understanding static pressure
流体动力学中的高速气体流动

流体动力学中的高速气体流动1. 引言流体动力学是研究流体的力学性质和运动规律的科学领域。
在工程领域中,流体动力学被广泛应用于高速气体流动的研究。
高速气体流动是指在常温、常压下,气体在较高速度下的流动现象。
高速气体流动具有复杂的物理特性和运动规律,对于工程设计和研究具有重要意义。
本文将介绍在流体动力学中研究高速气体流动的基本原理、数值模拟方法和实验技术等内容。
2. 高速气体流动的基本原理2.1 高速气体流动的特点在高速气体流动中,气体的运动速度远超过声速,压力、温度和密度等物理量的分布变得非常复杂。
高速气体流动具有以下特点:•高速气体流动中,气体的压力和温度分布受到湍流和激波等非定常现象的影响,流动场呈现出不稳定性和不可逆性;•高速气体流动会引起气体的压缩和加热,从而导致压力和温度的非均匀性;•高速气体流动中,气体的速度梯度大,会导致产生剧烈的湍流和分离现象。
2.2 高速气体流动的数学模型研究高速气体流动时,可以采用Navier-Stokes方程组作为基本数学模型。
Navier-Stokes方程组描述了气体在空间中的流动性质和动力学规律。
对于高速气体流动,需要考虑以下一些额外的物理过程:•气体的物理性质随着温度的变化而变化,需要采用物性关系来描述气体的状态方程;•高速气体流动中,湍流的发生和发展对于流动场的影响非常显著,需要考虑湍流模型的引入;•高速气体流动会产生激波和压缩波等非定常现象,需要考虑定常化条件或采用非定常模拟方法。
2.3 高速气体流动的基本参数在研究高速气体流动时,需要考虑一些基本的参数来描述流动的特性和性质:•马赫数(Mach number):表示气体流速与声速之比,是衡量流动速度的重要参数;•静温(static temperature):指气体在流动前、流动中的温度,是影响气体性质和压力分布的重要因素;•静压(static pressure):表示气体在流动前、流动中的压力,是衡量气体压力分布的重要参数;•总压(stagnation pressure):表示气体在流动中的压力,即气体受到压缩和加热后的压力。
静水压力英语

静水压力英语Feeling perplexed and suddenly tasked with writing about static hydraulic pressure in English, I found myself in a peculiar situation. Exploring this topic requires a deep dive into the realms of physics and engineering, with a touch of linguistic finesse. So, let's embark on this journey into the realm of static hydraulic pressure.At its core, static hydraulic pressure is a fundamental concept in fluid mechanics, crucial in various engineering applications, from hydraulic systems to dams and water towers. Simply put, it refers to the pressure exerted by a fluid at rest within a confined space or vessel.Imagine a calm lake on a windless day. The water appears serene, yet beneath its placid surface, there exists a force exerted by the weight of the water above, pressing down uniformly on every point below. This force per unit area is what we call static hydraulic pressure.In engineering terms, static hydraulic pressure plays apivotal role in hydraulic systems, where it's harnessed to transmit power, control motion, and apply force. Whether in hydraulic brakes in automobiles or heavy machinery used in construction, the principles of static hydraulic pressure are at work.To comprehend static hydraulic pressure, one must delveinto Pascal's law, which states that in a confined fluid at rest, the pressure is transmitted uniformly in all directions. This principle forms the cornerstone of hydraulic engineering, enabling the design of efficient and reliable systems.Consider a hydraulic jack lifting a heavy load. As force is applied to the small piston, Pascal's law dictates thatthis force is transmitted through the fluid, resulting in an equal force exerted by the larger piston. Thus, with a relatively small input force, a much larger force can be generated, showcasing the power of static hydraulic pressure in amplifying force.Moreover, static hydraulic pressure finds application inhydrostatics, the study of fluids at rest. It governs phenomena such as buoyancy, where objects immersed in a fluid experience an upward force equal to the weight of the displaced fluid. This principle explains why objects float or sink in water and is crucial in designing ships and submarines.In the realm of civil engineering, static hydraulic pressure dictates the design and stability of structures such as dams and water towers. Dams must withstand the immense pressure exerted by the water they retain,requiring meticulous engineering to ensure structural integrity and prevent catastrophic failure.Water towers, on the other hand, utilize static hydraulic pressure to provide consistent water pressure to homes and businesses. By elevating water to a sufficient height, gravity ensures a steady flow and adequate pressure, even during periods of high demand.In conclusion, static hydraulic pressure is a cornerstone of fluid mechanics and engineering, influencing a myriad ofapplications from hydraulic systems to civil infrastructure. Understanding its principles is essential for engineers and physicists alike, enabling the design of innovativesolutions to complex challenges. As I navigate through this labyrinth of concepts and terminology, the enigmatic allure of static hydraulic pressure becomes ever more apparent, a testament to the beauty and complexity of the natural world and human ingenuity.。
地质过程中的定量方法与计算技术_地史恢复

沉积盆地作为一种规模巨大的构造单元, 因为它是具有极高经济价值的化石燃料
长期以来一直是人们关注的对象?
