人教版数学八年级下册期中考试试卷5

合集下载

人教版数学八年级下册《期中考试试卷》附答案解析

人教版数学八年级下册《期中考试试卷》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是( ) A. 4 B. 5 C. 0.2 D. 132. 使二次根式2x -有意义的x 的取值范围是( )A. x≠2B. x >2C. x≤2D. x≥2.3. 下列计算正确的是( )A. 103=7-B. 23=5+C. 333=23-D. 22=22+ 4. 下列各组数中,以a 、b 、c 为边三角形不是直角三角形的是( )A. a =1,b =2,c =3B. a =32,b =2,c =52C. a =5,b =12,c =13D. a =7,b =24,c =255. 在平行四边形ABCD 中,∠A 比∠B 大40°,那么∠C 的度数为( )A 60° B. 70° C. 80° D. 110°6. 在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A. AB =BC ,CD =DAB. AB //CD ,AD =BCC. AB //CD ,∠A =∠CD. ∠A =∠B ,∠C =∠D7. 如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )A 13 B. 4 C. 17 D. 58. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A72B. 3C.512D.539. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B. 22C. 255D. 522- 二、填空题(每小题3分,共18分)11. 化简:()()2255-+=_____. 12. 若a =2+3,b =2﹣3,则ab 的值为_____.13. 点D 、E 、F 分别是△ABC 三边的中点,若△ABC 的周长是16,则△DEF 的周长是_____.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为_____.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.三、解答题(共72分)17. 计算:(1)1 27123-+=(2)(3622)2-÷=18. 已知:如图,点E,F分别在□ABCD的AB,DC边上,且AE=CF,联结DE,BF.求证:四边形DEBF是平行四边形.19. 已知=51-,求代数式256x x+-的值.20. 如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)直接写出AC的长为,△ABC的面积为;(2)请在如图所示网格中,用无刻度的直尺作出AC边上的高BD,并保留作图痕迹;(3)求BD的长.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED是菱形.22. 在△ABC中,AB=AC=5.(1)若BC=6,点M、N在BC、AC上,将△ABC沿MN折叠,使得点C与点A重合,求折痕MN的长;(2)点D在BC的延长线上,且BC:CD=2:3,若AD=10,求证:△ABD是直角三角形.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A3、A4、A5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD长与宽之比也满足以上条件,其中宽AB=2.①点P是AD上一点,将△BP A沿BP折叠得到△BPE,当BE垂直AC时,求AP的长;②若将长方形ABCD绕点B旋转得到长方形A1BC1D1,直线CC1交DD1于点M,N为BC的中点,直接写出MN的最大值:.答案与解析一、选择题(每小题3分,共30分)1. 下列式子中,属于最简二次根式的是()B. C. D.A.[答案]B[解析][分析]根据最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式,可得答案.[详解]解:A.=2,故不符合题意;B.C.,故不符合题意;5D. ,故不符合题意故选:B.[点睛]本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽方的因数或因式.2. x的取值范围是( )A. x≠2B. x>2C. x≤2D. x≥2.[答案]D[解析][分析]根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.[详解]解:由题意得,x-2≥0,解得x≥2,故选:D.[点睛]本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3. 下列计算正确的是( )C. D. 2[答案]C[解析][分析]先把各个二次根式化成最简二次根式再合并判断即可.[详解]解:A,故该选项不符合题意;B不能计算,故该选项不符合题意;C、正确,符合题意;D,故该选项不符合题意;故选:C.[点睛]此题考查二次根式的加减,关键是先把各个二次根式化成最简二次根式再合并解答.4. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是( )A. a=1,b,cB. a=32,b=2,c=52C. a b,cD. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.[详解]解:A、12+2=2,符合勾股定理的逆定理,是直角三角形,故此选项错误;B、22+(32)2=(52)2,符合勾股定理的逆定理,是直角三角形,故此选项错误;C、2+)2≠2,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;D、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误.