后者是将AS 内部的路由信息传到外部网络,这也是路由更新的来源。
把路由信息从BGP注入IGP 涉及到一个重要概念——同步(Synchronization)。
同步规则的主要目的是为了保证AS (As-Path)自治系统内部的连通性,防止路由循环的黑洞。
但是在实际的应用中,一般都会将同步功能禁用,而使用AS内IBGP的全网状连接结构来保证连通性,这样即可以避免向IGP中注入大量BGP路由,加快路由器处理速度,又可以保证数据包不丢失。
交换机网关-路由原理基础知识培训

负载均衡
关于同一个目标网络的多条路由出现在路由表 在转发去往该目的地的报文时,会依次通过这些路径发送。
‒ 同一个路由源 ‒ 管理距离和度量值相等 ‒ 基于源或者基于源、目标IP对等因素负载均衡
路由表的维护
路由条目在维持在路由表中的条件:
‒ 下一跳或者本地出口可用
直连路由和静态路由通过监视接口维持路由 动态路由通过维持邻居关系维持路由条目,邻居失效,相关路 由失效。
目标网络 接口 度量值
10.1.0.0 E1/0
0
RTB 10.1.0.0 S0/0
1
E1/0
10.2.0.0 S0/0
S0/0
10.2.0.0 S0/0 0 10.3.0.0 S1/0 0
10.2.0.0 S0/0
0
10.3.0.0 S0/0
1
RTA
S1/0
10.3.0.0
10.4.0.0 S1/0 1 Routing Table
172.16.0.0/24 172.16.1.0/24
PC2
172.16.2.0/24 172.16.3.0/24
PC3
172.16.4.0/24 172.16.5.0/24
配置静态路由步骤
静态路由的一般配置步骤 ‒ 画拓扑图,分析网络情况 ‒ 在源和目标之间画代表数据流的线 ‒ 确保在源和目标之间的三层设备上都有关于目标的正确的路由 条目 ‒ 下一跳可为对端直连设备接口IP或本地接口
10.0.0.0/8 S0/0 1
RIP V2 的改进
• RIPv2是一种无类别路由协议(Classless Routing Protocol) • RIPv2协议报文中携带掩码信息,支持VLSM(可变长子网掩码)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Quantifying the BGP routes diversity inside a tier-1networkSteve Uhlig⋆,Sébastien TandelDepartment of Computing Science and EngineeringUniversitécatholique de Louvain,Louvain-la-neuve,B-1348,BelgiumE-mail:{suh,sta}@info.ucl.ac.beAbstract.Many large ISP networks today rely on route-reflection[1]to allow their iBGP to scale.Route-reflection was officially introduced to limit the number of iBGP sessions,compared to the n×(n−1)2iBGP sessions to be established inside an AS.Thisnumber of sessions required for propagating the routes learned from the neigh-bors of the AS to all routers inside the AS does not scale for large networks containing hundreds or thousands of BGP routers.Route-reflection[1]was thusintroduced to limit the number of iBGP sessions for large sized networks.An advantage of an iBGP full-mesh is that all routers know about all the best routes of the other routers inside the network.This means that when some route is with-drawn,routers can typically switch to another route immediately,without waiting for BGP to converge.Without the use of an iBGP full-mesh on the other hand, routers might know only a single route to reach an external destination.When this route is withdrawn,then the concerned prefix will not be reachable until BGP re-converges and advertises an alternative route.BGP is known to suffer from slow convergence[3].BGP routes diversity is thus important to understand if high availability of the reachability service is to be provided,as is typically the case in tier-1providers.Route-reflection inside an AS defines two types of relationships among BGP routers:client and non-client.These relationships among BGP peers define a loose hierarchy among routers,going from the bottom level routers that have no clients up to the largest route-reflectors that are not client of any other router. Note that this implicit hierarchy is not practically enforced,as iBGP sessions can established between any two routers inside the AS,even under route-reflection. The redistribution of the routes in BGP works according to well-defined rules. First recall that a route is never re-advertized to the peer that announced it.Con-sider a given prefix p for which a router inside the iBGP receives several routes from its peers(iBGP or eBGP).The router chooses among the possible ones to-wards p its best route using the BGP decision process[4].How the best route is propagated to the neighbors of a router depend on whether the router acts as a router-reflector.If a router does not act as a route-reflector,i.e. it has no"client"peer,then the router advertises this route to all its iBGP peers if it is learned from an eBGP session,or to none of them if the route was learned from an iBGP session.If a router acts as a route-reflector[1]on the other hand:–If the route was learned from a client peer(or eBGP peer),the route-reflector redistributes the route to all its clients and non-client peers(except the one from which the route was received).–If the route was learned from a non-client peer,the route-reflector redis-tributes the route to its client peers only.These rules driving the redistribution of the routes inside the iBGP imply an im-plicitfiltering of the routes over the internal BGP signaling graph.Besides the rules defined in[1]when connecting route-reflectors to ensure a proper working of the iBGP propagation,there is no clear design rules known today as to how to design a proper iBGP graph.Guidelines for checking that a correct iBGP config-uration have been discussed in[5].