初二年级数学勾股定理专题强化训练二 (2)

合集下载

八年级初二数学 提高题专题复习勾股定理练习题及答案

八年级初二数学 提高题专题复习勾股定理练习题及答案

八年级初二数学 提高题专题复习勾股定理练习题及答案一、选择题1.图中不能证明勾股定理的是( )A .B .C .D .2.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个3.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .104.如图钢架中,∠A =15°,现焊上与AP 1等长的钢条P 1P 2,P 2P 3…来加固钢架,若最后一根钢条与射线AB 的焊接点P 到A 点的距离为3 )A .16B .15C .12D .105.如图,在四边形ABCD 中,∠DAB =30°,点E 为AB 的中点,DE ⊥AB ,交AB 于点E ,DE =3,BC =1,CD =13,则CE 的长是( )A .14B .17C .15D .136.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C .512+D .327.如图,已知AB AC =,则数轴上C 点所表示的数为( )A .3-B .5-C .13-D .15-8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4 B .16 C .34D .4或34 9.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32πC .2πD .1210.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c ===B .5,5,52a b c ===C .::3:4:5a b c =D .11,12,13a b c ===二、填空题11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.12.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.13.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.14.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.15.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___17.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.18.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.19.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.20.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.24.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.25.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.26.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .29.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.30.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项.【详解】解:A 选项不能证明勾股定理;B 选项,通过大正方形面积的不同表示方法,可以列式()22142a b ab c +=⨯+,可得222+=a b c ;C 选项,通过梯形的面积的不同表示方法,可以列式()22112222a b ab c +=⨯+,可得222+=a b c ; D 选项,通过这个不规则图象的面积的不同表示方法,可以列式222112222c ab a b ab +⨯=++⨯,可得222+=a b c . 故选:A .【点睛】本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.2.D解析:D【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误;∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 3.C解析:C【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.【详解】∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值,设AH ⊥BC ,∵56AB AC BC ===,∴BH=3, ∴224AH AB BH =-=, ∵1122ABC SBC AH AC BP =⋅=⋅, ∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8,故选:C.【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.4.D解析:D【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB 的焊接点P 到A 点的距离即AP 5为3AP 1=a ,作P 2D ⊥AB 于点D ,再用含a 的式子表示出P 1P 3,P 3P 5,从而可求出a 的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.【详解】解:如图,∵AP 1与各钢条的长度相等,∴∠A=∠P 1P 2A=15°,∴∠P 2P 1P 3=30°,∴∠P 1P 3P 2=30°,∴∠P 3P 2P 4=45°,∴∠P 3P 4P 2=45°,∴∠P 4P 3P 5=60°,∴∠P 3P 5P 4=60°,∴∠P 5P 4P 6=75°,∴∠P 4P 6P 5=75°,∴∠P 6P 5B=90°,此时就不能再往上焊接了,综上所述总共可焊上5根钢条.设AP 1=a ,作P 2D ⊥AB 于点D ,∵∠P2P1D=30°,∴P2D=12P1P2,∴P1D=32a,∵P1P2=P2P3,∴P1P3=2P1D =3a,∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等边三角形,∴P3P5=a,∵最后一根钢条与射线AB的焊接点P到A点的距离为4+23,∴AP5=a+3a+a=4+23,解得,a=2,∴所有钢条的总长为2×5=10,故选:D.【点睛】本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.5.D解析:D【解析】【分析】连接BD,作CF⊥AB于F,由线段垂直平分线的性质得出BD=AD,AE=BE,得出∠DBE=∠DAB=30°,由直角三角形的性质得出BD=AD=2DE=23,AE=BE=3DE=3,证出△BCD是直角三角形,∠CBD=90°,得出∠BCF=30°,得出BF=12BC=12,CF=3BF=32,求出EF=BE+BF=72,在Rt△CEF中,由勾股定理即可得出结果.【详解】解:连接BD,作CF⊥AB于F,如图所示:则∠BFC=90°,∵点E为AB的中点,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30°,∴∠DBE=∠DAB=30°,BD=AD=2DE=23,AE=BE=3DE=3,∵BC 2+BD 2=12+(23)2=13=CD 2,∴△BCD 是直角三角形,∠CBD=90°,∴∠CBF=180°-30°-90°=60°,∴∠BCF=30°,∠BFC=90°,∴∠BCF=30°,∴BF=12BC=12,CF=3BF=3, ∴EF=BE+BF=72, 在Rt △CEF 中,由勾股定理得:CE=22731322⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭; 故选D .【点睛】本题考查了勾股定理、勾股定理的逆定理、线段垂直平分线的性质、等腰三角形的性质;熟练掌握勾股定理和逆定理是解题的关键. 6.A解析:A【解析】试题解析:如图,过D 作AB 垂线交于K ,∵BD 平分∠ABC ,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD ,在△BCD 和△BKD 中,CD KD BD BD ⎧⎨⎩== ∴△BCD ≌△BKD ,∴BC=BK=3∵E 为AB 中点∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,设DK=DC=x,AD=4-x,∴AD2=AK2+DK2即(4-x)2=22+x2解得:x=3 2∴在Rt△DEK中,.故选A.7.D解析:D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,AB==∴AC AB==∵点A表示的数是1∴点C表示的数是1-故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.8.D解析:D【解析】试题解析:当3和5当5.故选D.9.A解析:A【分析】分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm ,AC=3cm ,BC=5cm ,∴以AB 为直径的半圆的面积S 1=2π(cm 2);以AC 为直径的半圆的面积S 2=98π(cm 2); 以BC 为直径的半圆的面积S 3=258π(cm 2); S △ABC =6(cm 2);∴S 阴影=S 1+S 2+S △ABC -S 3=6(cm 2);故选A .【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 10.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=()252,故能构成直角三角形; C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形.二、填空题11.【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴ ∠90°.根据勾股定理可得.12.82【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA+PD的最小值为2.故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.13.5【分析】在直角ABC中,依据勾股定理求出AC的长度,再算出BD,过点B作BE AC⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =, ∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.14.75或6或94 【分析】当△ABP 为等腰三角形时,分三种情况:①当AB =BP 时;②当AB =AP 时;③当BP =AP 时,分别求出BP 的长度,继而可求得t 值.【详解】在Rt △ABC 中,BC 2=AB 2﹣AC 2=7.52﹣4.52=36,∴BC =6(cm );①当AB =BP =7.5cm 时,如图1,t =7.52=3.75(秒); ②当AB =AP =7.5cm 时,如图2,BP =2BC =12cm ,t =6(秒);③当BP =AP 时,如图3,AP =BP =2tcm ,CP =(4.5﹣2t )cm ,AC =4.5cm , 在Rt △ACP 中,AP 2=AC 2+CP 2,所以4t 2=4.52+(4.5﹣2t )2,解得:t =94, 综上所述:当△ABP 为等腰三角形时,t =3.75或t =6或t =94. 故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.15.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 16.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P=4.B=S Q=9,C=S K,根据勾股定理,可得A+B=C,∴C=13.若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.17.71-【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M与A重合时,AP取最大值,此时标记为P1,由折叠的性质易得四边形AP1NB是正方形,在Rt△ABC中,2222--,AB=AC BC=54=3∴AP的最大值为A P1=AB=3如图所示,当点N与C重合时,AP取最小,过C点作CD⊥直线l于点D,可得矩形ABCD,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt△PCD中,2222PD=PC CD=43=7--,-∴AP的最小值为AD PD=47线段AP 长度的最大值与最小值之差为()1AP AP=347=71----故答案为71-【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.18.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N ′=22''OM ON +=10. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.19.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.20.17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,所以有22217(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可. 三、解答题21.(12)150°;(3【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP 22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG ()2222113322AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG 13【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.24.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(,解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.25.(1)详见解析;(241;(33【分析】(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠= 所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以3AB所以33AD AB AB==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.26.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =,∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH ,∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.27.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+- 又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD=+=∴22CD =2222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90°∴由勾股定理得222DF CD CF CD =+=又DF=BF-BD=AD-BD∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)见解析;(2)27BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中,∴OC ==.在Rt △BOC 中,∴BC === 【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.29.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD的边长为2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--,化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M ,②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.30.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133k k k k ++++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,∴BG=AE,∠ABG=∠BAE,∴BG∥AE,∴四边形AGBE是平行四边形,ⅱ)如图2中,作AH⊥BC于H.∵BH=CH=1 (1) 2k+∴1113 1(1),3(1) 2222DH k k AH BH k =-+=-==+∴222AH DH k k1AD=+=++∴四边形BGAE的周长=22k k1k+++,△ABC的周长=3(k+1),∴四边形AGBE与△ABC2221 k k k+++【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

2020年人教版初中数学八年级练习题-勾股定理(2)