故选:C.[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5. 在平行四边形ABCD中,∠A比∠B大40°,那么∠C的度数为( )A. 60°B. 70°C. 80°D. 110°[答案]D[解析][分析]根据平行四边形的对角相等,邻角之和为180°,即可求出该平行四边形各个内角的度数.[详解]画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,又∵∠A﹣∠B=40°,∴∠A=110°,∠B=70°,∴∠C=110°.故选D.[点睛]此题考查了平行四边形的性质.理解平行四边形的对角相等,邻角互补是解题的关键.6. 在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB=BC,CD=DAB. AB//CD,AD=BCC. AB//CD,∠A=∠CD. ∠A=∠B,∠C=∠D[答案]C[解析]分析]根据平行四边形的判定定理,分别进行判断,即可得到答案.[详解]解:如图:A、根据AB=BC,AD=DC,不能推出四边形ABCD是平行四边形,故本选项错误;B、根据AB∥CD,AD=BC不能推出四边形ABCD平行四边形,故本选项错误;C、由AB∥CD,则∠A+∠D=180°,由∠A=∠C,则∠D+∠C=180°,则AD∥BC,可以推出四边形ABCD是平行四边形,故本选项正确;D、∵∠A=∠B,∠C=∠D,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB∥CD,但不能推出其它条件,即不能推出四边形ABCD是平行四边形,故本选项错误;故选:C.[点睛]本题考查了对平行四边形判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.7. 如图,正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A点出发,到达B点,则它运动的最短路程为( )13 B. 417 D. 5[答案]A[解析][分析]正方体侧面展开为长方形,确定蚂蚁的起点和终点,根据两点之间线段最短、勾股定理即可求出最短路径长.[详解]一.如图,它运动的最短路程22(22)21721AB⎛⎫=++⨯=⎪⎝⎭二、如图,它运动的最短路程2222+21312AB⎛⎫=+⨯=⎪⎝⎭故选:A.[点睛]本题考查了正方体的侧面展开图、两点之间线段最短、勾股定理,掌握正方体的侧面展开图是解题关键.8. 菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=( )A723 C.512D.53[答案]A [解析][分析]连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、DF的长,进而可得PB的长.[详解]解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,3∴OB∴FB3∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF227DB BF ,∵点P为FD的中点,∴PB =12DF =72. 故选:A .[点睛]本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.9. 将一个边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四个剪法中,裁剪线的长度所标的数据不可能的是( )A. B.C. D.[答案]B[解析][分析]直接验证三角形三边的平方之间的关系即可作出判断.[详解]解:对于A 选项,((2255160100+=>,三角形为锐角三角形,合理;对于B 选项,102+42<112,说明边长为11的边所对的角是钝角,这个时候三角形不可能完全处在正方形内,故不合理;对于C 选项,(22210839+>,说明边长为239,三角形为锐角三角形,合理; 对于D 选项,62+72<102,说明边长为10的边所对的角为钝角,合理.故选:B .[点睛]本题主要考查了正方形的性质和勾股定理,正确判断各三角形的形状是解答的关键.10. 将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则FMFG的值为( )A. 622-B.22C.255D.522-[答案]A[解析][分析]连接HF,直线HF与AD交于点P,根据正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH 与五边形MCNGF的面积为4x2,5x2,可得GF=2x,根据折叠可得正方形ABCD的面积为24x2,进而求出FM,最后求得结果.[详解]如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF22GF=2,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM 2=24x 2,∴PM =x ,∴FM =PH =12(PM ﹣HF )=12(x ﹣x )=)x ,∴FM GF = 故选:A .[点睛]本题考查了剪纸问题,解决本题的关键是掌握对称的性质.二、填空题(每小题3分,共18分)11. 2=_____. [答案]10[解析][分析]根据二次根式的性质计算.[详解]2 =5+5=10.故答案为:10.[点睛]本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12. 若a =,b =2则ab 的值为_____.