2014河北公务员行测:巧用隔板法解排列组合问题

合集下载

隔板法在排列组合中的应用

隔板法在排列组合中的应用

隔板法在排列组合中的应用作者:王录远来源:《中学教学参考·理科版》2014年第09期排列组合在历年来的高考中占的比分很高,在20分左右.它联系实际、题型多变、解法灵活、能力要求高、每年高考得分率极低.而排列组合中的分配问题,是排列组合问题中的重点与难点,对于排列组合中涉及相同物品的分配或名额分配的问题,若采用隔板法,则可起到简化解题的功效.下面笔者通过三种类型题来介绍一下隔板法的应用.类型一:10个相同的排球分给三个班级,每个班级至少得一个排球的分法.解析:将10个相同的排球排成一列,则10个排球之间出现9个空当,用2块隔板插入空当,将其分成3份,每份至少一个排球,每个班级依次分到对应位置的排球,因此在9个空当插入2块隔板,共有C3-110-1=C29=36种分法.点评:对于相同元素的分组分配问题,常规解法繁琐且易错,若掌握隔板法,则操作方便且易懂.一般模式:将n件相同物品(或名额)分给m(m【例1】学校在高二年级的8个班中,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?解析:因为该题满足类型一的三个条件,所以可用隔板法,故共有C8-112-1=C711种分法.类型二(添加球数隔板法):10个相同的排球分给三个班级,允许有些班级没有分到排球的分法.解析:因为允许有班级没有分到排球,没有满足隔板法具备的条件(2).为了满足“每人至少分到一个排球”的条件,可先从每班收回一个排球,这样原来打算不分的,也要还一个排球回去,问题就转化成“13个排球分配给3个班,每个班至少得到一个排球,有多少种分法”,用隔板法求解,则共有C3-113-1=C212=66种分配方法.点评:本例通过添加球数,将问题转化为类型一中的隔板法问题.一般模式:将n件相同物品(或名额)分给m(m【例2】求(a+b+c)9的展开式中共有多少项?解析:由于展开式的每一项都形如maxbycz且x+y+z=9,其中x、y、z都是非负整数,因此问题等阶于求方程x+y+z=9有多少组不同的非负整数解,因为x+y+z=9,所以问题转化为“把9个相同的球分配给三个班,允许有些班没有分到球,共有几种分配方案”,用添加球数隔板法求解,则共有C3-19+3-1=C211=55种分配方案.类型三(减少球数隔板法):10个相同的排球分给三个班级,每个班级至少得两个排球的分法.解析:因为每个班级至少有两个排球,没有满足类型一具备的条件(2).为了满足这一条件,可给每个班级先分一个排球,这样就转化成“7个排球分配给3个班级,每个班级至少有一个排球,有多少种分法”的问题,用隔板法求解,则共有C3-17-1=C26=15种分配方法.点评:本例通过减少球数,将问题转化为类型一中的隔板法问题.一般模式:将n件相同物品(或名额)分给m(m【例3】12个相同的小球放入编号为1、2、3、4的盒子中,要求每个盒子中的小球数至少为2个,问有多少种放法?解析:题干中要求每个盒子中的小球数至少为2个,这满足类型三的减少球数隔板法,我们可以直接利用公式解决,故共有C4-112-4-1=C37=35种放法.【例4】20个不加区别的小球放入编号为1号、2号、3号的三个盒子里,要求每个盒内的球数不小于盒子的编号数,问有多少种放法?解法一:先取出3个球,其中1个球放入2号盒内,再将其余2个球放入3号盒内.则此题转化为“17个球放入3个不同的盒内,每盒至少一球,有多少种放法”,即转化为类型一的隔板法,故有C3-117-1=C216=120种放法.解法二:先取出6个球,其中1个球放入1号盒内,2个球放入2号盒内,其余3个球放入3号盒内.则此题转化为“14个球放入3个不同盒内,允许有些盒没有分到球,有多少种放法”,即转化为类型二的添加球数隔板法,故有C3-114+3-1=C216=120种放法.【例5】某人准备用7步走完一个10级的台阶,且每步至多可跨3级台阶,则此人共多少种不同的走法?解析:令此人每一步所跨的台阶数依次为x1,x2,…x7,则x1+x2+…+x7=10,由隔板法可知C69=84,又因为有“每步至多跨3级”的要求,则排除7种一步跨4级的可能性,所以此人共有84-7=77种走法.总之,对于排列组合中涉及相同物品的分配或名额分配的问题,即处理相同元素有序分组的问题时,我们都可采用隔板法.采用隔板法会取得事半功倍的效果.(责任编辑钟伟芳)。