[6]provides a tool to detect potential problems due to the iBGP configuration based on static analysis.Route-reflection was initially proposed as an alternative to the full-mesh,but in practice it caused many problems and it is unclear what it actually performs on which routes are propagated compared to a full-mesh.In this paper,we thus aim at quantifying the diversity inside a tier-1network that relies on route-reflection. We see our work as afirst step towards a better understanding of the impact of route-reflection on route diversity.2MethodologyUnless one has complete data concerning the full topology,the configuration of the routers,and the eBGP routes learned by an AS,it is not possible to correctlyreproduce its routing state[7].This is the main reason why typically,simulations have to be used to reproduce the routing of a large AS.The aim of this section is to sketch our methodology to reproduce the routing of the studied network.We relied on CBGP[7]to model our tier-1network.For this,we used the physi-cal topology of the network(links and IGP weights),as well as the configuration of the BGP routers.We obtained the Adj-RIB-In’s from the main route-reflectors of the studied network.Because the BGP routes present in the Adj-RIB-In’s of internal routers do not always contain the information about which eBGP peer actually originated a route,some reverse-engineering of the route origin was nec-essary.We could of course keep the routes learned directly from eBGP sessions, as large route-reflectors also have a significant number of eBGP peerings(see Section5).Two cases are possible when trying tofind the entry point of a route:–The BGP next-hop of the route is the IP address of an external peer.In this case we must pay attention to advertise this route from the external peer found to the internal router with which the external peer has established the eBGP session.–The BGP next-hop of the route is the IP address of an internal router because this router has been configured with next-hop-self.We have tofind the origi-nating external peer that advertised the route to the internal router.Tofind it, we rely on the AS path information.We search for eBGP peers belonging to the leftmost AS on the AS path that have an eBGP peering with the internal router.To ensure that our model was correct we validated the conversion by injecting the routes in the model and then checked the routes computed by the model against the original best routes seen in the route-reflectors.Due to space limitations,we do not provide these results here.As even in our simulation model,it is not always possible to identify the eBGP peer from which a route has been advertized by looking at the route,all external routes in the C-BGP simulation had to be tagged with a special community value identifying the external router from which the route was learned.This made the analysis of the results easier.Once all external routes were identified,C-BGP[8] performed the propagation of the routes according to the internal iBGP structure of the network,and we retrieved the content of the Adj-RIB-In’s of all routers inside the C-BGP simulation.Our analysis is based on the outcome of this simu-lation.Among all prefixes of our input data,we selected a subset of them(940).Those 940prefixes were learned from several locations in the network.In the analy-sis of this paper,only those940multiply-advertized prefixes are considered as measuring diversity for singly-advertized prefixes is meaningless.We selected the largest of them in terms of the amount of traffic sent towards them.These prefixes captured80%of the total traffic according to the Netflow[9]statistics. 80,000destination prefixes were present in the Netflow statistics,most of them representing an insignificant fraction of the total traffic.The iBGP structure of the studied network consists of3levels of route-reflection according to which router is a client of which other router.This graph contains 105nodes(routers)partitioned into36geographically distinct POPs and169 undirected edges.This iBGP"hierarchy"is a static one,by design of the iBGP graph.Tofind out the hierarchy inside the route-reflection graph,we rely on a topological sort of a directed acyclic graph(DAG)[10].The reason why we have to rely on this concept of a DAG is that the route-reflection graph is not a stricthierarchy(a forrest).Contrary to a general misbelief,route-reflection does not re-quire a strict hierarchy to work.A strict hierarchy is even not desirable for route diversity.The vertices of the route-reflection graph(rr_graph)are all routers inside the iBGP graph.An arc(i,j)of the route-reflection graph rr_graph con-nects a reflector(i)to a client router(j).The level in the route-reflection hierarchy is computed byfinding out which reflectors are not clients of any other router in the reflection graph.These are given a level of0in the hierarchy,they are the top-level route-reflectors of the graph(16routers).Route-reflectors which are clients of the top-level(0)reflectors have a route-reflection level of1(57routers).Fi-nally,clients of