软件工程结构化分析与设计资料讲解
软件工程概述-第5章 结构化需求分析

实体 属性 联系
用矩形表示,矩形内写 明实体名
用椭圆形表示,并用无 向边将其与对应实体连 接起来
用菱形表示,并用无向 边分别与有关实体连接 起来,同时在无向边旁 标上联系的类型。
E-R 图表示图示 例 2-1 中的例子
练习
例:简单的学生选课系统:
(1)学生 属性有学号,姓名, 性别,年龄,所在系
x
1.1
1.2
1.3
1
3
2
2.1 2.3
2.2
1.1 1.3
目录
1
5.1结构化分析
2
5.2数据流图
3
5.3数据字典
4
5.4 实体关系图
5
5.5 状态转换图
数据流图
数据流图(Data Flow Diagram,DFD)是描述系统中数据 流程的图形工具,它描述了将系统的逻辑输入转换为逻辑输出 所需的加工处理过程。
(2)课程 属性有课程号,课程 名称,先修课程号,学分
实体之间的联系:
一个学生可同时选修多门 课程,而一门课程可以同时被 若干学生选修。用成绩来表示 某个学生学习某门课程的成绩 。
分解:对于一个复杂的系统,为了将复杂性降 低到可以掌握的程度,可以把大问题分解成若 干小问题,然后分别解决。
抽象:分解可以分层进行,即先考虑问题最本 质的属性,暂把细节略去,以后再逐层添加细 节,直至涉及到最详细的内容,这种用最本质 的属性表示一个系统的方法就是“抽象”
结构化分析
结构化分析方法基本思想 “分解”和“抽象”
取值范围:数据项的取值范围,例如,职工年龄 的取值范围定义为18至60岁,表示为18..60。
初始值:数据项的初始值,例如,为了操作简便, 软件定义借书日期的初始值默认为系统的当前日 期。
南邮 软件工程-Unit_03-0_结构化分析和设计方法

结构化分析
数据流图:建立功能模型
问题提出
可行性研究
提供了功能建模机制也提供了信息流建模机制 是系统逻辑功能的图形表示,没有任何具体的物理元素 描绘了信息在软件中流动和被处理的情况 描绘“做什么”而不考虑“怎样做” 正方形(或立方体):表示数据的源点或终点 圆形(或圆角矩形):代表变换数据的处理 开口矩形(或两条平行横线):代表数据存储 箭头:表示数据流,即特定数据的流动方向
结构化编程
15
结构化分析
数据字典(Data Dictionary,DD)
问题提出
可行性研究
结构化分析
1) 数据流词条的描述 数据流名: 说明:简要介绍作用即它产生的原因和结果。 数据流来源:即该数据流来自何方。 数据流去向:去向何处。 数据流组成:数据结构。 每个数据量流通量:数据量、流通量。
结构化设计
结构化编程
详细设计:模块内部的具体设计
28
结构化设计
问题提出
基本思想:自顶向下的模块化设计方法 描述方式:软件结构图 设计方法:(面向数据流的方法)
可行性研究
结构化分析
DFD映射 变换流→变换分析法 事务流→事务分析法
结构化设计
结构化编程
29
结构化设计
软件结构图
结构化分析和设计方法
王传栋 南京邮电大学计算机学院
传统视角的软件生命周期
问题定义 可行性研究 结构化分析 结构化设计 结构化的程序设计 测试 运行和维护
2
问题定义
任务:
问题提出
实验二结构化分析与设计