隔板法解排列组合问题

隔板法解排列组合问题

隔板法解排列组合问题一、有7个相同的球和4个相同的盒子,每个盒子至少放一个球,问有多少种不同的放法?A. 15种B. 20种C. 35种D. 56种(答案:C)二、将5本不同的书分给3个同学,每个同学至少得到一本,问有多少种分配方式?A. 60种B. 120种C. 150种D. 210种(答案:C)(注:此题应用隔板法时需先对书进行排序,再插入隔板)三、有8个相同的苹果和3个相同的盘子,要求每个盘子里至少有一个苹果,且苹果不能切分,问有多少种摆放方式?A. 28种B. 36种C. 45种D. 56种(答案:B)(注:此题实际为组合问题中的“插板法”或“隔板法”的特例,但由于苹果和盘子都相同,需特殊处理)四、将6个不同的小球放入4个不同的盒子中,每个盒子至少有一个小球,问有多少种放法?A. 1260种B. 1560种C. 1860种D. 2160种(答案:B)(注:此题需先对小球进行全排列,再应用隔板法)五、有9个相同的糖果和2个相同的杯子,要求每个杯子里至少放3个糖果,问有多少种放法?A. 1种B. 2种C. 3种D. 4种(答案:C)(注:此题需先满足每个杯子的最小糖果数,再应用隔板法)六、将7个不同的玩具分给4个小朋友,每个小朋友至少得到一个玩具,问有多少种分配方式?A. 840种B. 1680种C. 3360种D. 5040种(答案:B)(注:此题需先对玩具进行全排列,再应用隔板法,并考虑小朋友的区分性)七、有10个相同的饼干和3个相同的碟子,要求每个碟子里至少放2个饼干,且饼干不能切分,问有多少种摆放方式?A. 12种B. 24种C. 36种D. 48种(答案:A)(注:此题需先满足每个碟子的最小饼干数,再应用隔板法,但由于饼干和碟子都相同,需特殊处理)八、将5封不同的信件投入3个不同的邮筒中,每个邮筒至少有一封信,问有多少种投法?A. 60种B. 150种C. 210种D. 252种(答案:B)(注:此题需先对信件进行全排列,再应用隔板法,并考虑邮筒的区分性,同时需排除不符合条件的情况)。

[隔板法解排列组合问题]解读隔板法

[隔板法解排列组合问题]解读隔板法

[隔板法解排列组合问题]解读隔板法[隔板法解排列组合问题]解读隔板法篇一 : 解读隔板法隔板法就是在n个元素间的个空中插入 k个板,可以把n个元素分成k+1组的方法。

应用隔板法必须满足3个条件:这n个元素必须互不相异所分成的每一组至少分得1个元素分成的组别彼此相异教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有:种不同的方法(2.分步计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有: 种不同的方法(3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件(解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题还是组合问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,1 先排末位共有C31 然后排首位共有C43 最后排其它位置共有A4113 由分步计数原理得C4C3A4?288练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法,二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元522素进行排列,同时对相邻元素内部进行自排。

“隔板法”解决排列组合问题

“隔板法”解决排列组合问题

隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。

对于不同元素只涉及名额分配问题也可以借助隔板法来求解, 下面通过典型例子加以解决。

例1、(1)12个相同的小球放入编号为1,2,3,4 的盒子中,问每个盒子中至少有一个小球的不同放法有多少种(2)12 个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种(3)12 个相同的小球放入编号为1,2,3,4 的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种解:(1)将12个小球排成一排,中间有11个间隔,在这11 个间隔中选出3个,放上“隔板”,若把“ 1”看成隔板,则如图00 隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4 四个盒子相应放入2个,4个,4个,2 个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11 个间隔中选出 3 个间隔的组合对应于一种放法,所以不同的放法有C131 =165 种。

1(2)法1 (分类)①装入一个盒子有C4 4种;②装入两个盒子,即12个相同的小21球装入两个不同的盒子,每盒至少装一个有C42C111 66种; ③装入三个盒子,即12个相同的小球装入三个不同的盒子,每盒至少装一个有C:Gi=220种;④装入四个盒子,即12个相同的小球装入四个不同的盒子,每盒至少装一个有C131 165种;由加法原理得共有4+66+220+165=455 种。