reflectors at level1are given a level of2(32routers).3Example of route diversity lossWhen relying on an iBGP full-mesh,all the external routes selected as best by the border routers are known to all other routers inside the AS.An iBGP full-mesh is thus"ideal"in terms of the diversity of the routes known to all routers inside an AS,at the cost of a large number of iBGP sessions.Even this"ideal"situation might hide some eBGP routes when a border router has multiple eBGP sessions or when it does not choose as its best route one among its eBGP-learned ones. This would happen if one of its non eBGP-learned routes has a higher local-pref or smaller AS path length than its eBGP-learned routes.A loss in diversity will thus occur only because of this order of the rules of the BGP decision process.Fig.1.Example of route loss inside iBGP.For instance,Figure1illustrates the two main causes for loss of diversity on an example.Prefix p is advertized to AS4by3neighboring ASes(AS1,AS2 and AS3),two of them at border router BR2and another at border router BR1. eBGP sessions are indicated by solid lines,while iBGP sessions by dashed lines. Arrows indicate the propagate of a route from one router to another.Only the best route chosen by BR2,let us call it p best,will be propagated inside AS4.BR2The best route propagated by BR 1,assuming it is the external one (p best BR 1),will also be propagated within AS4.Route reflector RR is on the iBGP propagation path of both routes p best BR 1and p best BR 2,hence it will choose at most one of these as best route,which we call p best RR .As we have one route reflector in AS4,all other routers are clients,hence because of the iBGP propagation rules RR will redistribute its best route to all its clients except the one from which it learned the route.To prevent this loss of diversity,several solutions can be envisioned.First,one can change the location of the eBGP peerings so as to minimize the loss of the routes at the border routers.Changing the location of eBGP peerings is typically not practically feasible because it depends on the slots available on the routers and the geographical constraints about where peers can connect to the routers of the AS.Another solution is to reconfigure the iBGP graph by adding and remov-ing iBGP peerings between routers,but this operation is tricky as it is difficult to predict its impact on the BGP propagation [5,6].Finally,redistributing more than a single route [11]could be seen as a solution.This would however require changes to the protocol at the risk of creating divergence.A proper understanding of route diversity is thus necessary before thinking about changed in how routes are propagated inside an AS.246810121416180100200300400500600700800900N u m b e r o f e x t e r n a l r o u t e s Prefixes Lost routes at edges routers because of multiple eBGP peeringstotal lostFig.2.External routes lost at edge routers.To show to what extent external routes can be lost only due to multiple eBGP peerings at the same border router,Figure 2compares for each prefix the total number of known external routes with the number of routes that will never be selected as best due to multiple peerings at the edge routers,in the studied tier-1network.Each border router may receive several external routes from its eBGP peers for a given prefix.The points labeled "lost"sums for each prefix (over all border routers)the number of external routes that cannot be chosen as best because several are received by a border router.534over 5018routes are lost because of multiple external routes received by border routers.Hence more than 10%of the external routes cannot be considered just because of the location of the eBGP peerings inside the network.These lost routes concern 365over the 940prefixes,40%of the considered prefixes for which several external routes are known.4iBGP structure of the studied networkIn this section,we want to highlight two points.First,we want to make clear that the hierarchy induced by route-reflection and the propagation of the routes inside the AS are two very different things.Second,we want to discuss how much the location of a router inside the iBGP propagation graph varies across prefixes. The propagation inside iBGP depends on from which border routers the routes were learned.Each prefix can be learned from a different set of border routers, even though most of the prefixes are typically learned from a small subset of all possible border routers.In the studied network,eBGP peerings can be attached to any router,from level-0reflectors to routers at the edge of the network(level-2).Centrality in the reflection hierarchy hence does not match the centrality of a router inside the iBGP propagation graph.Directly comparing the level of a router with its location in the