实验⼆结构化分析与设计实验⼆结构化分析与设计博客班级软件⼯程作业链接第⼆次实验作业要求完成第⼆次实验学号3180701318⼀.实验⽬的(1)掌握结构化的需求分析⽅法;(2)掌握分层数据流图的绘制、数据字典和加⼯说明的编制;(3)掌握数据流图映射为软件结构图的⽅法;(4)掌握需求说明书和设计说明。
书的主要内容,学习软件需求说明书和设计说明书的编写;(5)掌握测试的基本⽅法。
⼆.实验内容(1)参考⼀个熟悉的系统,如,机票预订系统/教材订购系统/ATM⾃动取款机,讨论其⽤户需求、系统需求和业务需求;(2)绘制系统的分层数据流图,并给出数据字典;(3)将系统的分层数据流图映射为软件结构图,绘制软件结构图;(4)为关键模块进⾏详细设计,如绘制关键模块的流程图;(5)实现系统部分功能并测试。
【实例1】机票预订系统参考:(1)携程⽹:(2)去哪⼉:为了⽅便旅客,某航空公司拟开发⼀个机票预定系统。
旅⾏社把预定机票的旅客信息(姓名、性别、⼯作单位、⾝份证号码、旅⾏时间、旅⾏⽬的地等)输⼊该系统,系统为旅客安排航班,旅客在飞机起飞前⼀天凭取票通知和账单交款取票,系统核对⽆误即印出机票给顾客【实例2】教材订购系统销售系统的⼯作过程为:⾸先由教师或学⽣提交购书单,经教材发⾏⼈员审核是有效购书单后,开发票、登记并返给教师或学⽣领书单,教师或学⽣即可去书库领书。
采购系统的主要⼯作过程为:若是脱销教材,则登记缺书,发缺书单给书库采购⼈员;⼀旦新书⼊库后,即发进书单通知给教材发⾏⼈员。
【实例3】图书管理系统参考:三.实验步骤(1)复习结构化的分析与设计⽅法的主要过程;结构化分析⽅法的基本思想是⾃顶向下逐层分解。
分解和抽象是⼈们控制问题复杂性的两种基本⼿段。
对于⼀个复杂的问题,⼈们很难⼀下⼦考虑问题的所有⽅⾯和全部细节,通常可以把⼀个⼤问题分解成若⼲个⼩问题,每个⼩问题再分解成若⼲个更⼩的问题,经过多次逐层分解,每个最底层的问题都是⾜够简单、容易解决的,于是复杂的问题也就迎刃⽽解了。
软件工程结构化分析与设计

软件工程结构化分析与设计在当今数字化的时代,软件几乎无处不在,从我们日常使用的手机应用程序,到企业内部复杂的业务系统,软件已经成为推动社会发展和提高生活质量的重要力量。
而软件工程中的结构化分析与设计,作为软件开发过程中的关键环节,对于确保软件的质量、可维护性和可扩展性具有至关重要的意义。
首先,让我们来理解一下什么是软件工程结构化分析。
简单来说,结构化分析就是对软件系统进行详细的调查和研究,以确定系统的需求和功能。
这就好比在盖房子之前,我们需要清楚地知道要盖什么样的房子,有多少房间,每个房间的用途是什么等等。
在软件领域,结构化分析的主要任务包括收集用户需求、理解业务流程、识别系统的输入和输出、定义数据结构等。
在收集用户需求时,开发人员需要与用户进行充分的沟通和交流。
用户可能来自不同的背景和领域,他们对软件的期望和需求也各不相同。
因此,开发人员需要具备良好的沟通技巧和理解能力,能够将用户模糊的、不明确的需求转化为清晰、具体的软件功能描述。
比如,用户可能说“我希望这个软件能够快速处理大量数据”,开发人员就需要进一步询问“快速”的具体标准是什么,“大量数据”大概是多少,以及数据的类型和格式等。
理解业务流程也是结构化分析的重要部分。
不同的行业和组织都有其独特的业务流程,软件系统需要能够与之相适应和支持。
例如,在一个电子商务系统中,订单处理、库存管理、支付流程等都是关键的业务环节,开发人员需要深入了解这些流程的细节,以便设计出符合业务需求的软件。
接下来,我们谈谈软件工程结构化设计。
结构化设计是在结构化分析的基础上,将系统的需求转化为软件的架构和模块设计。
这就像是根据房子的设计图纸,确定房子的框架结构、房间布局以及各个部分使用的材料等。
在结构化设计中,模块划分是一个关键步骤。
模块是软件系统中的独立组成部分,具有明确的功能和接口。
合理的模块划分可以提高软件的可维护性和可扩展性。
例如,将一个复杂的系统划分为用户界面模块、数据处理模块、业务逻辑模块等,每个模块都专注于完成特定的任务,并且可以独立地进行开发、测试和维护。
软件工程5(1)- 结构化设计原理