[答案]1[解析][分析]直接利用平方差公式计算得出答案.[详解]解:∵22a b ==∴ab =(22+=4﹣3=1.故答案为:1.[点睛]此题主要考查了二次根式的化简求值,正确运用乘法公式是解题关键.13. 点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是_____.[答案]8.[解析][分析]据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.[详解]如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF12=BC,FE12=AB,DE12=AC,∴DF+FE+DE12=BC12+AB12+AC12=(AB+BC+CA)12=⨯16=8.故答案为8.[点睛]本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14. 如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A为圆心,AB长为半径作弧,交格线于点D,则CD的长为_____.[答案]37[解析][分析]由勾股定理求出AB,再由勾股定理求出DE,即可得出CD 的长.[详解]解:连接AB ,AD ,如图所示:∵AD =AB =222222+=,∴DE =()222217-=,∴CD =37-.故答案为:37-.[点睛]本题考查了勾股定理,由勾股定理求出AB 、DE 是解题的关键.15. △ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于D ,分别以AD 、BD 、CD 为长对角线作全等的三个菱形,如图所示,若菱形较短的对角线的长为2,点G 刚好在AE 的延长线上,则其中一个菱形AEDF 的面积为_____.[答案]222[解析][分析]如图所示,连接HG ,设EG 交DH 于点K ,先证明△GDE 是等腰直角三角形,再证明∠GKD =90°,从而在Rt △GHK 中,由勾股定理得x 2+22)x x -=4,求得x 2的值,再根据菱形的面积等于底乘以高,得出菱形BGDH 的面积,即菱形AEDF 的面积.[详解]如图所示,连接HG ,设EG 交DH 于点K ,则HG =2,∵三个菱形全等,∴GD =ED ,∠ADE =∠BDG ,∵AD ⊥BC 于D ,∴∠ADB =∠ADE+∠BDE =90°,∴∠GDE =∠BDG+∠BDE =90°,∴△GDE 是等腰直角三角形,∴∠EGD =∠GED =45°,∵四边形AEDF 为菱形,∴AE ∥DF ,∴∠EDF =∠GED =45°,∴∠GDK =45°,∴∠GKD =90°,设GK =DK =x ,则GD =DH 2x ,HK 2x ﹣x ,在Rt △GHK 中,由勾股定理得:x 2+2(2)x x =4,解得:x 2=2∴菱形BGDH 的面积为:DH•GK 2x•x 2x 2=2+2,∴菱形AEDF 的面积为:2+2.故答案为:2+2.[点睛]本题考查了菱形的性质、菱形的面积计算、等腰直角三角形的判定及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.16. △ABC 中,AD ⊥BC 于D ,AB =m ,AC =n ,∠ACB =2∠BAD ,用m 、n 表示AD 的长为_____.[答案]2242-m n m n[解析][分析]延长BC 至E ,使CE =AC ,连接AE ,根据三角形的外角性质、等腰三角形的性质得到∠B =∠BAC ,得到BC =AC =n ,根据勾股定理、三角形的面积公式计算即可.[详解]延长BC 至E ,使CE =AC ,连接AE ,则∠CAE =∠E ,∵∠ACB =∠CAE+∠E ,∴∠CAE =∠E =12∠ACB , ∵∠ACB =2∠BAD ,∴∠E =∠BAD ,∵AD ⊥BC ,∴∠B+∠BAD =90°,∴∠B+∠E =90°,即∠BAE =90°,∴∠BAC+∠CAE =90°,∵∠B+∠E =90°,∠CAE =∠E ,∴∠B =∠BAC ,∴BC =AC =n ,由勾股定理得,AE 22BE AB -224n m -S △BAE =12×AB×AE =12×BE×AD ,即m×224n m -=2n×AD ,解得:AD 224-m n m , 224-m n m . [点睛]本题考查的是等腰三角形的性质、直角三角形的性质、勾股定理,掌握三角形的外角性质、灵活运用三角形的面积公式是解题的关键.三、解答题(共72分)17. 计算:(1127123= (2)(3622)2÷=[答案](1)33;(2)332. [解析][分析](1)先化简二次根式,再计算二次根式的加减法即可;(2)利用二次根式除法的分配律进行计算即可.[详解](1)原式323333= 433=; (2)原式362222=332=.[点睛]本题考查了二次根式的加减法、除法运算,熟记运算法则是解题关键.18. 已知:如图,点E ,F 分别在□ABCD 的AB ,DC 边上, 且AE=CF ,联结DE ,BF .求证:四边形DEBF 是平行四边形.[答案]见解析[解析][分析]由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,再说明EB=DF ,从而根据一组对边既平行又相等的四边形是平行四边形即可得证.[详解]∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,即EB ∥DF.∵AE =CF ,∴AB -AE =CD -CF ,即EB =DF .∴四边形DEBF 是平行四边形.[点睛]本题主要考查了平行四边形的性质与判定,熟练掌握平行四边形的性质定理与判定定理是解答本题的关键.19. 已知51,求代数式256x x +-的值.[答案]535-+[解析][分析]把x 的值代入多项式进行计算即可.