signaling graph is problematic for two reasons.First,the level of a router is a very discrete variable taking only3different values.Second,the variation of the location of a router from the eBGP peering wherefrom the route has actually been learned by the AS varies a lot.We define the depth depth(r,p)of a router r in the iBGP signal-ing graph for a given prefix p as the number of iBGP hops it took for the best route chosen by r towards p from the eBGP peer who advertized this route.The depth(r,p)varies between1and6in our studied network.Still,the typical val-ues of the depth lies around2and3for most routers.The routers having many eBGP peerings or that are central(level-0reflectors)inside the iBGP graph tend to have a smaller depth than less central routers(level-2reflectors).5Best route choice and route originAn important factor to understand the propagation of the routes inside the iBGP is from what kind of peering the best routes of a router were learned by any router.Figure3provides the breakdown of the best routes chosen by each router according to what type of BGP peer advertized the route.A route can be learned either from an eBGP peer,a client peer(for route reflectors)and a non-client peer(both for reflectors and other routers).Routers on the x-axis of Figure3are ordered by their increasing level inside the route-reflection hierarchy,so thefirst 16routers are level-0reflectors,the next57level-1,and the last32are level-2reflectors.This ordering of the x-axis was chosen because one might expect that more central routers like level-0reflectors would have a larger fraction of their best routes learned from the iBGP.The y-axis of Figure3gives,for each router,the percentage of best routes of each type.For each router,we computed among the best routes it selected,the fraction of them that have been learned from eBGP sessions,client and non-client sessions.On Figure3we plot the fraction of client-learned routes,then the sum of client-learned routes and eBGP-learned ones.Non-client-learned routes are not shown on Figure3but make the rest of the100%of the best routes.It is easy to see that excepted for level-0reflectors(thefirst16routers),most routes are non-client routes,i.e.routes learned from either a reflector from which the local router is a client or a regular iBGP peer.Only large reflectors(mainly level-0)select routes learned by client peers,as these routers also have the largest number of client peers.Note that routers for which it might seem on Figure3to020406080100020406080100P e r c e n t a g e o f b e s t r o u t e s s e l e c t e d Routers Choice of best routes depending on origineBGP-learned routes client-learned routes Fig.3.Breakdown of best route choice by origin.have only selected as best non-client-learned ones actually have typically a few eBGP-learned or client-learned routes as best.This is not apparent from the use of the percentage over all considered prefixes.Figure 3told that most best routes are learned from iBGP peers.However,this choice of the best routes might be biased by a lack of eBGP peerings at some routers.This is however not the case in the studied network,as non-client peer-ings represent 53%of the total peerings,client peerings about 23%,and eBGP peerings about 26%.More than one fourth of all BGP sessions are thus eBGP sessions,hence a lack of eBGP peerings is not the reason why routers do not select their best route from a eBGP peer-learned one.95%of the best routes are learned from non-client peers,about 2%from client peers,and 3%from eBGP peers.Most routes chosen as best by the routers come either from a regular iBGP peer or a route-reflector of which the considered router is a client.The choice of the best route of a router thus depends a lot on the choice performed by the route-reflectors higher in the hierarchy.This phenomenon is caused by the relatively small number of locations from which a prefix is learned by the AS,hence the iBGP propagation graph is very important to understand which route will be propagated inside iBGP.6Measuring iBGP route diversityTo measure the diversity of the routes,we define two metrics:the real diversity and the RIB diversity .The choice of these metrics mainly reflects our own interest of understanding what fraction of the external routes is actually known to the routers inside the iBGP compared to those know to the whole AS.Let us insist on the fact that as the route-reflection graph is not a forest,a given eBGP-learned route can be propagated through different iBGP propagation paths.It thus makes sense to measure the difference between the number of actually distinct routes a router learns from its neighbors and how this number relates to from how many distinct eBGP peers those routes come.The real diversity measures the proportion of the external routes known by the AS any router has learned.The real diversity div real (r,p )counts for each router r and prefix p the number of unique external routes (learned from distinct eBGPpeers)r has in its Adj-RIB-In’s divided by the total number of eBGP routes that have been learned by routers of the AS:routes unique(r,p)div real(r,p)=.