矿床(煤、石油、天然气)的赋存空间。
自板块构造、地幔对流学说创立 以后,人们逐渐认识到沉积盆地形成 与水平运动的内在联系,最终导致70 年代以后国外大量科学工作者利用定 量方法来探讨沉积盆地的成因和演化。
Z
1
)]
A
HB
o
C
[exp(C
Z
)
2B
exp(C
Z 1B)]
由于H B
o
C
[exp(C
Z) 2B
exp(C
Z
)]
1B
hsB可计算出,
则前一式为:
h H
A
o
C
[exp(C
Z
)
2A
exp(C
Z
1
)]
A
0
sB
h H A
o
C
exp(C
Z
2
)
A
[1
exp(C exp(C
Z
1
)
A
]
Z) 2A
0
sB
h H A
o
Z=H+Wd-SL
沉降史
Mckenzie纯剪切模型
初始沉降(Si):
岩石圈减薄引起的沉降
冷却沉降(Sh):
岩石圈冷却引起的沉降
构造沉降 = 初始沉降 + 冷却沉降
沉降史
Airy均衡模式
Iw+C c+ M m
=
Hs+C c+ (M - DL)m
DL——负荷沉降
均衡补偿模型是19世纪中叶由Airy提出
岩石静压力

上覆岩石的重量所致的压力
01 简介
03 地温与 05 作用
目录
c pressure)又叫围压,指的是由上覆岩石的重量所致的压力。地壳岩石的岩石 静压力随埋深的增加而增高,两者大体呈线性关系。又称为岩石自重压力。
简介
岩石静压力(lithostatic pressure)又叫围压或岩石自重压力,是指地壳一定深度上等于岩石孔隙压力 的岩石柱压力,常以符号Plith表示。具均向性。当岩石处于地下,就要受到上覆和周围岩石的压力,岩石所处 部位越深,其所受静压力也越大。
地温与
在10km深处,地温可能在(80-230℃)之间,岩石的静压力约为320MPa。在20km深处,地温可能在(140520℃)之间,即在地温梯度大的地方,地温已接近于磁铁矿的居里点,在此深度处,岩石的静压力约为640MPa。 在30km深处,地温可能在(210-720℃)之间,即在地温梯度大的地方,地温已超过磁铁矿的居里点,而岩石的 静压力接近1000MPa。
地静压比
地静压比指测得的流体压力与同一深度的岩石静压力之比。由正常静水压力得出的比值接近0.47,而岩石静 压力相当于1.00。
作用
当岩石受到挤压、断裂活动或岩浆侵入,一方面可使它变形或破碎;另一方面也可使它重结晶,并使岩石中 片状或柱状矿物在垂直于应力方向生长、拉长或压扁,形成明显的定向排列,从而使岩石具有各种片理构造。
谢谢观看
设岩石密度为,则地下深度上的岩石静压力为:
介于岩石静压力与正常静水压力间的压力叫做异常(高)压力或地压力。当这种压力极高时也可以称为超高 压。异常(高)压力只是因为它们与正常静水压力不一致才称“异常"。
矿物与
在岩石静压力作用下,岩石中矿物往往重结晶成体积减小而密度增大的新矿物,以适应新的存在环境。例如 基性岩中的钙长石(密度2.76)和橄榄石(密度3.3)在高压下形成石榴子石(密度3.5-4.3)。
谈对压力的理解英语作文

谈对压力的理解英语作文Pressure is an inevitable part of human life; itmanifests in various forms, affecting our mental and physical well-being. It originates from diverse sources, including academic responsibilities, workplace demands, and personal relationships. By exploring the nature of pressure, we can better understand how it influences our lives and how to cope with it effectively.Firstly, it is essential to recognize that pressure canbe both positive and negative. On one hand, a certain amountof pressure can serve as a motivating force. For instance, deadlines can push individuals to perform at their best and achieve their goals. This type of pressure, often referred to as "eustress," can lead to increased productivity and a sense of accomplishment. It encourages us to step out of ourcomfort zones, take on challenges, and discover our potential.For example, preparing for an important examination or a crucial presentation can spur individuals to study harder and refine their skills, ultimately leading to personal growth.On the other hand, excessive pressure can have detrimental effects. When pressure becomes overwhelming, it can lead to stress, anxiety, and even burnout. This type of chronic stress can result in physical health problems such as headaches, insomnia, and weakened immune responses. Psychologically, it can create feelings of inadequacy and helplessness, making it difficult for individuals to concentrate or find joy in their activities. The negative impact of pressure is particularly evident in highly competitive environments, such as academic