2020年人教版初中数学八年级练习题-勾股定理(2)

2 3 2020年人教版初中数学八年级练习题-勾股定理(2)一、 选择题1. 一个等腰直角三角形的一条直角边长为 2,则斜边长为()A. B. 3 2C. D. 2 2. 已知△ABC 中,∠A=1∠B=1∠C,则它的三条边之比为( )2 3 A. 1:1: B. 1: 3:2 C.1: 2: D.1:4:13. 在平面直角坐标系中,点 P (-2 , 3)到原点的距离是()A. B. C. D.24. 如图为长方形钟面示意图,时钟的中心在长方形对角线的交点上,长方形宽为 40cm ,钟面数字 2 在长方形的顶点处,则长方形的长为()cmA.80B.60C.50D.40 5. 在△ABC 中,∠A=45°,∠B=30°,CD⊥AB 于点 D,CD=2,则 AB 的长为( )A.6B.4C.2D.2+2 6. 如图,一艘轮船位于灯塔P 的北偏东 60°方向,与灯塔P 的距离为 30 海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东 30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A.60 海里B.45 海里C.20 3海里D.30 3海里二、填空题1. 在 Rt△ABC 中,∠C=90°.(1) 如图 1,BC=1,AC=2, 求 AB=(2) 如图 2,∠A=30°, BC=2, 求 AC=22 2 23 5 11 13 3 32.直角三角形的三边长为连续偶数,则最长边的长是.3.如图,一个16 米的旗杆折断了,旗杆顶部落在距离旗杆底部8 米处的地面上,则旗杆折断点离地面的距离为米.4.如图,Rt△ABC中,∠C=90°,AC=6,AB=10,D 为BC 上一点,将 AC 沿AD 折叠,使点C 落在AB 上点C’处,则CD 的长为.5.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若 CD=5,则 AC=.6.在△ABC 中,AB= 15 , AC= 13 ,高 AD= 12 , 则△ ABC 的面积是.三、解答题1.作图题方格纸中的每个小正方形的边长均为 1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形;(1)在图中画出 1 个等腰直角三角形 ABC,使它的面积为 5;(2)直接写出△ABC的周长;2.如图 1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面 15 米,梯子的长度比梯子底端离墙的距离大 5 米.(1)这个云梯的底端离墙多远?(2)如图 2,如果梯子的顶端下滑了 8m,那么梯子的底部在水平方向滑动了多少米?(1)(2)。

南京市八年级数学试卷易错易错压轴选择题精选:勾股定理选择题专题练习(附答案)(2)

南京市八年级数学试卷易错易错压轴选择题精选:勾股定理选择题专题练习(附答案)(2)