[详解]当51时,256x x +-=))2515516+-=6255556--=535-+[点睛]本题考查了二次根式的化简求值,掌握完全平方公式是解题的关键.20. 如图,在每个小正方形边长为1的网格中,点A 、B 、C 均在格点上.(1)直接写出AC 的长为 ,△ABC 的面积为 ;(2)请在如图所示的网格中,用无刻度的直尺作出AC 边上的高BD ,并保留作图痕迹;(3)求BD 的长.[答案](1)29,9;(2)见解析;(3)182929[解析][分析](1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据题意画出线段BD即可;(3)根据三角形的面积公式即可得到结论.[详解](1)AC=2225+=29,S△ABC=4×5﹣12×2×4﹣12×2×5﹣12×1×4=9,故答案为:29,9;(2)如图所示,BD即为所求,(3)∵S△ABC=12AC•BD=1292BD=9,∴BD 1829.[点睛]本题考查了作图﹣应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.21. 如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,求证:四边形OCED 是菱形.[答案]见解析[解析][分析]首先根据两对边互相平行的四边形是平行四边形证明四边形OCED 是平行四边形,再根据矩形的性质可得OC=OD ,即可利用一组邻边相等的平行四边形是菱形判定出结论.[详解]证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴OC=OD=12AC=12BD ∴四边形OCED 是菱形.22. 在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.[答案](1)103;(2)见解析 [解析][分析] (1)如图1,过作AD BC ⊥于,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论; (2)如图2,过作AE BC ⊥于,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.[详解]解:(1)如图1,过作AD BC ⊥于,5AB AC ==,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点与点重合,AM CM ∴=,1522AN AC ==, 设AM CM x ==,3MD x ∴=-,222AD DM AM +=,2224(3)x x ∴+-=, 解得:256x , 222225510()()623MN AM AN ∴=-=-=; (2)如图2,过作AE BC ⊥于, AB AC =,12BE CE BC ∴==, :2:3BC CD =,设2BC t =,3CD t =,AE h =,BE CE t ∴==, 5AB =,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,5t =(负值舍去),55BD ∴=222222510125(55)AB AD BD+=+===,ABD∴∆是直角三角形.[点睛]本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.23. ▱ABCD中,点E、F分别在AB、AD上,∠EAF=∠B=60°,AD=nAB.(1)当n=1时,求证:△AEF为等边三角形;(2)当n=12时,求证:∠AFE=90°;(3)当CE=CF,DF=4,BE=3时,直接写出线段EF的长为.[答案](1)见解析;(2)见解析;(339[解析][分析](1)根据菱形的判定定理得到平行四边形ABCD为菱形,得到△ACD为等边三角形,证明△F AC≌△EAB,根据全等三角形的性质得到AF=AE,根据等边三角形的判定定理证明结论;(2)延长AF至N,使DN=AD,延长AF至P,使FP=AF,延长BC、NP交于点H,根据菱形的判定定理得到四边形ABHN为平行四边形,根据(1)中结论解答;(3)延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,求出PE的长,证明△F AE≌△P AE,根据全等三角形的性质得到EF=PE,得到答案.[详解](1)证明:当n=1时,AD=AB,∴平行四边形ABCD 为菱形,∴∠ACD =12∠BCD =60°,∠CAB =60°, ∴△ACD 为等边三角形,∴AC =AD =AB ,∵∠EAF =60°,∴∠F AE =∠CAB ,∴∠F AC =∠EAB ,在△F AC 和△EAB 中,FAC EAB AC ABFCA EBA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△F AC ≌△EAB (ASA )∴AF =AE ,又∵∠EAF =60°,∴△AEF 为等边三角形;(2)证明:如图2,延长AF 至N ,使DN =AD ,延长AF 至P ,使FP =AF ,延长BC 、NP 交于点H ,∵DN =AD ,FP =AF ,∴DF 是△ANP 的中位线,∴NP ∥AB ,又AN ∥BH ,∴四边形ABHN 为平行四边形,∵AB =AN ,∴平行四边形ABHN 为菱形,由(1)可知,△APE 为等边三角形,∵AF =FP ,∴EF ⊥AP ,∴∠AFE =90°;(3)解:如图3,延长EF交AD的延长线于G,延长FE交AB的延长线于H,作DM⊥FG于M,把△AFG绕点A顺时针旋转120°,得到△APH,∵CF=CE,∴∠CFE=∠CEF=30°,∵AG∥BC,∴∠G=∠CEF=30°,∴∠G=∠DFG,∴DG=DF,又DM⊥FG,∴GM=MF,在Rt△DMF中,∠DFM=30°,∴DM=12DF=2,由勾股定理得,MF2223DF DM-=∴GF=3∴PH=GF=3,同理,∠BHE=30°,EH=3,∴∠PHN=60°,∴∠NPH=30°,∴NH=12PH=3∴EN=EH﹣NH3,由勾股定理得,PN22PH NH-6, ∴PE2239PN EN-=∵∠F AE =60°,∠BAD =120°,∴∠DAF +∠EAB =60°,∴∠HAP +∠EAB =60°,即∠EAP =60°,∴∠F AE =∠EAP ,在△F AE 和△P AE 中,AF AP FAE PAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△F AE ≌△P AE (SAS )∴EF =PE =39, 故答案为:39.