institutions and workplaces, where the fear of failure can overshadow the desire to succeed.To manage pressure effectively, it is crucial to develop coping strategies. One approach is to break tasks intosmaller, more manageable parts, which can make overwhelming situations feel less daunting. Additionally, practicing mindfulness and relaxation techniques, such as deep breathing exercises, can significantly reduce stress levels. Engaging in regular physical activity is another effective way to combat pressure, as exercise releases endorphins, which can improve mood and increase resilience.It is also vital to communicate openly with friends, family, or colleagues when feeling pressured. Sharing concerns can provide different perspectives and support, helping individuals to feel less isolated in their struggles. Furthermore, seeking professional help, such as counseling or therapy, can equip individuals with the tools they need to navigate life's pressures more effectively.In conclusion, while pressure is an unavoidable aspect of life, understanding its dual nature allows us to harness its benefits while mitigating its adverse effects. By adoptingeffective coping strategies and fostering a supportive environment, we can navigate the complexities of pressure in a healthier manner, turning potential challenges into opportunities for growth.。
HTRI计算虹吸再沸器问题讨论

1.我用HTRI计算虹吸再沸器时,物性数据由ASPEN倒过来的,在REBOIL输入界面中,对进口压力位置有些疑问,按我的理解,从ASPEN倒过来的数据中进口压力位置应为塔釜液面上方才对,但没有这样的选项,不知各位是怎么处理的?另外,要求的静液柱应该稍微大于再沸器压降就可以了吗?但是如果输入要求的静液柱数据,得到的结果与压降差别很大,为什么?2.对Inlet Pressure Location的解释:Sets physical location of cold fluid inlet pressure specified on the Process Conditions panel. This field has meaning only for cases with specified inlet and outlet piping and for TEMA K (kettle) shells.Choices DescriptionAt inlet nozzle static pressure at inlet exchanger nozzleAt column bottom static pressure at liquid level in column (塔底压力)At top of bundle static pressure at top of kettle bundleRequired: NoUnits: NoneDefault: At inlet nozzleLocation: Reboiler panel, Geometry group关于Required liquid static head的解释(设计中一般不需提前指定)Specifies vertical distance between liquid level in column and bottom of reboiler bundle.Required: NoUnits: SI US MKHm ft mmDefault: NoneLocation: Reboiler panel, Geometry groupNote: If you specify this value for a thermosiphon reboiler, Xist calculates the cold fluid flow rate and outlet weight fraction vapor required to achieve specified liquid static head. Any values you enter for cold fluid flow rate and outlet weight fraction vapor may be overridden.所需的静压头不是仅仅抵消重沸器内部的压降,还包括进出口管线的压降和进出管嘴损失,流体上升的静压头和汽化过程的膨胀损失等。
关于表压静压总压绝对压力相对压力

表压、静压、总压、绝对压力、相对压力的解释
名词解释英文
表压压力表测得的压强,是以大气压为0测得的相对压力值。
Gauge pressure
静压静压=表压,在Fluent中设定的出口压力即静压,是一个
相对操作压力的相对压力值。
Static pressure
动压与流速相关,动压=ρV2/2,速度越大动压越大Dynamic pressure
总压总压=静压+动压,Fluent中设定的入口压力应为总压,不
应仅输入压力表读数值,除非此处速度为0.