南京市八年级数学试卷易错易错压轴选择题精选:勾股定理选择题专题练习(附答案)(2)一、易错易错压轴选择题精选:勾股定理选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m2.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )A .5B .8C .10D .12 3.已知一个直角三角形的两边长分别为1和2,则第三边长是( )A .3B .3C .5D .3或5 4.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A .20B .24C .994D .5325.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A .2016B .2017C .2018D .20196.圆柱形杯子的高为18cm ,底面周长为24cm ,已知蚂蚁在外壁A 处(距杯子上沿2cm )发现一滴蜂蜜在杯子内(距杯子下沿4cm ),则蚂蚁从A 处爬到B 处的最短距离为( )A .813B .28C .20D .122 7.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形8.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .239.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm10.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )A .5B .8C .13D .4.811.如图,在矩形ABCD 中,AB =3,BC =4,在矩形内部有一动点P 满足S △PAB =3S △PCD ,则动点P 到点A ,B 两点距离之和PA +PB 的最小值为( )A .5B .35C .332+D .21312.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( )A .32B .213C .5D .613.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=AD D .F BAQ ∠=∠14.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c = 15.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或34 16.图中不能证明勾股定理的是( )A .B .C .D .17.如图,是一张直角三角形的纸片,两直角边6,8AC BC ==,现将ABC 折叠,使点B 点A 重合,折痕为DE ,则BD 的长为( )A .7B .254C .6D .11218.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°19.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .245B .5C .6D .820.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32πC .2πD .12 21.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .63 22.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)23.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2()a b + 的值为( ).A .49B .25C .13D .124.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个25.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .200mB .300mC .400mD .500m26.下列长度的三条线段能组成直角三角形的是( )A .9,7,12B .2,3,4C .1,2,3D .5,11,12 27.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .428.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A .2,24a aB .23,24a aC .233,24a aD .233,44a a 29.如图,AB =AC ,∠CAB =90°,∠ADC=45°,AD =1,CD =3,则BD 的长为( )A .3B .11C .23D .430.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.B解析:B【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC ∥AD ,∴∠DAE=∠ACB ,又∵BC ⊥AB ,DE ⊥AC ,∴∠ABC=∠DEA=90°,又∵AB=DE=400m ,∴△ABC ≌△DEA ,∴EA=BC=300m ,在Rt △ABC 中,AC=22AB BC =500m ,∴CE=AC-AE=200,从B 到E 有两种走法:①BA+AE=700m ;②BC+CE=500m ,∴最近的路程是500m .故选B .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.C解析:C【解析】分析:通过切线的性质表示出EC 的长度,用相似三角形的性质表示出OE 的长度,由已知条件表示出OC 的长度即可通过勾股定理求出结果.详解:如图:连接BC ,并连接OD 交BC 于点E :∵DP ⊥BP ,AC 为直径;∴∠DPB=∠PBC=90°.∴PD ∥BC,且PD 为⊙O 的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC. ∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理.3.D解析:D【解析】当一直角边、斜边为1和2时,第三边==;当两直角边长为1和2时,第三边==; 故选:D. 4.B解析:B【分析】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b 的值,得出x 2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x ,则矩形的一边长为(a+x ),另一边为(b+x ),根据题意得 :2(ax+x 2+bx )=(a+x )(b+x ),化简得 :ax+x 2+bx-ab=0,又∵ a = 3 , b = 4 ,∴x 2+7x=12;∴该矩形的面积为=(a+x )(b+x )=(3+x )(4+x )=x 2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.5.D解析:D【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP 1=2OP 2=3,OP 3=4=2,∴OP 4=5, …,OP 2018=2019.故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.6.C解析:C【解析】分析:将杯子侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.详解:如图所示,将杯子侧面展开,作A 关于EF 的对称点A ′,连接A ′B ,则A ′B 即为最短距离,A ′B =2222=1216=20A D BD '++ (cm )故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A 关于EF 的对称点A ′是解题的关键.7.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.8.B解析:B【分析】设OA =a ,OB =b ,OC =c ,OD =d ,根据勾股定理求出a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,即可证得a 2+d 2=18,由此得到答案.【详解】设OA =a ,OB =b ,OC =c ,OD =d ,由勾股定理得,a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,则a 2+b 2+c 2+b 2+c 2+d 2=50,∴a 2+d 2+2(b 2+c 2)=50,∴a 2+d 2=50﹣16×2=18,∴AD =221832a d +==,故选:B .【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.9.C解析:C【分析】当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,根据勾股定理得到AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,于是得到结论.【详解】解:当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,∵∠C=90°,AC=4cm ,BC=3cm ,∴AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,∴AC ′=AB-BC ′=2cm .故选:C .【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.D解析:D【分析】过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABC ACD BCDS S S =+即可求出答案. 【详解】如图,过点C 作CH ⊥AB ,连接CD ,∵AC=BC ,CH ⊥AB ,AB=8,∴AH=BH=4,∵AC=5, ∴2222543CH AC AH =-=-=, ∵ABC ACD BCD S S S =+,∴111222AB CH AC DE BC DF ⋅⋅=⋅⋅+⋅⋅, ∴1118355222DE DF ⨯⨯=⨯+⨯, ∴DE+DF=4.8,故选:D.【点睛】此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到ABC ACD BCDS S S =+的思路是解题的关键,依此作辅助线解决问题. 11.B解析:B【分析】首先由PAB PCD S =3S △△,得知动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A关于直线l 的对称点E ,连接AE 、BE ,则BE 的长就是所求的最短距离,然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值.【详解】解:∵PAB PCD S =3S △△, 设点P 到CD 的距离为h ,则点P 到AB 的距离为(4-h ),则11AB (4-h)=3CD h 22⋅⋅⨯⋅⋅,解得:h=1,∴点P 到CD 的距离1,到AB 的距离为3, ∴如下图所示,动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,且两点之间线段最短,∴PA+PB 的最小值即为BE 的长度,AE=6,AB=3,∠BAE=90°,根据勾股定理:22222BE =AE AB =63=35++,故选:B .【点睛】本题考查了轴对称—最短路线问题(两点之间线段最短),勾股定理,得出动点P 所在的位置是解题的关键.12.D解析:D【分析】先根据B (3m ,4m+1),可知B 在直线y=43x+1上,所以当BD ⊥直线y=43x+1时,BD 最小,找一等量关系列关于m 的方程,作辅助线:过B 作BH ⊥x 轴于H ,则BH=4m+1,利用三角形相似得BH 2=EH•FH ,列等式求m 的值,得BD 的长即可.【详解】解:如图,∵点B(3m ,4m+1),∴令341m x m y=⎧⎨+=⎩, ∴y=43x+1, ∴B 在直线y=43x+1上, ∴当BD ⊥直线y=43x+1时,BD 最小,过B 作BH ⊥x 轴于H ,则BH=4m+1,∵BE 在直线y=43x+1上,且点E 在x 轴上, ∴E(−34,0),G(0,1) ∵F 是AC 的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt △BEF 中,∵BH 2=EH ⋅FH ,∴(4m+1)2=(3m+34)(3−3m) 解得:m 1=−14(舍),m 2=15, ∴B(35,95), ∴BD=2BF=2×2239(3)55⎛⎫-+ ⎪⎝⎭=6, 则对角线BD 的最小值是6;故选:D .【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B 的坐标确定其所在的直线的解析式是关键.13.C解析:C【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.14.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.15.D解析:D【解析】试题解析:当3和5都是直角边时,第三边长为:2235+=34;当5是斜边长时,第三边长为:2253-=4.故选D .16.A解析:A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项.【详解】解:A 选项不能证明勾股定理;B 选项,通过大正方形面积的不同表示方法,可以列式()22142a b ab c +=⨯+,可得222+=a b c ;C 选项,通过梯形的面积的不同表示方法,可以列式()22112222a b ab c +=⨯+,可得222+=a b c ; D 选项,通过这个不规则图象的面积的不同表示方法,可以列式222112222c ab a b ab +⨯=++⨯,可得222+=a b c . 故选:A .【点睛】本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.17.B解析:B【分析】由折叠的性质得出AD=BD,设BD=x,则CD=8-x,在Rt△ACD中根据勾股定理列方程即可得出答案.【详解】解:∵将△ABC折叠,使点B与点A重合,折痕为DE,∴AD=BD,设BD=x,则CD=8-x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8-x)2=x2,解得x= 25 4∴BD=254.故选:B.【点睛】本题考查了翻折变换的性质、勾股定理等知识,熟练掌握方程的思想方法是解题的关键.18.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A中如果∠A﹣∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC 是直角三角形,选项正确;选项B中如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC 是直角三角形,选项正确;选项C中如果 a2:b2:c2=9:16:25,满足a2+b2=c2,那么△ABC 是直角三角形,选项正确;选项D中如果 a2=b2﹣c2,那么△ABC 是直角三角形且∠B=90°,选项错误;故选D.【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.19.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C 作CM ⊥AB 于M ,交AD 于P ,过P 作PQ ⊥AC 于Q ,∵AD 是∠BAC 的平分线,∴PQ=PM ,则PC+PQ=PC+PM=CM ,即PC+PQ 有最小值,为CM 的长,∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10, 又1122ABC S AB CM AC BC ==△, ∴6824105CM ⨯==, ∴PC+PQ 的最小值为245, 故选:A .【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.20.A解析:A【分析】分别求出以AB 、AC 、BC 为直径的半圆及△ABC 的面积,再根据S 阴影=S 1+S 2+S △ABC -S 3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm ,AC=3cm ,BC=5cm ,∴以AB 为直径的半圆的面积S 1=2π(cm 2);以AC 为直径的半圆的面积S 2=98π(cm 2); 以BC 为直径的半圆的面积S 3=258π(cm 2); S △ABC =6(cm 2);∴S 阴影=S 1+S 2+S △ABC -S 3=6(cm 2);故选A .【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.21.D解析:D【分析】根据直角三角形的性质求出BC ,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6, 由勾股定理得,AC=2263AB BC =-,故选:D .【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键. 22.D解析:D【详解】解:(1)当点P 在x 轴正半轴上,①以OA 为腰时,∵A 的坐标是(2,2),∴∠AOP=45°,OA=22,∴P 的坐标是(4,0)或(22,0);②以OA 为底边时,∵点A 的坐标是(2,2),∴当点P 的坐标为:(2,0)时,OP=AP ;(2)当点P 在x 轴负半轴上,③以OA 为腰时,∵A 的坐标是(2,2), ∴OA= 22, ∴OA=AP=22∴P 的坐标是(-22,0).故选D .23.A解析:A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a 2+b 2=25,四个三角形的面积=4×12ab=25-1=24, ∴2ab=24,联立解得:(a+b )2=25+24=49.故选A.24.D解析:D【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确;∵∠A =∠B -∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误; ∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.25.D解析:D【分析】由于BC ∥AD ,那么有∠DAE=∠ACB ,由题意可知∠ABC=∠DEA=90°,BA=ED ,利用AAS 可证△ABC ≌△DEA ,于是AE=BC=300,再利用勾股定理可求AC ,即可求CE ,根据图可知从B 到E 的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC 中,AC=22500AB BC m +=∴CE=AC-AE=200, 从B 到E 有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选D.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.26.C解析:C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、因为92+72≠122,所以三条线段不能组成直角三角形;B 、因为22+32≠42,所以三条线段不能组成直角三角形;C 、因为12+32= 22,所以三条线段能组成直角三角形;D 、因为52+112≠122,所以三条线段不能组成直角三角形.故选C .【点睛】此题考查勾股定理逆定理的运用,注意数据的计算.27.C解析:C【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+42=(10-x )2,解得:x=4.2,答:折断处离地面的高度OA 是4.2尺.故选C .【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.28.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()22AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×32a =34a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.29.B解析:B【分析】过点A 作AE ⊥AD 交CD 于E ,连接BE ,利用SAS 可证明△BAE ≌△CAD ,利用全等的性质证得∠BED=90°,最后根据勾股定理即可求出BD.【详解】解:如图,过点A 作AE ⊥AD 交CD 于E ,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,∴在Rt △ADE 中,DE=22112+=, ∵∠DAE=∠BAC=90°,∴∠DAE+∠EAC=∠BAC+∠EAC ,即∠CAD=∠BAE ,又∵AB=AC,∴△BAE ≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴在Rt △BED 中, BD=()22223211BE DE +=+=.故选B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识,作辅助线构造出全等三角形是解题的关键.30.C解析:C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理.。