主函数main和子函数sum之间 为标记耦合关系
void output(flag) {if (flag) printf("OK! "); else printf("NO! "); }
D.作用范围与控制范围不受任何限制
重用率高的模块在软件结构图中的特征是
:(
)。
A.扇出数大
B.扇入数大
C.内聚性高
D.扇出数小
答案:B
在划分模块时,一个模块的作用范围应该在其 控制范围之内。若发现其作用范围不在其控制 范围内,则( )不是适当的处理方法。 A.将判定所在模块合并到父模块中,使判定处 于较高层次 B.将受判定影响的模块下移到控制范围内 C.将判定上移到层次较高的位置 D.将父模块下移,使判定处于较高层次
偶然内聚。偶然内聚即模块内部各元素之间的联系很少或者没有。
逻辑内聚。逻辑内聚将几种相关的功能组合在一起形成一个模块。
时间内聚。时间内聚是指模块内部各功能之间的执行与时间相关。
过程内聚。如果模块内各元素的执行是按照一定次序来进行的,即各 个元素的处理是相关的,则称其为过程内聚。
通信内聚。一个模块内部可以有几个功能部分,如果这些功能部分都 使用相同的数据输入,或者产生相同的数据输出,这不是通信内聚。
内容耦合:内容耦合是一种耦合性很强的耦合,这种耦合严重影响了模 块的独立性。
1. 函数fac和prt之间为非直接耦合关 系
2. 主函数main和子函数fac之间为数 据耦合关系
模块A将学生信息,即学生姓名、学号、手机号 等以参数形式传递给模块B。模块A和B之间的耦 合类型为( A )耦合。
软件工程结构化分析与设计范文精简版

软件工程结构化分析与设计软件工程结构化分析与设计简介软件工程结构化分析与设计是软件工程领域中重要的一环,它涉及到软件系统的分析和设计阶段。
在软件工程领域,结构化分析与设计是指通过建立准确的抽象层次,将软件系统划分为各个模块,并规定各个模块之间的关系和功能,以实现系统的需求。
什么是结构化分析与设计结构化分析与设计是一种系统性的方法,它利用模块化和层次化的原则,对软件系统进行分析、设计和实现。
结构化分析关注的是系统需求,它通过分解需求,将系统划分为不同的模块,并定义它们之间的关系。
结构化设计则负责将分析得到的模块进行详细设计,并确定模块的功能和接口。
结构化分析与设计的目标是提高软件系统的可理解性、可维护性和可扩展性。
结构化分析与设计的流程结构化分析与设计通常包含以下几个步骤:1. 确定系统需求:定义软件系统的功能和性能要求。
2. 确定模块划分:将系统划分为不同的模块,并定义它们之间的功能和接口。
3. 定义模块内部逻辑:对每个模块进行详细设计,包括设计数据结构和算法等。
4. 确定模块间的通信方式:确定模块之间的数据交换和通信方式。
5. 验证和评估设计:对设计进行评估和验证,确保满足系统需求。
6. 实施和编码:根据设计编写代码,完成软件系统的实施。
7. 和调试:对软件系统进行和调试,确保其功能和性能的正确性。
结构化分析与设计的优势结构化分析与设计具有以下优势:1. 提高可理解性:通过模块化的设计原则,使系统的结构和功能更易于理解和掌握。
2. 提高可维护性:分解模块可以使系统的维护更加简单和方便,减少对其他模块的影响。
3. 提高可扩展性:模块化的设计可以使系统更易于扩展和修改,方便适应需求变化。
4. 提高开发效率:结构化分析与设计明确了各个模块的功能和接口,可以并行开发,提高开发效率。
5. 降低系统复杂性:通过模块化的设计,将大型系统划分为多个小模块,降低了系统的复杂性。
结构化分析与设计的工具和技术在软件工程中,有许多工具和技术可以用于结构化分析与设计。
软件工程第四章结构化需求分析