Total pressure
参考压力Fluent默认参考压力为标准大气压(101325Pa)。
若设置参
考压力为0,则计算的压力结果为绝对压力。
大气压=参考压力+表压
Relative pressure
操作压力可以认为是计算参考压力Operating pressure 绝对压力绝对压力=操作压力+表压,以绝对零点压力为起点。
Absolute pressure 真空度当绝对压强小于大气压时,所测量的空间为真空。
它和绝对压力均以绝对零点为参考。
伯努利方程ρgh+P+ρV2/2=总压(常数),式中ρgh为重力势能,P为压力能, ρV2/2为动能ρgh1+P1+ρV12/2 =ρgh2+P2+ρV22/2 V1*S1= V2*S2
流体动量方程ρ×Q×(β2V2-β1V1),式中β为动量修正系数,层流β=4/3,紊流β=1.02~1.05,实际计算可取β=1.
真空压力表刻度解释。
静压力(PQ曲线)

什么是静压力(P)-风量曲线(Q)曲线?如何测量?消费者考虑的一个关键参数是风扇能够提供的静压力,较少关注它是如何测量的,关于测量可以很直接的解释,让你理解起来没有太大的困难。
试想一个风扇以从管子外面自然空气中抽风的方式安装在一个开放管子的一端,将气流送入管道。
(Figure 1)现在,让我们将一块板子放在管道的末端。
于是,下面发生的情况就很容易理解了:A;如果密封管道的一端,我们将得不到任何气流(Figure 1A)B;如果轻轻地移动板子的留出一个小的空隙,将会有很小的一股气流(Firgure 1B)C;开口越大,气流越大(Figure 1C)P表示环境压力D;完全打开,得到最大气流(Figure 1D)E;装置没有改变的话,我们绝不可能得到比D情况下更大的气流。
为什么在A情况下的不到气流?因为管道是加压(盖子)的,风扇的驱动力不能超越管道的压力。
当管道处在类似于“泄露”的状态(B)下,不难想象这时管道内的压力低于A情况下的压力,这样风扇能够,尽管很艰难,把空气挤出管道。
当开口越来越大,管道内的压力趋小,空气越来越多的流出管道,也就是说,管道内的阻抗越来越小,风扇能更容易的驱动风。
当我们完全移开挡板,管内将没有额外的压力和其它阻力(假设为无粘性流动,没有摩擦力,靠近管壁没有边界层流。
),因此我们将得到最大风量。
通常我们用术语“静压力(static pressure)”来评估风扇的表现。
你可以把它理解为超越环境阻力的能力,最大静压力是风扇能产生的最大能量。
当环境压力低于最大静压力时,有气流产生。
静压力越大,风扇输出风量的能力越强。
Q-风量风量表示由风扇在单位时间内输出的流量。
正如前面章节的描述,在D情况,即风扇两边没有压力差的情况,得到最大的排气量。
明白P-Q曲线的意义。
以上关于P和Q的描述和解释,你应该要知道,或者更进一步,利用 P-Q曲线来选择一款满足你需求的风扇。
Figure 2 是一个例子,纵坐标表示静压力,横坐标是风量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1American Heritage Dictionary, Fourth ed., Houghton Mifflin Company, 2000.U NDERSTANDINGS TATIC P RESSUREDavid D. Frame , DVM, Extension Poultry SpecialistUSU Turkey Research Center, Ephraim, Utah 84627Gary L. Anderson , MS, Sanpete County ExtensionReviewed June 2010W HAT I S S TATIC P RESSURE ?Static pressure is defined as “the pressure exerted by a still liquid or gas, especially water or air 1.” For turkey growers, this simply relates to the occurrence of a slight decrease in pressure within a turkey building relative to outside air pressure when one or more exhaust fans are turned on. It is important that we understand this concept because the use of exhaust fans, or negative pressure ventilation, is the most common form of power ventilating turkey buildings in Utah.Negative pressure ventilation is also the easiest and most efficient method to control air exchange.W HY I S S TATIC P RESSURE I MPORTANT ?Maintaining proper negative pressure in the brooder or growout allows air to enter the building at the right direction and speed for mixing with air already inside. Cold air entering through cracks, curtains, or vents is heavier than the inside warm air. If it does not shoot into the room with sufficient speed, this incoming cold air will immediately fall downward along the sidewalls and endwalls. That is why drafts of air often feel cooler in these areas in suboptimally ventilated turkey buildings. In buildings under proper static pressure, there will be fewer cold spots, fewer dead air pockets, and no drafts at bird level.M EASURING S TATIC P RESSUREStatic pressure is expressed as the difference between inside and outside air pressure in inches of water column (wc), and is measured with a manometer. Figures 