《第17章勾股定理》期末复习综合提升训练2(附答案)-2020-2021学年人教版八年级数学下册

《第17章勾股定理》期末复习综合提升训练2(附答案)-2020-2021学年人教版八年级数学下册

人教版八年级数学下册《第17章勾股定理》期末复习综合提升训练2(附答案)1.如图,Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且,且S1=4,S3=16,则S2=()A.20B.12C.2D.22.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m3.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.4.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM =5,则CE2+CF2等于()A.75B.100C.120D.1255.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.如图,C是线段AB上一动点,△ACD,△CBE都是等边三角形,M,N分别是CD,BE 的中点,若AB=4,则线段MN的最小值为()A.B.C.D.7.如图,在Rt△ABC中,∠C=90°,线段AB的垂直平分线交BC于点D,交AB于点E.若AC=6,BC=8,则AD的长为()A.5B.7C.3D.8.△ABC的三边为a,b,c且(a+b)(a﹣b)=c2,则该三角形是()A.锐角三角形B.以c为斜边的直角三角形C.以b为斜边的直角三角形D.以a为斜边的直角三角形9.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形10.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①x2+y2=49;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是()A.①②B.②④C.①②③D.①③11.在Rt△ABC中,∠C=90°,AB=25cm,AC=15cm,CH⊥AB垂足为H,CH=.12.如图所示的网格是正方形网格,则∠BAC+∠CDE=(点A,B,C,D,E是网格线交点).13.如图,已知线段AC=1,经过点A作AB⊥AC,使AB=AC,连接BC,在BC上截取BE=AB,在CA上截取CD=CE,则AD的值是.14.如图,Rt△ABC中,∠ACB=90°,AC=8,BC=6,分别以AB、AC、BC为边在AB 的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于.15.锐角△ABC中,已知AB=13,AC=15,AD⊥BC于D,AD=12,则BC=.16.如图,小明想要测量学校旗杆AB的高度,他发现系在旗杆顶端的绳子垂到了地面,从而测得绳子比旗杆长a米,小明将这根绳子拉直,绳子的末端落在地面的点C处,点C 距离旗杆底部b米(b>a),则旗杆AB的高度为米(用含a,b 的代数式表示).17.如图,正方形ABCD是由四个全等的直角三角形围成的,若CF=5,AB=13,则EF 的长为.18.△ABC中,AB=AC=6,∠BAC=120°,P是BC上的动点,Q是AC上的动点(Q不与A,C重合).(1)线段P A的最小值为;(2)当△ABP为直角三角形时,△PCQ也为直角三角形时,则CQ的长度为.19.若A(3,﹣4),B(5,a)两点间距离为4,则a=.20.如图,在四边形ABCD中,∠B=90°,AB=3,BC=6,点E在BC上,AE⊥DE.且AE=DE,若EC=1.则CD=.21.已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2.(1)判断△ABC的形状并说明理由;(2)若DE=3,BD=4,求AE的长.22.如图,在四边形ABCD中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,BC=12,求CD.23.如图,一个梯子AB长25米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为15米,梯子滑动后停在DE的位置上,测得BD长为5米,请回答:(1)梯子滑动后,梯子的高度CE是多少米?(2)梯子顶端A下落的长度AE有多少米?24.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则:(1)E站应建在距A站多少千米处?(2)DE和EC垂直吗?说明理由.25.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.26.如图,已知四边形ABCD中,AD=2,CD=2,∠B=30°,过点A作AE⊥BC,垂足为E,AE=1,且点E是BC的中点,求∠BCD的度数.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究:(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为直径,向外侧作半圆,则面积S1,S2,S3之间的关系式为;推广验证:(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用:(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.参考答案1.解:由勾股定理得,AC2=AB2﹣BC2=16﹣4=12,则S2=AC2=12,故选:B.2.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.3.解:在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=3,∴AE=2,∵AD2=DE2+AE2,∴DE2+22=(4﹣DE)2,∴DE=,∴BD===.故选:D.4.解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.5.解:设另一条直角边是a,斜边是c.根据题意,得,联立解方程组,得.故选D.6.解:连接CN,∵△ACD和△BCE为等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=∠B=60°,∠DCE=60°,∵N是BE的中点,∴CN⊥BE,∠ECN=30°,∴∠DCN=90°,设AC=a,∵AB=4,∴CM=a,CN=(4﹣a),∴MN===,∴当a=3时,MN的值最小为.故选:C.7.解:∵线段AB的垂直平分线交BC于点D,∴BD=AD,设AD=x,则CD=8﹣x,∵AD2=CD2+AC2,∴x2=(8﹣x)2+62,解得x=.故选:D.8.解:由题意,a2﹣b2=c2,∴b2+c2=a2,此三角形三边关系符合勾股定理的逆定理,所以此三角形是以a为斜边的直角三角形.故选:D.9.解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选:D.10.解:由题意知,由①﹣②得2xy=45 ③,∴2xy+4=49,①+③得x2+2xy+y2=94,∴(x+y)2=94,∴x+y=.∴结论①②③正确,④错误.故选:C.11.解:在Rt△ABC中,∠ACB=90°,根据勾股定理可得:BC==20,∵Rt△ABC的面积=×BC×AC=×AB×CH,∴20×15=25×CH,解得,CH=12(cm).答案为12cm.12.解:设小正方形的边长是1,连接AD,∵AD==,CD==,AC==,∴AD=CD,AD2+CD2=AC2,∴∠ADC=90°,即△ADC是等腰直角三角形,∴∠DAC=∠DCA=45°,∵AB∥DE,∴∠BAC+∠DAC+∠CDE=180°,∴∠BAC+∠CDE=45°,故答案为:45°.13.解:∵AB=AC,AC=1,∴AB=,在Rt△ABC中,∠BAC=90°,AC=1,AB=,则BC==,∴CE=﹣,∴CD=CE﹣,∴AD=AC﹣CD=1﹣(﹣)=,故答案为:.14.解:过D作BF的垂线交BF于N,连接DI,在△ACB和△BND中,,∴△ACB≌△BND(AAS),同理,Rt△MND≌Rt△OCB,∴MD=OB,∠DMN=∠BOC,∴EM=DO,∴DN=BC=CI,∵DN∥CI,∴四边形DNCI是平行四边形,∵∠NCI=90°,∴四边形DNCI是矩形,∴∠DIC=90°,∴D、I、H三点共线,∵∠F=∠DIO=90°,∠FME=∠DMN=∠BOC=∠DOI,∴△EMF≌△DOI(AAS),∵图中S2=S Rt△DOI,S△BOC=S△MND,∴S2+S4=S Rt△ABC.S3=S△ABC,在Rt△AGE和Rt△ABC中,,∴Rt△AGE≌Rt△ABC(HL),同理,Rt△DNB≌Rt△BHD,∴S1+S2+S3+S4=S1+S3+(S2+S4)=Rt△ABC的面积+Rt△ABC的面积+Rt△ABC的面积=Rt△ABC的面积×3=8×6÷2×3=72.故答案为:72.15.解:如图,在Rt△ABC中,AB=13,AD=12,由勾股定理得,BD2=AB2﹣AD2=132﹣122=25,∴BD=5,在Rt△ACD中,AC=15,AD=12,由勾股定理得,CD2=AC2﹣AD2=152﹣122=81,∴CD=9,∴BC=BD+CD=5+9=14.故答案为:14.16.解:设旗杆的高为x米.在Rt△ABC中,∵AC2=AB2+BC2,∴(x+a)2=b2+x2,∴x=,故答案为:米.17.解:如图,∵正方形ABCD是由四个全等的直角三角形围成的,∴AH=BE=CG=DF,AE=BG=CF=DH,∴EG=GF=GH=HE,∴四边形EGFH为菱形,∵△ABE为直角三角形,∴∠AEB=∠GEH=90°,∴四边形EGFH为正方形,∵四边形ABCD为正方形,∴CD=AB=13,在Rt△CDF中,∠DFC=90°,CF=5,根据勾股定理得,DF=12,∴GF=DF﹣DH=GC﹣FC=7,在△GEF中,GE=GF=7,∠EGF=90°,根据勾股定理得,EF==7.故答案为:7.18.解:(1)作AP⊥BC于P,∵△ABC中,AB=AC=6,∠BAC=120°,∴∠B=∠C=30°,由垂线段最短可知,线段P A的最小值为AB=3.故答案为:3;(2)如①,∠APB=90°,∠PQC=90°时,AQ=AP=1.5,CQ=6﹣1.5=4.5;如②,∠BAP=90°,∠QPC=90°时,BP2﹣AP2=AB2,即BP2﹣(BP)2=62,解得BP=±4(负值舍去),由勾股定理得BP=3,∴BC=6,∴CP=2,由勾股定理得CQ=±4(负值舍去);∠BAP=90°,∠PQC=90°时,CP=2,由勾股定理得CQ=±3(负值舍去).综上所述,CQ的长度为4.5或4或3.故答案为:4.5或4或3.19.解:根据两点之间的距离公式得:AB=,∴4+(﹣4﹣a)2=16,∴(﹣4﹣a)2=12,解得:或.故答案为:或﹣.20.解:过点D作DF⊥BC,交BC延长线于点F,由题意得,BE=BC﹣EC=5,∵∠B=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠DEC=90°,∴∠BAE=∠DEC,∵AE=DE,∠B=∠DFE=90°,∴△ABE≌△EFD(AAS),∴EF=AB=3,DF=BE=5,∴CF=EF﹣CE=2,∵∠DFC=90°,∴DC=.故答案为:.21.解:(1)△ABC是直角三角形,理由如下:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE,∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°,∴△ABC是直角三角形;(2)∵DE⊥BC,DE=3,BD=4,∴BE==5=CE,∴AC2=EC2﹣AE2=25﹣EA2,∵D是BC的中点,BD=4,∴BC=2BD=8,在Rt△BAC中:BC2﹣BA2=64﹣(5+EA)2=AC2,∴64﹣(5+AE)2=25﹣EA2,解得AE=.22.解:∵∠BAD=90°,∴△ADB是直角三角形,∴BD===5,∵∠DBC=90°,∴△DBC是直角三角形,∴DC===13.23.解:(1)∵在Rt△ABC中,AB=25米,BC=15米,∴AC===20(米),在Rt△CDE中,∵DE=AB=25米,CD=BC+BD=15+5=20(米),∴EC===15(米),答:梯子滑动后,梯子的高度CE是15米;(2)由(1)知,AC=20米,EC=15米,则AE=AC﹣EC=20﹣15=5(米).答:梯子顶端A下落的长度AE有5米.24.解:(1)∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km.∴BE=15km.(2)DE和EC垂直,理由如下:在△DAE与△EBC中,,∴△DAE≌△EBC(SAS),∴∠DEA=∠ECB,∠ADE=∠CEB,∠DEA+∠D=90°,∴∠DEA+∠CEB=90°,∴∠DEC=90°,即DE⊥EC.25.(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;(2)解:∵△ADC≌△BDF,∴DF=CD=2,在Rt△CDF中,CF===2,∵BE⊥AC,AE=EC,∴AF=CF=2,∴AD=AF+DF=2+2.26.解:如图,连接AC.∵AE⊥BC,点E是BC的中点.∴AB=AC,∴∠ACB=∠B=30°,∴AC=2AE=2.∴在△ACD中,AD2=8,AC2+CD2=4+4=8,∴AD2=AC2+CD2,∴∠ACD=90°,∴∠BCD=∠ACB+∠ACD=120°.27.解:类比探究(1)S1+S2=S3.证明如下:∵S3=πc2,S1=πa2,S2=πb2,∴S1+S2=πa2+πb2=πc2=S3;(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴,同理可得:,∵AB2+AC2=BC2,∴=1,∴S1+S2=S3;(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴==,==,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,==,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∴S△PDE=×=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠PBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.。