(2)rib(r,p)rib(r,p)denotes the number of Adj-RIB-In entries router r has for prefix p. div rib(r,p)takes values in the]0,1]range.If r has no route towards p then its RIB diversity will be undefined.The closer to1the value of div rib,the less re-dundancy there is among the routes r knows towards p.In practice,one would like as high a value of both metrics.If many external routes are known inside the AS,then the value of div real will be low so that a low value of div real is not an indication of a"bad"diversity.A value of div rib smaller than1indicates that among the several routes a router learns,some of them are duplicates and will thus be withdrawn if the corresponding external route is withdrawn.Such redundant iBGP routes protect a router from the failure of one of the routers that advertise this route.7Real and RIB diversity of the studied networkOn Figure4,we show for each considered prefix p the average over all routers of the network of div real(.,p),div rib(.,p),and1on Figure4is that it provides a lowerroutes(p)bound on div real(.,p),i.e.it is the value of div real(.,p)if routers only know no more than a single unique external route towards p.The main message from Figure4is how closely the real diversity curve follows the inverse of the number of total eBGP routes known to the AS.On average, routers know not much more than a single unique route(in terms of its eBGP ori-gin)for any given prefix.This observation implies that the current iBGP structure of the studied network does not provide diversity in terms of the external routes. Furthermore,the value of the RIB diversity is about0.5for a large fraction of the prefixes.About half the entries in the Adj-RIB-In’s are duplicate routes in terms of the eBGP peer who advertized the route inside the AS.This reflects the de-sign choice of the studied network,which connects routers to several iBGP peers but the latters advertise the same eBGP-originated route.Note that as we ordered00.10.20.30.40.50.60.70.80.910100200300400500600700800900D i v e r s i t y r a t i o Prefixes (ordered by increasing number of external routes known)Route diversity with route-reflectionRIB diversity Real diversity 1/routes(p)Fig.4.External diversity for each prefix.prefixes by increasing number of eBGP routes known,the large variations in this number of eBGP routes known for prefixes (up to 17)is pretty important,see the"10204060801000100200300400500600700800900P e r c e n t a g e o f a l l k n o w n r o u t e s Prefixes Selection of best routes among all known(a)Proportion of routes selected as best 0204060801000100200300400500600700800900P e r c e n t a g e o f r o u t e r sPrefixes Selection of most popular external route by routers(b)Proportion of routers that select mostwidely selected routeFig.5.Selection of best routes among all known.routes are known tend to have a large fraction of these external routes selected as best by at least one router.Figure 5(b)gives for each prefix,the fraction of all routers that selected the most popular among all the known routes.By most popular route ,we mean the route which was selected as best by the largest number of routers inside the AS.Among the subset of the routes that are selected as best by at least one router,the one that is selected as best by the largest number of routers is chosen by a very large frac-tion of the routers compared to other routes.Obviously,all prefixes of the second type according to the previous paragraph will appear as points with 100%of the routers having selected the same route on Figure 5(b).We can see on Figure 5(b)that most points lie above 50%,except for prefixes having a very large number of external routes known.For the latters,the choice of the best route is less biased towards a single route.9Route diversity per routerEven though the previous section showed that the choice of the best routes inside the studied network favors a loss in route diversity across the iBGP graph,we would expect that diversity is still present somewhere in the AS.We might expect that the iBGP signaling graph under route-reflection limits the number of iBGP sessions compared to a full-mesh,but without removing all the route diversity known across the whole AS.In this section,we want to see whether there are differences among routers in terms of route diversity.A desirable goal would be that all routers know two unique routes for each prefix.In such a case,even if the current best route is withdrawn