[点睛]本题考查的是菱形的判定和性质、全等三角形的判定和性质、等边三角形的性质、旋转变换的应用,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.24. 书籍和纸张的长与宽比值都有固定的尺寸,如常用的A 3、A 4、A 5的纸张长与宽的比值都相等.一长方形纸张对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等.(1)求满足这样条件的长方形的长与宽的比值;(2)如图所示的长方形ABCD 长与宽之比也满足以上条件,其中宽AB =2.①点P 是AD 上一点,将△BP A 沿BP 折叠得到△BPE ,当BE 垂直AC 时,求AP 的长; ②若将长方形ABCD 绕点B 旋转得到长方形A 1BC 1D 1,直线CC 1交DD 1于点M ,N 为BC 的中点,直接写出MN 的最大值: .[答案](1)2a b;(2)①232231 [解析][分析] (1)设长方形的长与宽分别为a ,b .根据对折后的小长方形的长与宽的比值与原长方形的长与宽的比值相等,构建关系式解决问题即可;(2)①如图1中,延长PE 、BC 交于点G ,证明AC =PG ,PG =BG 即可解决问题;②如图2中,连接BM ,取BD的中点O ,连接OM ,ON ,延长CC 1到K ,使得C 1K =CC 1在MK 的延长线上取一点J ,使得D 1J =D 1K .想办法证明DM =MD 1,推出BM ⊥DD 1,求出OM ,ON 即可解决问题.[详解](1)设长方形的长与宽分别为a ,b . 由题意:2a b a b =,∴a 2=2b 2,∴2a b=; (2)①如图1中,延长PE 、BC 交于点G ,∵∠PEB =90°,∴PE ⊥BE ,∵BE ⊥AC ,BE ⊥PE ,∴PG ∥AC ,∵四边形ABCD 是矩形,∴AB =CD =2,AD =BC =2,AD ∥BG ,∠ABC =90°, ∴四边形APGC 是平行四边形,∴PG =AC 22AB BC +222(22)+23∵AD ∥BC , ∴∠APB =∠GBP ,∵∠APB =∠GPB ,∴∠GBP =∠GPB ,∴GP =GB =3,∴AP =CG =BG =BC =32;②如图2中,连接BM,取BD的中点O,连接OM,ON,延长CC1到K,使得C1K=CC1在MK的延长线上取一点J,使得D1J=D1K,连接BD1.∵BC=BC1,∴∠BCC1=∠BC1C,∵∠BC1D1=∠BCD=90°,∴∠D1C1K+∠BC1C=90°,∠BCC1+∠DCC1=90°,∴∠D1C2K=∠DCC1,∵CD=C1D1,CC1=C1K,∴△DCC1≌△D1C1K(SAS),∴DC1=KD1=JD1,∠CC1D=∠C1KD1,∵∠JKD1+∠C1JKD1=180°,∠CC1D+∠DC1M=180°,∴∠DC1M=∠D1KJ,∵D1J=D1K,∴∠J=∠D1KJ,∴∠J=∠DC1M,∵∠D1MJ=∠DMC1,∴△D1MJ≌△DMC1(AAS),∴D1M=DM′,∵BD=BD1,∴BM⊥DD1,取BD的中点O,连接OM,ON,∵∠BMD=90°,∴OM=12BD3∵BO=OD,BN=CN,∴ON=12CD=1,∵MN≤OM+ON,∴,∴MN+1..[点睛]本题属于几何变换综合题,考查了矩形的性质,旋转变换,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考压轴题.。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版数学八年级下册《期中考试题》及答案解析

人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

人教版数学八年级下册期中考试试卷及答案

人教版数学八年级下册期中考试试卷及答案

人教版数学八年级下册期中考试试题一、单选题1.若在实数范围内有意义,则x 的取值范围是()A .x >0B .x >-1C .x≥-1D .任意实数2.下列各组数作为三角形的三边,能组成直角三角形的一组数是()A .2、3、4B .3、4、5C .1D .、3.下列各式计算正确的是()AB C .=2D .01)-=04.直角三角形ABC 的两条直角边的长分别为1、2,则它的斜边长为()A B C .2D .35.菱形的边长为5,它的一条对角线的长为6,则菱形的另一条对角线的长为为()A .8B .6C .5D .46.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A .AB =BC ,CD =DA B .AB ∥CD ,AD =BC C .AB ∥CD ,∠A =∠CD .∠A =∠B ,∠C =∠D7.下列命题的逆命题是真命题的是()A .对顶角相等B .菱形是一条对角线平分一组对角的四边形C .等边三角形的三个角都等于60°D .平行四边形的一组对边相等8.已知矩形ABCD 如图,AB =3,BC =4,AE 平分∠BAD 交BC 于点E ,点F 、G 分别为AD 、AE 的中点,则FG =()A .52B .2C .2D .1029.