1a and 1b show how a manometer works. Both inside and outside air pressure pushes down on a column of fluid within a tube extending through a solid wall. The less pressure that exists on the inside of the building (created by turning on more exhaust fans), the more the outside air pressure will push the liquidtoward the inside portion of the open tube.2Dwyer Instruments, Inc., P.O. Box 373, Michigan City, Indiana 46360 USAFigure 1a. No exhaust fans running(equal air pressure on inside and outsideof building).Figure 1b . Exhaust fans running(air pressure less inside building).Figure 2. Manometer used for measuring staticpressure in turkey buildings.An inexpensive wall-mounted manometer can be purchased that will measure wc withinranges found in turkey buildings. The USU Turkey Research Center has found the Dwyer ®MARK II 2 manometer very acceptable (Figure 2).Figure 3. Typical vent box used for regulation of static pressure in turkeybuildings.Figure 4a. Insufficient static pressure.Figure 4b. Proper staticpressure.Figure 4c. Static pressure too high.S UGGESTIONS FOR U SING S TATIC P RESSURE E FFECTIVELY1. Air must be controlled as it enters the building. This is best achieved by mounting rectangular vent boxes along the upper part of sidewalls that automatically adjust to variations in negative pressure. Proper installation of vent boxes will direct the incoming air slightly upwards where it will mix with warmer air and gently fall to bird level(Figure 3).2. Adjust building inlet area to number of cubic feet per minute (cfm) of air being moved by the fans. Under most circumstances, static pressure should be maintained between 0.05” and 0.08” wc. This may require sealing cracks and crevices to reduce amount of air entering the facility. Sealing these extraneous sources of leakage will also help keep incoming air entering through areas where you want it to come in. As a rule of thumb, one 2.41 to 2.44 ft2 vent box opening will accommodate 1500 cfm of fan capacity.3. Insufficient static pressure will not allow the air to mix well. There will be stratification of warm air high and cold air low in the building. This is especially detrimental in the brooder. Optimal static pressure allows incoming air to mix and warm before reaching turkey level. Too high of a static pressure may also cause the air not to mix well. Incoming fresh air may shoot along the ceiling and never mix well with the air already present. (Figures 4a, 4b, and 4c).4. Remember, static pressure is not an indicator of how much air is entering the turkey building, but only how much negative pressure the fans are creating as they pull air through the available inlets. In other words, it relates to the speed of incoming air, but not directly to the volume. Fan capacity dictates volume. As more fans turn on, larger openings are therefore needed to feed them and maintain the previous static pressure.An understanding of the basic principle of static pressure is imperative to effectively take advantage of power ventilation in turkey production.。