the router can switch immediately to the alternative route.Note that if the route is withdrawn due to a failure inside the AS or at the peering link over which the route was announced then local protection can be used.Figure 6show,for each router,how many unique external routes it knows towards any prefix.The y-axis of Figure 6gives the 20and 80percentiles of this number of unique routes for each router over all considered prefixes.The ends of the bars show the 20and 80percentiles.Routers on the x-axis of Figure 6are ordered by increasing median of their real diversity .Figure 6shows that some routers (the rightmost ones)have a large number of unique routes in their Adj-RIB-ins for most prefixes.These routers having diver-sity are both level-1and level-0reflectors.However,many routers have a value123456720406080100N u m b e r o f u n i q u e r o u t e s Routers (ordered by increasing real diversity)Unique routes per routerFig.6.Unique routes known to routers.of 1both as their 20and 80percentile.This means that these routers only know 1unique external route for most of the prefixes.These are mainly level-2routers in the route-reflection hierarchy.This is something to be expected in a real network as most clients are topologically close to their route-reflectors,hence even though they might be connected to several higher level route-reflector,they will receive the same route (in eBGP origin)from the route-reflectors they are peering with.The iBGP structure of the studied network hence does not lack diversity,but di-versity is very unevenly distributed among the routers.A few routers (top-level route-reflectors)have a very high diversity while most routers know only a single route.10ConclusionIn this paper,we quantified the diversity of the routes inside a tier-1ISP.By building a model of the tier-1ISP and reproducing its routing,we tried to better understand how its iBGP structure impacts its BGP route diversity.We showed that the impact of the use of route-reflection on route diversity is sig-nificant.Most routers of our tier-1network typically only know a single external route towards a destination prefix.Its iBGP graph propagated redundant routes that are not externally distinct from eBGP origin.We identified two causes for this lack of diversity.First,some routes are never selected as best by any router inside the network,but are known only to one border router.Second,among the routes that are selected as best by at least one router,a few are selected as best by a majority of the routers,preventing diverse routes to propagate across the AS.Our results point to the big distance in terms of route diversity between route-reflection and an iBGP full-mesh.Route-reflection thus reduces the number of iBGP sessions at a high cost in limiting the diversity of the routes inside the AS.Routes diversity inside an AS is important in case of failures,to ensure that all routers always have a route during the convergence of BGP after a failure.Our work hence calls for a deeper understanding of the possible trade-offs between iBGP route diversity,scalability and safety in the convergence of BGP.AcknowledgmentsThe work of Sébastien Tandel was carried under France Télécom contract46126 699.We would like to thank Vincent Gillet from OpenTransit and Bruno De-craene from France Télécom R&D for their help to gather the data.We would also like to thank Olaf Maennel for many insightful suggestions about the pre-sentation of this paper.References1.T.Bates,R.Chandra,and E.Chen,“BGP Route Reflection-An Alterna-tive to Full Me sh IBGP,”Internet Engineering Task Force,RFC2796,April 2000.2. B.Halabi and D.Mc Pherson,Internet Routing Architectures(2nd Edition),Cisco Press,January2000.3. bovitz,A.Ahuja,A.Bose,and F.Jahanian,“An experimental study ofInternet routing convergence,”in Proc.of ACM SIGCOMM,August2000.4.Cisco,“BGP best path selection algorithm,”/warp/public/459/25.shtml.5.Timothy G.Griffin and Gordon Wilfong,“On the correctness of iBGP con-figuration,”in Proc.of ACM SIGCOMM,August2002.6.N.Feamster and H.Balakrishnan,“Detecting BGP Configuration Faultswith Static Analysis,”in Proceedings of the2nd Symposium on Networked Systems Design and Implementation(NSDI),May2005.7. B.Quoitin and S.Uhlig,“Modeling the routing of an Autonomous Systemwith C-BGP,”IEEE Network Magazine,vol.19,no.6,November2005. 8. B.Quoitin,“C-BGP,an efficient BGP simulator,”.ucl.ac.be/,September2003.9.Cisco,“NetFlow services and applications,”White paper,available from/warp/public/732/netflow,1999. 10.T.Cormen,C.Leiserson,R.Rivest,and C.Stein,Introduction to Algorithms,Second Edition,MIT Press and McGraw-Hill,2001.11. D.Walton,A.Retana,and E.Chen,“Advertisement of Multiple Paths inBGP,”Internet draft,draft-walton-bgp-add-paths-04.txt,work in progress, September2005.。