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A .42B .43C .56D .5710.如图,在矩形ABCD 中,AB=2,BC=4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A′处,当△A′DC 为等腰三角形时,AP 的长为()A .2B .233C .2或233D .2或433二、填空题11.请写出一个与3是同类二次根式的最简二次根式:_________.12.已知□ABCD ,∠A :∠B =1:3,则∠C =________度.13.已知矩形ABCD 如图,AB =4,BC =,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.14.如图,在菱形ABCD 中,AB=6cm ,∠A=60°,点E 以1cm/s 的速度沿AB 边由A 向B 匀速运动,同时点F 以2cm/s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为_________.15.已知由(a-b)2≥0可得a2+b2≥2ab,当a=b时,a2+b2=2ab成立.运用上述结论解决问题:对于正数x,代数式x+1+9x的最小值为_________.16.如图,四边形ABCD,AB∥CD,∠ABC=∠BCD=90°,点E为边BC上一点,连接AE、DE,AE=DE,AE⊥DE,若AB=1,CD=3,则线段BC=_____三、解答题17-18.如图,□ABCD的对角线相交于点O,过O的直线分别交AD、BC于点M、N,求证:OM=ON.19.如图,CD是△ABC的高,已知AD=4,BD=1,CD=2,判断△ABC的形状,并说明理由.20.如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC 翻折得到△EBC.(1)求证:四边形ABEC是平行四边形.(2)若AD=CD=6,∠ADC=120°,求四边形ABEC的面积.21.如图,已知:AB ⊥BC ,DC ⊥BC ,AB=4,CD=2,BC=8,P 是BC 上的一个动点,设BP=x .(1)用关于x 的代数式表示PA+PD ;(2)求出PA+PD 的最小值;(3)仿(22211+245x x x +-+的最小值;(4()22+(243)9x x ++-+的最小值.22.如图,在矩形ABCD 中,点E 为CD 上一点,将△BCE 沿BE 翻折后点C 恰好落在AD 边上的点F 处,过F 作FH ⊥BC 于H ,交BE 于G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB=8,BC=10,求四边形CEFG 的面积.23.在矩形ABCD 中,点P 在AD 上,3,AP=1.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图).(1)当点E与点B重合时,点F恰好与点C重合(如图),则PC的长为;(2)将直角尺从如图中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,从开始到停止,线段EF的中点所经过的路径(线段)长为.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,顶点B的坐标为(n,2),点E 是AB的中点,在OA上取一点D,将△BAD沿BD翻折,点A刚好落在BC边上的F处,BD、EF交于点P(1)直接写出点E、F的坐标;(2)若OD=1,求P点的坐标;(3)动点Q从P点出发,依次经过F,y轴上的点M,x轴上的点N,然后返回到P点:①若要使Q点运动一周的路径最短,试确定M、N的位置;②若n=3,求最短路径的四边形PFMN的周长.参考答案1.C【解析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【详解】根据题意得:x+1≥0,即x≥-1时,二次根式有意义.故选C.【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.B【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵22+32=13≠16=42,∴此三角形不是直角三角形,不合题意;B、32+42=52,∴此三角形是直角三角形,符合题意;C、12+)2≠)2,∴此三角形不是直角三角形,不合题意;D)2+2≠2,∴此三角形不是直角三角形,符合题意.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B【解析】【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确.【详解】不能合并,故选项A错误;,故选项B正确∵,故选项C错误;∵)01-=1,故选项D错误.故选B.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据勾股定理进行计算,即可求得结果.【详解】直角三角形的两条直角边的长分别为1,2,则斜边长.故选B.【点睛】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.5.A【解析】【分析】根据菱形的对角线互相垂直平分的性质和勾股定理,求出另一条对角线的长.【详解】∵一条对角线长是6cm,∴这条对角线的一半长是3cm ,由勾股定理得,另一条对角线的一半长4cm ,∴另一条对角线的长为8cm ,故选A .【点睛】本题主要利用菱形的对角线互相垂直平分及勾股定理来解决.6.C 【解析】【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【详解】解:A.,AB BC CD DA ==,两组邻边相等,不能推出四边形ABCD 是平行四边形,故本选项错误;B.