数学八年级强化训练《勾股定理》

数学八年级强化训练《勾股定理》

数学八年级强化训练《勾股定理》数学八年级强化训练《勾股定理》1.小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成( ) A.7厘米,12厘米,15厘米; B.7厘米,12厘米,13厘米; C.8 厘米,15厘米,17厘米; D.3 厘米,4厘米,7厘米。

2.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是 ( ) A.8米 B.10米 C.12米 D.14米3.若直角三角形的两条直角边长分别为3cm4cm,则斜边上的高为 ( ) A. cm B. cm C. 5 cm D. cm4.直角三角形斜边的平方等于两直角边乘积的2倍,则这个三角形的锐角是( ) A.15&deg; B.30&deg; C.45&deg;D.75&deg; 5.已知一直角三角形的木,三边的平方和为1800cm2,则斜边长为( ) A.80cm B.30cm C.90cm D.120cm 6.下列结论错误的是( ). A.度数之比为1∶2∶3的三角形是直角三角形 B.三个边长之比为3∶4∶5的三角形是直角三角形 C.三个边长之比为8∶16∶17的三角形是直角三角形D.三个角度之比为1∶1∶2的三角形是直角三角形 7.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A.1倍 B. 2倍 C. 3倍 D. 4倍 8. 9.如图,已知正方形的面积为25,且AC比AB1,BC的长为( ).A.3B.4C.5D.6 10.如二.填空题(每空分,共分) 11.能成为直角三角形三边长的三个正整数叫勾股数(如3,4,5),请再写出三组不同的勾股数________________;______________;______________。

12.三角形的三边满足a2=b2+c2,这个三角形是______三角形,它的最大边是_____. 13.如图,字母B所代表的正方形的面积是 ; 14.若某直角三角形两条直角边长的比为2∶1,斜边长为10cm,则这个直角三角形的面积为 cm2; 15.如图,长方体长宽高分别为4cm3cm、12cm,则BD1= cm。

11.专题勾股定理中的动点问题专练(二)原卷版2020-2021学年八年级数学上册专题培优训练

11.专题勾股定理中的动点问题专练(二)原卷版2020-2021学年八年级数学上册专题培优训练

专题02 勾股定理中的动点问题专练(二)班级:___________姓名:___________得分:___________一、选择题1.如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从点A出发,沿着圆柱的侧面移动到BC的中点S的最短路径为()A. 2√1+π2B. 2√1+4π2C. 4√1+π2D. 2√4+π22.如图,等边△ABC的边AB=8,D是AB上一点,BD=3,P是AC边上一动点,将△ADP沿直线DP折叠,A的对应点为A′,则CA′的长度最小值是()A. 4√3−6B. 2C. 4√3−2√6D. 33.如图,在Rt△ABC中,BC=AC=4,D是斜边AB上的一个动点,把△ACD沿直线CD折叠,使A落在A′处,当A′D垂直于Rt△ABC的直角边时,AD的长为()A. 2√2或4B. 2√2或4√2C. 2或4D. 4或4√2−44.如图,在8×8的网格中(小正方形的边长为1),△ABC和△BDE的位置如图,且顶点都在网格点上,连接AD,点M、N分别是BD、AD上的动点,连接AM,MN,则AM+MN的最小值为()C. 2√10D. 6A. 4√2B. 8√1055.如图,在△ABC中,AB=AC=15,且△ABC的面积为90,D是线段AB上的动点(包含端点),若线段CD的长为正整数...,则点D的个数共有()A. 2个B. 3个C. 4个D. 5个6.如图,在△ABC中,AB=6,BC=8,∠B=90°,若P是AC上的一个动点,则AP+BP+CP的最小值是()A. 14.8B. 15C. 15.2D. 16二、填空题7.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(I)OM的长等于______;(Ⅱ)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.8.在Rt△ABC中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以lcm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的值为______.9.如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E为线段DC上的一个动点,△ADE与△△AD′E关于直线AE对称,当△AD′B′为直角三角形时,DE的长为________________10.如图,在△ABC中,AB=AC=4,BC=3,D为BC边的中点,点E、F分别是线段AC、AD上的动点,且AF=CE,则BE+CF的最小值为______.11.如图,在△ABC中,AB=AC=5,BC=8.P是BC上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE=_________.三、解答题12.如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)则BC=____cm;(2)当t为何值时,点P在边AC的垂直平分线上?此时CQ=____;(3)当点Q在边CA上运动时,直接写出使△BCQ成为等腰三角形的运动时间.13.如图,∠ABC=90∘,AB=6cm,AD=24cm,BC+CD=34cm,点C是直线l上一动点,请你探索当点C离点B多远时,▵ACD是一个以CD为斜边的直角三角形?14.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B 开始B→C→A方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,通过计算说明PQ能否把△ABC的周长平分?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间(直接写答案).。