法2:先给每个小盒装入一个球,题目中给定的12 个小球任意装,即16 个小球装入 4 个不同的盒子,每盒至少装一个的装法有C135 455 种。

(3)法1:先给每个盒子装上与其编号数相同的小球,还剩2 个小球,则这两个小球可以装在 1 个盒子或两个盒子,共有C41C4210 种。

法2:先给每个盒子装上比编号小 1 的小球,还剩 6 个小球,则转化为将 6 个相同的小球装入4 个不同的盒子,每盒至少装一个,由隔板法有C5310由上面的例题可以看出法2要比法1简单,即此类问题都可以转化为至少分一个的问题。

利用隔板法巧解排列组合问题四个方面

利用隔板法巧解排列组合问题四个方面

利用隔板法巧解排列组合问题(四个方面)隔板法就是在n 个元素间,插入()1b -个板,把n 个元素分成b 组的方法。

一、放球问题。

例1、把8个相同的球放入4个不同的盒子,有多少种不同的放法?解析:取3块相同隔板,连同8个相同的小球排成一排,共11个位置。

由隔板法知,在11个位置中任取3个位置排上隔板,共有311C 种排法。

所以,把8个相同的球放入4个不同的盒子,有311165C =种不同方法。

点评:相同的球放入不同的盒子,每个盒子放球数不限,适合隔板法。

隔板的块数要比盒子数少1。

二、指标分配问题。

例2、某校召开学生会议,要将10个学生代表名额,分配到某年级的6个班中,若每班至少1个名额,有多少种不同分法?解析:名额与名额是没有差别的,而班级与班级是有差别的,把10相同的名额分配到6个不同的班级,适合隔板法。

分两步。

第一步:6个班每班先分配1个名额,只有1种分法;第二步:将剩下的4个名额分配给6个班。

取615-=块相同隔板,连同4个相同名额排成一排,共9个位置。

由隔板法知,在9个位置中任取5个位置排上隔板,有59C 种排法。

由分步计数原理知:10个学生代表名额,分配到某年级的6个班中,每班至少1个名额,共有59126C =种不同分法。

点评:名额与名额是没有差别的,而班级与班级是有差别的,所以适合隔板法。

三、求n 项展开式的项数。

例3、求()10125x x x +++L 展开式中共有多少项?解析:用10个相同的小球代表幂指数10, 用5个标有1x 、2x 、L 、5x 的5个不同的盒子表示数1x 、2x 、L 、5x ,将10个相同的小球放入5个不同的盒子中,把标有i x ()125i =L ,,,的每个盒子得到的小球数i k ()125i i k N =∈L ,,,,,记作i x 的i k 次方。

这样,将10个相同的小球放入5个不同的盒子中的每一种放法,就对应着展开式中的每一项。

取514-=块相同隔板,连同10个相同的小球排成一排,共14个位置。

公务员考试行测排列组合之巧用隔板模型

公务员考试行测排列组合之巧用隔板模型

至少分9,我们知道,只要每个部门先分8个,还余下6个,则就变成了每个部门至少分“1”,符合第三个条件了,所以我们的题干就变成了6个相同元素,分给3个不同的部门,每个部
门至少分“1”,直接套用公式所以选择C选项。

【中公解析】D。

根据题目可知,题干需要分相同的元素,并且符合①20个相同元素②分给四个不同的部门,但是第三个条件不符合,我们要求每至少分“1”,题干要求二班至少分2个,三班至少分3个,四班至少分4个,不符合第三个条件,我们只要二班先分1个,三班先分2个,四班先分3个,还余下14个,则就变成了每个班至少分“1”,符合第三个条件了,所以我们的题干就变成了14个相同元素,分给4个不同的部门,每个部门至
少分“1”,直接套用公式,所以选择D选项。

排列组合的题目中如果涉及到分配相同元素的问题,我们就可以考虑一下是否可以使用隔板模型,如果题干符合以下三个要求:①n个相同元素②分配给m个不同对象③每至少分
“1”,那么就属于隔板模型,我们可以直接使用隔板模型的公式进行运算。