//AB CD AD BC ,=,一组对边平行,另外一组对边相等,不能推出四边形ABCD 是平行四边形,故本选项错误;C.//AB CD A C ∠∠,=,可以推出四边形ABCD 是平行四边形,故本选项正确;D.∠A =∠B ,∠C =∠D ,本选项错误;理由:∵∠A=∠B ,∠C=∠D ,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB ∥CD ,但不能推出其它条件,即不能推出四边形ABCD 是平行四边形,故本选项错误;故选C.【点睛】本题考查对平行四边形的判定定理的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.7.C【解析】【分析】分别写出四格命题的逆命题:相等的角为对顶角;一条对角线平分一组对角的四边形是菱形;三个角都是60°的三角形为等边三角形;一组对边相等的四边形是平行四边形;然后再分别根据根据对顶角的定义对第一个进行判断;菱形的判定对第二个进行判断;根据等边三角形的判定方法对第三个进行判断;根据平行四边形的判定对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角等”,此逆命题为假命题,所以A选项错误;B、“菱形是一条对角线平分一组对角的四边形”的逆命题为“一条对角线平分一组对角的四边形是菱形”,此逆命题为假命题,所以B选项错误;C、“等边三角形的三个角都是60°”的逆命题为“三个角都是60°的三角形为等边三角形”,此逆命题为真命题,所以C选项正确;D、“平行四边形的一组对边相等”的逆命题为“一组对边相等的四边形是平行四边形”,此逆命题为假命题,所以D选项错误.故选C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.8.D【解析】【分析】由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=3,∵BC=AD=4,∴EC=1,连接DE,如图,∴=,∵点F、G分别为AD、AE的中点,∴FG=110 22 DE=.故选D.【点睛】本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.9.B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.10.C【解析】【分析】根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.【详解】①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP∴△ABA'是等边三角形∴∠ABP=30°==;∴AP=②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2∴A'B+A'C=2+2=4∴点A'落在BC上的中点处此时,∠ABP=12∠ABA'=45°∴AP=AB=2.综上所述,当△A′DC为等腰三角形时,AP的长为或2.故选C.【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.11.答案不唯一,如【解析】试题分析:同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式.答案不唯一,如考点:同类二次根式的定义点评:本题属于基础应用题,只需学生熟练掌握同类二次根式的定义,即可完成. 12.45【解析】【分析】根据平行四边形邻角互补的性质可求解.【详解】如图,∵四边形ABCD是平行四边形∴∠A+∠B=180°而∠A:∠B=1:3∴∠A=∠C=45°故答案为45.【点睛】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.83【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积,相加即可得出答案.【详解】过点P作MN∥AD,交AB于点N,交CD于点M.如图,∴AB∥CD,AD∥BC,AD=BC=43AB=CD=4,∴S△APB +S△DPC=12×AB×PN+12CD×PM=12×4×PN+12×4×PM=12×4×(PM+PN)=12×4×4383.故答案为:83.【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.14.2【解析】【分析】连接BD .当AE=BF 时,易证△ADE ≌△BDF ,即可推出△DEF 是等边三角形,列出方程即可解决问题.【详解】连接BD .∵四边形ABCD 是菱形,∠A=60°,∴△ADB ,△BDC 都是等边三角形,当AE=BF 时,易证△ADE ≌△BDF ,∴DE=DF ,∠ADE=∠BDF ,∴∠EDF=∠ADB=60°,∴△DEF 是等边三角形,由AE=BF ,得到t=6-2t ,t=2时,△DEF 是等边三角形,故答案为:2.【点睛】本题考查菱形的性质、等边三角形的判定和性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题15.7【解析】【分析】根据探究方法中的结论,代入数据即可得出结论【详解】当x >0时,x+9x +1≥21=6+1=7,故代数式x +1+9x有最小值为7.故答案为:7.【点睛】像这样的阅读形题,只要读懂题意仿照例题给定方法,套入数据即可得出结论,为此应加强这方面的练习.16.4【解析】【分析】根据等角的余角相等求出∠1=∠3,再利用“角角边”证明△ABE 和△ECD 全等,然后根据全等三角形对应边相等可得AB=CE ,BE=CD ,再根据BC=BE+CE 代入数据计算即可得解.