勾股定理专题训练试题精选(二)附答案

勾股定理专题训练试题精选(二)附答案

勾股定理专题训练试题精选(二)一.选择题(共30小题)1.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.132.如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有()A.4条B.3条C.2条D.1条3.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个4.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175 B.575 C.625 D.7005.已知∠AOB=90°,点P在∠AOB的平分线上,OP=6,则点P到OA,OB的距离为()A.6,6 B.3,3 C.3,3D.3,36.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.57.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为()A.4πcm2B.6πcm2C.12πcm2D.24πcm28.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34 C.16或34 D.4或9.将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A.16 B.32 C.8πD.6410.如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD的周长为30cm,则AB的长为()A.5cm B.10cm C.15cm D.7.5cm11.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7B.8C.9D.1012.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.﹣1 B.3﹣C.+1 D.﹣113.如图,每个小种房型的边长都为1,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形,若B、C两点的位置分别证为(2,0)、(4,0),△ABC是钝角三角形且面积为4,则满足条件的A点的位置记法正确的是()A.(4,4)B.(1,4)C.(2,4)D.(3,4)14.如图,正方形ABCD边长为8,E为BC边上一点,EC=2,则AE长度为()A.14 B.10 C.13 D.1115.下列各组数中能作为直角三角形三边长的是()①9,12,15;②13,12,6;③9,12,14;④12,16,20A.①④B.①②C.③④D.②④16.直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形17.△ABC的三边满足,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形18.下列说法中,正确的有()①有一个角为60°的等腰三角形是等边三角形②三边分别是1,,3的三角形是直角三角形③一边上的中线等于这条边的一半的三角形是直角三角形④三个内角之比为1:2:3的三角形是直角三角形A.1个B.2个C.3个D.4个19.若一个三角形的三边长分别是3,6,,则最小角与最大角依次是()A.30°,60°B.30°,90°C.60°,90°D.45°,90°20.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为()A.24平方米B.26平方米C.28平方米D.30平方米21.▱ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1,则▱ABCD为()A.平行四边形B.菱形C.矩形D.正方形22.如图,正方形组成的网格中标出AB、CD、DE、AE四条线段,其中能构成一个直角三角形三边的线段是()A.A B、CD、AE B.A E、ED、CD C.A E、ED、AB D.A B、CD、ED 23.下列命题中不正确的是()A.有两个角相等的三角形是等腰三角形B.等腰三角形一腰上的高与底边的夹角等于顶角的一半C.等腰三角形两底角相等D.有一个角的平分线平分对边的三角形一定是等腰直角三角形24.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④25.根据指令[s,A](s≥0,0°<A≤360°),机器人在平面上完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向行走s个单位.现机器人在平面直角坐标系的原点,且面对x轴的正方向,如果输入指令为[1,45°],那么连续执行三次这样的指令,机器人所在位置的坐标是()A.(0,)B.(,)C.(,)D.(0,1+)26.如果一个三角形的三边之比为,那么最小边所对的角为()A.30°B.45°C.60°D.90°27.一个等腰直角三角形的斜边为,则其面积为()A.B.8C.16 D.28.一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的顶端距墙脚2.4米.那么梯足离墙脚的距离是()米.A.0.7 B.0.9 C.1.5 D.2.429.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.30.在△ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB=()A.1:2:3 B.1:4:9 C.1::D.1::2勾股定理专题训练试题精选(二)参考答案与试题解析一.选择题(共30小题)1.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.13考点:勾股定理;完全平方公式.分析:先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.解答:解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.点评:注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.2.如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有()A.4条B.3条C.2条D.1条考点:勾股定理;勾股数.专题:网格型.分析:此题只需根据常见的勾股数3、4、5,构造以3、4为直角边的直角三角形即可.解答:解:如图所示,共4条.故选A.点评:考查了勾股数的运用.3.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个考点:勾股定理.专题:分类讨论.分析:可以分A、B、C分别是直角顶点三种情况进行讨论即可解决.解答:解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选D.点评:正确进行讨论,把每种情况考虑全,是解决本题的关键.4.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175 B.575 C.625 D.700考点:勾股定理.专题:计算题.分析:根据两个正方形的面积计算正方形的边长,计算的边长即为直角三角形的两直角边,根据勾股定理可以计算斜边,即正方形A的边长,根据边长可以计算A的面积.解答:解:因为以两个直角边为边长的正方形面积为225,400,则边长为和,所以斜边长的平方=+=625,正方形A的面积=斜边长的平方,故正方形A的面积为625,故选 C.点评:本题考查了正方形各边相等,各内角为直角的性质,考查了直角三角形中勾股定理的运用,本题中根据勾股定理求斜边长的平方是解本题的关键.5.已知∠AOB=90°,点P在∠AOB的平分线上,OP=6,则点P到OA,OB的距离为()A.6,6 B.3,3 C.3,3D.3,3考点:勾股定理.分析:利用角平分线的性质计算.解答:解:作PC⊥OA于C,由题意可得△OPC是等腰直角三角形,因为OP=6,根据勾股定理可得PC=3,根据角平分线的性质,点P到OB的距离为3.故选D.点评:此题主要考查角平分线的性质和勾股定理.6.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.5考点:勾股定理;三角形的面积.专题:计算题.分析:根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.解答:解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.点评:此题主要考查学生对勾股定理和三角形面积的理解和掌握,此题的突破点是利用三角形面积公式求出BC 的长.7.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为()A.4πcm2B.6πcm2C.12πcm2D.24πcm2考点:勾股定理.专题:计算题.分析:先根据已知条件利用勾股定理可得三角形的直角边(即半圆的直径),再得出半径的值,然后求出圆的面积即可得出答案.解答:解;由已知条件利用勾股定理可得三角形的直角边(即半圆的直径)为:=4,那么r=2则S圆=πr2=12π,所以半圆面积为6π点评:此题主要考查学生对勾股定理和圆面积的理解和掌握,难度不大,是一道基础题.8.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34 C.16或34 D.4或考点:勾股定理.专题:分类讨论.分析:由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.解答:解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选D.点评:本题考查的是勾股定理,解答此题时要注意要分类讨论,不要漏解.9.将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A.16 B.32 C.8πD.64考点:勾股定理.专题:几何综合题.分析:首先由面积为8π的半圆求出半圆的直径,即直角边的斜边,再根据勾股定理求出两直角边的平方和,即是这两个正方形面积的和.解答:解:已知半圆的面积为8π,所以半圆的直径为:2•=8,即如图直角三角形的斜边为:8,设两个正方形的边长分别为:x,y,则根据勾股定理得:x2+y2=82=64,即两个正方形面积的和为64.故选:D.点评:此题考查的知识点是勾股定理,关键是由面积为8π的半圆求出半圆的直径,再根据勾股定理求出这两个正方形面积的和.10.如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD的周长为30cm,则AB的长为()A.5cm B.10cm C.15cm D.7.5cm考点:勾股定理;矩形的性质.专题:计算题.分析:本题运用矩形的性质通过周长的计算方法求出矩形的边长.解答:解:矩形ABCD中,O是BC的中点,∠AOD=90°,根据矩形的性质得到△ABO≌△DCO,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB,由矩形ABCD的周长为30cm得到,30=2AB+2×2AB,解得AB=5cm.故选A.点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.11.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7B.8C.9D.10考点:勾股定理;角平分线的性质.专题:计算题.分析:要求BC,因为BC=BD+CD,且BD=2CD,所以求CD即可,求证△ADE≌△ADC即可得:CD=DE,可得BC=BD+DE.解答:解:∵在△ADE和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故答案为:9.点评:本题考查了全等三角形的证明,解本题的关键是求证△ADE≌△ADC,即CD=DE.12.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.﹣1 B.3﹣C.+1 D.﹣1考点:勾股定理;正方形的性质.分析:根据线段中点的定义求出MD,再利用勾股定理列式求出MC,即为ME的长度,然后求出DE,再根据正方形的四条边都相等可得DG=DE.解答:解:∵正方形ABCD的边长为2,M为边AD的中点,∴DM=1,MC==,∵ME=MC,∴ME=,∴DE=﹣1,∵以DE为边作正方形DEFG,点G在边CD上,∴DG=﹣1.故选:D.点评:本题考查了正方形的性质,勾股定理的应用,线段中点的定义,熟记性质是解题的关键.13.