数据字典
定义
数据字典是一种用于描述数据元 素及其属性的工具,它提供了数 据的详细描述和定义。
பைடு நூலகம்
内容
包括数据元素的名称、别名、类 型、长度、取值范围、默认值等 属性信息。
作用
为开发人员提供了一个统一的数 据定义和描述标准,避免了数据 不一致和歧义的问题。
03 结构化需求分析过程
问题识别
01
确定软件系统的范 围和目标
用例表
列出系统的所有用例,包括用例名称、描述、前置条件和后置条件 等。
用户故事表
以用户为中心描述系统需求,包括用户角色、场景、任务和目标等。
原型工具
低保真原型
使用简单的工具和方法创建的原型,主要用于 概念验证和用户反馈收集。
高保真原型
使用高级工具和方法创建的原型,几乎与实际 产品一样,用于详细需求分析和用户测试。
04 结构化需求分析工具
图形工具
流程图
用于描述系统或程序的逻辑流程,包括开始、结束、决策点和活动 等元素。
数据流图
用于描述数据在系统中的流动和处理过程,包括数据源、数据存储、 数据处理和数据终点等元素。
实体关系图
用于描述系统中实体之间的关系,包括实体、关系和属性等元素。
表格工具
需求规格说明书
详细列出系统需求,包括功能需求、性能需求、安全需求和接口 需求等。
步骤
首先确定系统的主要功能,然后逐层向下分解,直 到每个功能都清晰、具体、可实现。
优点
能够全面地了解系统的功能需求,有助于保 证系统的完整性。
数据流图
定义
数据流图是一种图形化表示方法,用于描述系统中数 据的流动和处理过程。
组成
包括数据流、数据存储、数据处理和外部实体等基本 元素。
软件工程结构化设计

软件工程结构化设计在当今数字化的时代,软件几乎无处不在,从我们日常使用的手机应用程序,到企业级的复杂业务系统,软件已经成为推动社会发展和提高生活质量的重要力量。
而软件工程中的结构化设计,作为软件开发过程中的关键环节,对于确保软件的质量、可维护性和可扩展性具有至关重要的意义。
什么是软件工程结构化设计呢?简单来说,它是一种将软件系统分解为若干个模块,并明确这些模块之间的关系和交互方式的设计方法。
其目的是为了使软件系统具有清晰的结构,便于开发人员理解、实现和维护。
在结构化设计中,模块是基本的组成单位。
模块应该具有高内聚和低耦合的特性。
高内聚意味着模块内部的各个部分紧密相关,共同完成一个明确的功能;低耦合则表示模块之间的依赖关系尽可能少,相互之间的影响较小。
这样的设计能够使得每个模块都相对独立,当需要对某个模块进行修改或优化时,不会对其他模块产生过多的影响,从而降低了软件维护的成本和风险。
为了实现良好的结构化设计,通常会采用一些原则和方法。
比如,自顶向下的设计方法,先从系统的整体功能出发,逐步细化到各个子系统和模块;还有逐步求精的原则,不断对设计进行完善和优化,逐步增加细节和精度。
在进行结构化设计时,数据结构的设计也是非常重要的一部分。
合理的数据结构能够提高数据的存储和访问效率,为软件的性能提供有力的支持。
同时,还要考虑到数据的完整性和一致性,确保数据在整个软件系统中的准确性和可靠性。
另外,接口设计也是不容忽视的环节。
清晰、简洁的接口能够让不同的模块之间更好地进行通信和协作。
良好的接口设计可以减少模块之间的误解和错误,提高软件系统的稳定性和可靠性。
软件工程结构化设计的好处是显而易见的。
首先,它能够提高软件开发的效率。
清晰的结构和明确的分工,使得开发人员能够更加专注于自己负责的模块,减少了不必要的沟通和协调成本。
其次,有利于软件的维护和升级。
当软件需要进行修改或扩展时,能够快速定位到相关的模块,并且由于模块之间的低耦合性,降低了修改带来的风险和影响。