但是第三个条件,每至少分“1”,是比较灵活的,我们要会适时地转化,如果要求分的数量大于1.就可以先给一部分,总数对应减去几个,就变成只需要分一个,如例题2;如果要求可以不分,就可以暂时借一个,总数对应增加几个就可以变成每至少分1,直接使用公式了,如例题3。

隔板模型是比较好掌握分的一种排列组合的问题,希望考生多加练习,加深理解。

隔板法解决排列组合问题

隔板法解决排列组合问题

隔板法解决排列组合问题Document number:NOCG-YUNOO-BUYTT-UU986-1986UT“隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。

对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。

例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种(2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种(3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”看成隔板,则如图00隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放入2个,4个,4个,2个小球,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法,所以不同的放法有311C=165种。

(2)法1:(分类)①装入一个盒子有144C=种;②装入两个盒子,即12个相同的小球装入两个不同的盒子,每盒至少装一个有2141166C C=种;③装入三个盒子,即12个相同的小球装入三个不同的盒子,每盒至少装一个有32411C C=220种;④装入四个盒子,即12个相同的小球装入四个不同的盒子,每盒至少装一个有311165C=种;由加法原理得共有4+66+220+165=455种。

法2:先给每个小盒装入一个球,题目中给定的12个小球任意装,即16个小球装入4个不同的盒子,每盒至少装一个的装法有315455C =种。

(3)法1:先给每个盒子装上与其编号数相同的小球,还剩2个小球,则这两个小球可以装在1个盒子或两个盒子,共有124410C C +=种。

“隔板法”

“隔板法”

“隔板法”解决排列组合问题排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。

对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。

所谓隔板法,就是把隔板当成元素,再从元素里选隔板就行例1、(1)12 个相同的小球放入编号为1,2,3,4 的盒子中,问不同放法有多少种?(2)12 个相同的小球放入编号为1,2,3,4 的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?(3)12 个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种?解:(1)本题需要3个隔板,把3个隔板当成3个元素,共15个元素,再从15个元素里选取3个隔板,共有C 153 =455 种(2)首先一个盒子放一小球,还剩8个小球,把8个小球放4个盒子需3个隔板,把3个隔板当成3个元素共11个元素,最后从11个元素里选3个隔板就行了,共有C113 =165 种。

(3)先给每个盒子装上与其编号数相同的小球,还剩2 个小球,2个小球装在4个盒子里需3个隔板,3个隔板看成3个元素,共5个元素,最后从5个元素里选出3个隔板就行了,共有C53=10种913111例 2、( 1)方程 x 1x 2 x 3 x 4 10 的正整数解有多少组?(2) 方程 x 1x 2 x 3 x 4 10 的非负整数解有多少组?( 3)方程2x 1 x 2 x 3x 10 3 的非负整数整数解有多少组?解:( 1)转化为 10 个相同的小球装入4 个不同的盒子, 每盒至少装一个, 有 C 384 种,所以该方程有 84 组正整数解。

( 2)转化为 10 个相同的小球装入 4 个不同的盒子, 可以有空盒, 先给每个小盒装一个,进而转化为 14 个相同的小球装入4 个不同的盒子, 每盒至少装一个, 有 C3286 种, 所以该方程有 286 组非负整数整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014河北公务员行测:巧用隔板法解排列组合问题
在公务员考试行测数量关系题目中经常能见到排列组合问题的身影,很多考生朋友可能会对排列组合望而却步,其实弄懂排列组合问题并不难,掌握一定的技巧,对于很多题目也就迎刃而解了。

这里给大家简单介绍一种方法——隔板法,这对于解决排列组合问题中的同素分堆问题具有出奇制胜的效果。

中公教育专家带大家先来看一道例题,了解一下什么是同素分堆。

例1:一串糖葫芦共6颗,每颗大小形状都相同,分给三个小朋友吃,每个小朋友至少分得一颗,问共有多少种分法?
A.4
B.6
C.8
D.10
例2:某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料,问一共有多少种不同的发放方法?
A.7
B.9
C.10
D.12
还有一些题目对于分法没有要求,即不要求每个对象至少一个。

类似的,我们就要想办法转化为至少一个。

例3:将7个大小形状相同的小球放进三个不同的盒子,允许有盒子为空,但球必须放完,问共有多少方法?
A.12
B.24
C.36
D.48。

相关文档
最新文档