如图,每个小种房型的边长都为1,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形,若B、C 两点的位置分别证为(2,0)、(4,0),△ABC是钝角三角形且面积为4,则满足条件的A点的位置记法正确的是()A.(4,4)B.(1,4)C.(2,4)D.(3,4)考点:勾股定理;三角形的面积.分析:设点A的位置记作(x,y).根据三角形的面积公式求得△ABC的高y的值;然后利用钝角三角形的定义来确定x的值;从而作出选择.解答:解:设点A的位置记作(x,y).∵△ABC的面积是4,BC=2,∴BC•y=4,∴y=4;又∵△ABC是钝角三角形,∴0≤x<2;∴点A的位置可以记作(0,4)或(1,4).故选B.点评:本题考查了勾股定理、三角形的面积.根据x的取值范围确定点A的横坐标是解答此题的关键.14.如图,正方形ABCD边长为8,E为BC边上一点,EC=2,则AE长度为()A.14 B.10 C.13 D.11考点:勾股定理;正方形的性质.分析:根据正方形的性质可知AB=BC=8,再求出BE的长,根据勾股定理即可得到AE的长.解答:解:∵正方形ABCD边长为8,∴AB=BC=8,∵EC=2,∴BE=8﹣2=6,在Rt△ABE中,AE==10.故选:B.点评:考查了正方形的性质和勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.15.下列各组数中能作为直角三角形三边长的是()①9,12,15;②13,12,6;③9,12,14;④12,16,20A.①④B.①②C.③④D.②④考点:勾股定理的逆定理.分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解答:解:①92+122=152,故是直角三角形,故正确;②62+122=180≠132,故不是直角三角形,故错误;③92+122=225≠142,故不是直角三角形,故错误;④122+162=202,故是直角三角形,正确.故选A.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形考点:勾股定理的逆定理.专题:应用题.分析:先利用勾股定理得到a,b,c,h之间的关系,再根据勾股定理逆定理判定所求的三角形是直角三角形.解答:解:根据题意可知:a2+b2=c2,ab=ch,∵(c+h)2=c2+2ch+h2,(a+b)2=a2+2ab+b2,∴(a+b)2+h2=(c+h)2,∴三角形是直角三角形.故选A.点评:主要考查了勾股定理逆定理的运用.要会熟练利用勾股定理的逆定理来判定直角三角形.17.△ABC的三边满足,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由题意可知a+b=50,a﹣b=32,c=40,就可求出a、b长分别为41,9,而412=402+92,所以△ABC为直角三角形.解答:解:由题意可知a+b=50,a﹣b=32,c=40,∴a=41,b=9∵412=402+92∴△ABC为直角三角形.故选A.点评:本题考查了勾股定理的应用,以及非负数的性质,是一道综合性的题目,难度中等.18.下列说法中,正确的有()①有一个角为60°的等腰三角形是等边三角形②三边分别是1,,3的三角形是直角三角形③一边上的中线等于这条边的一半的三角形是直角三角形④三个内角之比为1:2:3的三角形是直角三角形A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;等边三角形的判定;直角三角形斜边上的中线.专题:推理填空题.分析:分别根据等边三角形及直角三角形的判定定理解答即可.解答:解:①正确,符合等边三角形的判定定理;②正确,因为12+32=()2,所以三边分别是1,,3的三角形是直角三角形;③正确,根据矩形对角线的性质的逆命题;④正确,三个内角之比为1:2:3的三角形的各个角的度数分别是30°、60°、90°,所以三个内角之比为1:2:3的三角形是直角三角形.故选D.点评:本题主要考查学生对等边三角形,直角三角形的判定定理和勾股定理的逆定理等知识点的理解和掌握,比较简单,属于基础题.19.若一个三角形的三边长分别是3,6,,则最小角与最大角依次是()A.30°,60°B.30°,90°C.60°,90°D.45°,90°考点:勾股定理的逆定理;含30度角的直角三角形.分析:先根据勾股定理的逆定理得到三角形是直角三角形,从而得到最大角的度数,再根据含30度角的直角三角形的性质得到最小角的度数.解答:解:∵32+(3)2=62,∴三角形是直角三角形,∴最大角是90°,∵3×2=6,∴最小角是30°.故选B.点评:本题考查了勾股定理的逆定理和含30度角的直角三角形的性质.20.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为()A.24平方米B.26平方米C.28平方米D.30平方米考点:勾股定理的逆定理;勾股定理.分析:连接AC,利用勾股定理可以得出△ACD和△ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.解答:解:如图,连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2∴△ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(m2).故选A.点评:考查了直角三角形面积公式以及勾股定理的应用.21.▱ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1,则▱ABCD为()A.平行四边形B.菱形C.矩形D.正方形考点:勾股定理的逆定理.专题:探究型.分析:先根据题意画出图形,再根据AB=,AO=2,OB=1可判断出△AOB的形状,再根据菱形的判定定理即可解答.解答:解:如图所示,▱ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1,∵()2=22+12,即AB2=OA2+OB2,∴△AOB是直角三角形,∴AC⊥BD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.故选B.点评:本题考查的是勾股定理的逆定理及菱形的判定定理,根据勾股定理的逆定理判断出△AOB的形状是解答此题的关键.22.如图,正方形组成的网格中标出AB、CD、DE、AE四条线段,其中能构成一个直角三角形三边的线段是()A.A B、CD、AE B.A E、ED、CD C.A E、ED、AB D.A B、CD、ED考点:勾股定理的逆定理;勾股定理;正方形的性质.分析:根据勾股定理分别求得四条线段的平方,再进一步根据勾股定理的逆定理进行分析.解答:解:根据勾股定理,得AB2=9+9=18,CD2=4=9=13,DE2=1=4=5,AE2=1+9=10,所以AB2=CD2+DE2,根据勾股定理的逆定理,则其中能构成一个直角三角形三边的线段是AB、CD、ED.故选D.点评:此题综合考查了勾股定理及其逆定理.23.下列命题中不正确的是()A.有两个角相等的三角形是等腰三角形B.等腰三角形一腰上的高与底边的夹角等于顶角的一半C.等腰三角形两底角相等D.有一个角的平分线平分对边的三角形一定是等腰直角三角形考点:等腰直角三角形;三角形内角和定理;等腰三角形的性质;等腰三角形的判定.分析:根据等腰三角形的性质和判定即可求出答案.解答:解:由等腰三角形的判定知:A、C正确;B、设等腰三角形的底角为x,则等腰三角形一腰上的高与底边的夹角为:90°﹣x,顶角为:180°﹣2x=2(90°﹣x),故B正确;D、有一个角的平分线平分对边的三角形不一定是等腰直角三角形,故D错误.故选D.点评:本题考查了等腰三角形的判定和性质,锻炼了学生灵活运用所学知识的能力是一道好题.24.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=DM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BCE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,在△CMD和△CND中,,∴△CMD≌△CND,∴CN=DM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.25.根据指令[s,A](s≥0,0°<A≤360°),机器人在平面上完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向行走s个单位.现机器人在平面直角坐标系的原点,且面对x轴的正方向,如果输入指令为[1,45°],那么连续执行三次这样的指令,机器人所在位置的坐标是()A.(0,)B.(,)C.(,)D.(0,1+)考点:等腰直角三角形;勾股定理;旋转的性质.专题:计算题;新定义.分析:根据题意得到指令[1,45°]表示首先逆时针旋转45°,然后朝其面对的方向行走1个单位到C,第二次道B点,第三次到A点,由此即可求出机器人所在位置的坐标.解答:解:如图所示:机器人所在的位置正好在y轴的A点上,过B作BM⊥OA于M,过C作CN⊥OA于N,根据题意得到四边形ABCO是等腰梯形,∵AB=1,∠ABM=45°,由勾股定理得:AM=BM=,同理CN=ON=,MN=CB=1,∴OA=+1+=1+,∴A的坐标是(0,1+),故选D.点评:本题考查了勾股定理,旋转的性质,等腰直角三角形等知识点的应用,关键是根据题意画出图形,通过做此题培养了学生分析问题和解决问题的能力,题型较好,主要考查了学生的阅读问题的能力.26.如果一个三角形的三边之比为,那么最小边所对的角为()A.30°B.45°C.60°D.90°考点:等腰直角三角形.专题:计算题.分析:根据勾股定理的逆定理进行解答即可.解答:解:设三角形的三边分别为x、x、x,∴x2+x2=()2,∴此三角形为直角三角形,∴最大角为90°,∵三边的比为,∴此三角形为等腰直角三角形,∴最小角为45°.故选B.点评:本题考查的是等腰直角三角形的知识及勾股定理的逆定理,即若一个三角形的三边满足a2+b2=c2,则这个三角形是直角三角形.27.一个等腰直角三角形的斜边为,则其面积为()A.B.8C.16 D.考点:等腰直角三角形.专题:计算题.分析:设等腰直角三角形的两直角边为x,由勾股定理得出方程x2+x2=,求出x,再根据三角形的面积公式求出即可.解答:解:设等腰直角三角形的两直角边为x,则由勾股定理得:x2+x2=,解得:x=4,即等腰直角三角形的面积是:×4×4=8,故选B.点评:本题考查了等腰直角三角形性质、勾股定理、三角形的面积等知识点,关键是求出等腰直角三角形的直角边,用了方程思想.28.一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的顶端距墙脚2.4米.那么梯足离墙脚的距离是()米.A.0.7 B.0.9 C.1.5 D.2.4考点:勾股定理.分析:梯子恰好与竖直的墙,地面组成一个直角三角形,由勾股定理可得梯足离墙角的距离.解答:解:如图所示,AB为梯子的长,AC为梯子的顶端距墙脚的距离,BC为梯足离墙脚的距离.在Rt△ACB中,AB=2.5米,AC=2.4米,由勾股定理得,BC====0.7米.所以梯足离墙脚的距离为:0.7米,故选:A.点评:正确理解梯子与墙、地面构成一个直角三角形,已知斜边和一个直角边的长,用勾股定理求出另一直角边.29.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.考点:勾股定理;点到直线的距离.专题:计算题.分析:连接AB,BC,AC可得△ABC为等腰三角形,根据等腰三角形面积计算方法计算C到AB的距离(过C 作AB边上的高).解答:解:连接AB,BC,AC.找到AC中点D,连接BD.设C到AB的距离为h,小方格边长为1,∴AD=,AB=BC=,∴△ABC为等腰三角形,∴BD⊥AC,且BD=△ABC的面积为S=AC•BD=4.又∵△ABC面积=×AB×h=4,∴h==.故选B.点评:本题考查了勾股定理的运用,考查了等腰三角形面积的计算,根据面积法求C到AB边的距离h是解题的关键.30.在△ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB=()A.1:2:3 B.1:4:9 C.1::D.1::2考点:勾股定理;三角形内角和定理;含30度角的直角三角形.分析:根据三角形的内角和定理,可判断此三角形为直角三角形,再利用30°所对的直角边是斜边的一半,勾股定理求解.解答:解:∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°.设BC=x,则AB=2x,根据勾股定理,得AC=x,∴BC:AC:AB=1::2.故选D.点评:注意这一结论:30°的直角三角形中,三边从小到大的比是1::2.。

初中数学八年级几何勾股定理练习题2(含答案)

初中数学八年级几何勾股定理练习题2(含答案)

初中数学八年级几何勾股定理练习题2(含答案)一.填空题1、一直角三角形的两直角边的长度分别为3、6,则斜边的长度为。

2、△ABC为直角三角形,且∠C=90°,AB=4,A C=2,则∠A= °3、在Rt△ABC中,∠BAC=90°,且a+c=9,a﹣c=4,则b的值是.4、如图所示的正方形网格中,每个小正方形的面积均为1,正方形ABCM,CDEN,MNPQ的顶点都在格点上,则正方形MNPQ的面积为.5、如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.6、如图,一架13m长的梯子AB斜靠在一竖直的墙AC上,这时AC为12m.如果子的顶端A沿墙下滑7m,那么梯子底端B向外移m.7、如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若AC=9,AB=15,则DE=.8、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.9、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.10、如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是.二.选择题1、下列各组数表示三角形的三条边的边长,其中是直角三角形的是()A、 2,3,4 B 、 5,6,7 C、6,7,8 D、6,8,102、△ABC为直角三角形,且∠C=90°,AB=6 , AC=2,则BC= .A 、3B 、 4C 、23D 、243、如图,在三角形ABC 中,已知∠C =90°,AC =3,BC =4,则AB 的大小有可能是( )A .1B .2C .3D .54、下列各组数据中,不是勾股数的是( ) A .3,4,5 B .7,24,25C .8,15,17D .5,6,95、满足下列关系的三条线段a ,b ,c 组成的三角形一定是直角三角形的是( )A .a <b +cB .a >b ﹣cC .a =b =cD .a 2=b 2﹣c 26、为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)( )A .0.7米B .0.8米C .0.9米D .1.0米7、下列选项中(图中三角形都是直角三角形),不能用来验证勾股定理的是( )A.B.C.D.8、如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()km.A.4B.5C.6D.9、两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2﹣b2=c2D.a2+b2=c210、如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m三.解答题1、如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?2、在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的三条边.(1)如果a=3,b=4,求c的长;(2)如果c=13,b=12,求a的长.3、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CA=6.5千米,CD=6千米,AD=2.5千米.(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;(2)求原来的路线BC的长.4、如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上的一点,且BD=12cm,CD=16cm.(1)求证:△BCD是直角三角形;(2)求△ABC的周长,5、(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.6、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的面积.7、勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=b=c=(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”).(4)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)2参考答案一.填空题31、52、60°3、解:∵a+c=9,a﹣c=4,∴a=,c=,∵在Rt△ABC中,∠BAC=90°,∴b====6,故答案为:6.4、解:∵CM=3,CN=6,∠MCN=90°,∴MN2=CM2+CN2=32+62=45,∴正方形MNPQ的面积=MN2=45,故答案为:45.5、解:由题意可得:AO=8海里,BO=15海里,∠AOB=180°﹣25°﹣65°=90°,故AB==17(海里),答:两轮船相距17海里.故答案为:17.6、解:∵∠ACB=90°,AB=13,AC=12,∴BC==5,∵AE=7,∴CE=12﹣7=5,∴CD==12,∴BD=CD﹣BC=7,∴梯子底端B向外移7m,故答案为:7.7、解:在Rt△ABC中,∠C=90°,AC=9,AB=15,由勾股定理,得BC═12,∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,×AC×CD+×AB×DE=×AC×BC,即×9×DE+×15×DE=×9×12,解得:DE=4.5.故答案为:4.5.8、解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.9、解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.10、解:如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,AC =×2π×24=24π,∠C =90°,BC =7π,由勾股定理得:AB ==25π.故答案为:25π.二.选择题1、解 因为D :6²+8²=10²故选D2、解:由勾股定理,BC=22AC AB -=2226-=32=24故选D3、解:方法1:由垂线段最短,可得AB 的大小有可能是5.方法2:在三角形ABC 中,∠C =90°,AC =3,BC =4,则AB ===5.故选:D .4、解:A 、32+42=52,是勾股数;B 、72+242=252,是勾股数;C 、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选:D.5、解:当a2=b2﹣c2,可得:a2+c2=b2,所以三条线段a,b,c组成的三角形一定是直角三角形,故选:D.6、解:梯脚与墙角距离:=0.7(米),∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.7、解:A、中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理,本选项不符合题意.B、不能证明勾股定理,本选项符合题意.C、利用A中结论,本选项不符合题意.D、中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理,本选项不符合题意,故选:B.8、解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.9、解:根据题意得:S=(a+b)(a+b),S=ab+ab+c2,(a+b)(a+b)=ab+ab+c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:D.10、解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴大树的高度为5+5=10(m),故选:D.三.解答题1、解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120m,则该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.2、解:(1)∵在Rt△ABC中,∠C=90°,a=3,b=4,∴c===5;(2)∵在Rt△ABC中,∠C=90°,c=13,b=12,∴a===5.3、解:(1)是,理由:∵62+2.52=6.52,∴CD2+AD2=AC2,∴△ADC为直角三角形,∴CD⊥AB,∴CD是从村庄C到河边最近的路;(2)设BC=x千米,则BD=(x﹣2.5)千米,∵CD⊥AB,∴62+(x﹣2.5)2=x2,解得:x=8.45,答:路线BC的长为8.45千米.4、(1)证明:∵在△BDC中,BC=20cm,BD=12cm,CD=16cm.∴BD2+CD2=BC2,∴∠BDC=90°,∴△BCD是直角三角形;(2)解:设AB=AC=xcm,则AD=(x﹣12)cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,即(x﹣12)2+162=x2,解得:x=15,即AB=AC=15cm,∵BC=20cm,∴△ABC的周长是AB+AC+BC=15cm+15cm+20cm=50cm.5、解:(1)梯形ABCD的面积为(a+b)(a+b)=a2+ab+b2,也利用表示为ab+c2+ab,∴a2+ab+b2=ab+c2+ab,即a2+b2=c2;(2)∵直角三角形的两直角边分别为3,4,∴斜边为5,∵设斜边上的高为h,直角三角形的面积为×3×4=×5×h,∴h=,故答案为;(3)∵图形面积为:(a﹣2b)2=a2﹣4ab+4b2,∴边长为a﹣2b,由此可画出的图形为:6、解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴四边形ABDC的面积=S△ABC +S△BCD=×12×5+×3×4=36.7、解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)对于偶数,这个关系不成立,故答案为:不成立;(4)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二年级数学勾股定理专题强化训练二
班级 姓名 学号
一、填空题
1、如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D, 且AB=5,BC=4,AC=6, 则DE 的长为_______.
2、已知直角三角形两直角边的长分别为3cm,4cm, 第三边上的高为____ ___.
3、四边形ABCD 中,AD ⊥DC ,AD=8,DC=6, CB=24,AB=26.则四边形ABCD 的面积为_____.
4、如图是一个三级台阶,它的每一级的 长宽和高分别为20dm 、3dm 、2dm ,A 和 B 是这个台阶两个相对的端点,A 点有一 只蚂蚁,想到B 点去吃可口的食物,则
蚂蚁沿着台阶面爬到B 点最短路程是 5、如图折叠长方形ABCD 的一边AD, 使点D 落在BC 边上的点F, 其中AB=8cm, BC=10cm,则EF 的长为_______. 二、选择题
6.在△ABC 中,AB=13, AC=20, 高AD=12, 则△ABC 的周长是_____
A .49 B.30 C.44或54 D.37
7.一人在A 处放马,其家在B 处, A 、B 两处相距河岸的距离AC 、BD 的长分别为500m 和700m .且C 、D 两地相距500m,天黑前,此人从A 点将马牵到河边饮水,再回家,最少要走_____. A .1000m B .1200m C .500m D .1300m
8、如图,在水塔O 的东北方向32m 处有一抽水站A,在水塔的 东南方向24m 处 有一建筑工地B ,在AB 间建一条直水管, 则水管的长为( )
(A )45cm (B)40cm (C)50cm (D)56cm
9.把直角三角形的两边同时扩大为原来的两倍, 则斜边扩大为原来的_____ A .2倍 B3倍 C.4倍 D.6倍
10.放学以后小林和小明从学校出发, 分别沿东南方向和西南方向回家, 他们的行走速度都是40m/min, 小林用了15分钟到家, 小明用了20分钟到家,则他们两家的距离为_____ A .600m B.800m C.1000m D.以上都不对 11、如图,在边长为a 的正方形中挖掉一个边长为b 的小正 方形(a>b ),余下的部分拼成一个矩形(如图2),通过
A
B
C
D
20
3
2A
B
A
B


西北
a
b
a b

图1
图2
A
E D B
C
计算两个图形(阴影部分)的面积,验证了一个等式。

则这个等式是( )
(A )a 2
-b 2
=(a-b)(a+b) (B)(a+b)2
=a 2
+2ab+b 2
(C)(a-b)2
=a 2
-2ab+b 2
(D)(a+2b)(a-b)=a 2
+ab-2b 2
三、证明题
12、如图,已知在△ABC 中,∠C=90°,D 为AC 上一点,AB 2
-BD 2

AC 2
-DC 2
有怎样的关系?试证明你的结论。

四、应用题
13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.
14.如图:是直角三角形三边上的三个半圆,已知两直角边上的半圆面积分别是29∏,8∏,求斜边的长.
15.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移
动,距离台风中心200km 的范围内是受台风影响的区域。

(1)A 城是否受到这次台风的影响?为什么? (2)若A 城受到这次台风影响,那么A 城遭受
这次台风影响有多长时间?
A
B
C
A
B
E
P
F

北。

相关文档
最新文档