【详解】如图,∵AE ⊥DE ,∴∠2+∠3=90°,又∵∠ABC=90°,∴∠1+∠2=90°,∴∠1=∠3,在△ABE 和△ECD 中,1390ABC BCD AE DE ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△ECD (AAS ),∴AB=CE=1,BE=CD=3,∴BC=BE+CE=3+1=4.故答案为:4.【点睛】本题考查了全等三角形的判定与性质,利用等角的余角相等求出三角形全等的条件是解题的关键,利用阿拉伯数字加弧线表示角更形象直观.17.【解析】【分析】先把各二次根式化为最简二次根式,然后合并即可【详解】原式==+=【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.18.见解析.【解析】【分析】根据平行四边形的对角线互相平分可得OA=OC ,再根据平行四边形的对边平行可得AD ∥BC ,利用两直线平行,内错角相等可得∠MAO=∠NCO ,然后利用“角边角”证明△AMO 和△CNO 全等,根据全等三角形对应边相等即可得证.【详解】证明:∵四边形ABCD 为平行四边形∴OB=OD ,MD ∥BN∴∠MDO=∠NBO在△MOD 和△NOB 中MOD NOB OB OD MDO NBO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MOD ≌△NOB(ASA)∴OM=ON【点睛】本题考查了平行四边形的对角线互相平分,对边平行的性质,全等三角形的判定与性质,比较简单.19.△ACB 为直角三角形,见解析.【解析】【分析】利用勾股定理的逆定理即可判断.【详解】△ABC 为Rt △,理由如下:∵CD 为高,∴∠ADC=∠BDC=90°在Rt △ACD 中,由勾股定理AC ==,在Rt △BCD 中,由勾股定理BC ==,∵AC 2+BC 2=(22225AB +==∴△ACB 为直角三角形【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理是关键.20.(1)见解析;(2)【解析】【分析】(1)由四边形ABCD 为等腰梯形,AD ∥BC ,可得AB=DC ,AC=BD ,又由在平面内将△DBC 沿BC 翻折得到△EBC ,可得EC=DC ,DB=BE ,继而可得:EC=AB ,BE=AC ,则可证得四边形ABEC 是平行四边形;(2)利用等腰梯形的性质,求得高和BC 的长即可求得四边形ABEC 的面积=2△ABC 的面【详解】(1)证明:∵四边形ABCD 为等腰梯形,AD ∥BC ,∴AB=DC ,AC=BD ,由折叠的性质可得:EC=DC ,DB=BE ,∴EC=AB ,BE=AC ,∴四边形ABEC 是平行四边形.(2)解:如图,过点A 、D 分别作AF ⊥BC ,DG ⊥BC ,垂足分别为F 、G ,∵AD ∥BC ,∠ADC=120°,∴FG=AD=6,AF=DG ,∠ABF=60°,∵四边形ABCD 为等腰梯形,∴AB=DC=6,∴BF=12AB=3,AF=32在Rt △ABF 和Rt △CDG 中,AB DC AF DG ⎧⎨⎩==,∴Rt △ABF ≌Rt △CDG (HL ),∴BF=GC=3,∴BC=12,∴S 四边形ABEC =2S △ABC =2×12【点睛】此题考查了等腰梯形的性质、折叠的性质以及平行四边形的性质.注意掌握数形结合思想的21.(1(2)10,(3)(4)【解析】【分析】(1)根据勾股定理可直接用x表示PA+PD即可;(2)作A关于BC的对称点E,连接DE,根据轴对称确定最短路线问题,则DE就是PA+PD 的最小值,然后利用勾股定理列式计算即可得解;(3)设DC=1,AB=3,BC=6,根据(2)结论;即可得到结果;(4)设DC=2,AB=3,BC=5,PC=2+x,则BP=3-x,根据(2)结论即可得到结果.【详解】(1)∵AB⊥BC,DC⊥BC,AB=4,CD=2,BC=8,∴+=+=;(2)作A关于BC的对称点E,连接DE,则DE就是PA+PD的最小值,BE=AB=4,过E作EF∥BC交DC的延长线于F,则四边形BEFC是矩形,∴EF=BC=8,DF=2+4=6,∴=10,∴PA+PD的最小值是10;(3)设DC=1,AB=3,BC=6,则EF=6,DF=3+1=4,∴DE==;(4)设DC=2,AB=3,BC=5,PC=2+x,则BP=3-x,EF=5,DF=3+2=5,∴=5,∴的最小值是.【点睛】本题考查了利用轴对称确定最短路线问题,考虑利用几何知识求解是解题的关键,作出图形数形结合更容易理解.22.(1)证明见解析;(2)20.【解析】【分析】(1)根据翻折的性质可得∠1=∠2,EC=EF,再根据同角的余角相等求出∠1=∠3,从而得到∠2=∠3,根据同位角相等,两直线平行可得EF∥CG,再根据垂直于同一直线的两直线平行求出FG∥CD,从而求出四边形CEFG是平行四边形,然后根据邻边相等的平行四边形是菱形证明;(2)根据翻折的性质可得BF=BC=10,然后利用勾股定理列式求出AF,从而得到DF的长,设CE=EF=x,表示出DE,在Rt△DEF中,利用勾股定理列出方程求出x的值,再根据菱形的面积公式列式计算即可得解.【详解】(1)证明:根据翻折,∠1=∠2,EC=EF,∵FH⊥BC,∴∠3+∠4=90°,又∵∠1+∠4=∠BCD=90°,∴∠1=∠3,∴∠2=∠3,∴EF∥CG,又∵FH⊥BC,∠BCD=90°,∴FG∥CD,∴四边形CEFG是平行四边形,∵EC=EF(已证),∴四边形CEFG是菱形;(2)解:根据翻折,BF=BC=10,在Rt△ABF中,AF=,∴DF=AD-AF=10-6=4,设CE=EF=x,则DE=CD-CE=8-x,在Rt△DEF中,DF2+DE2=EF2,即42+(8-x)2=x2,解得x=5,所以,四边形CEFG的面积=CE•DF=5×4=20.【点睛】本题考查了矩形的性质,菱形的判定与性质,翻折变换的性质,(1)求出四边形CEFG是邻边相等的平行四边形是证明菱形的关键,(2)根据勾股定理求出菱形的边长是解题的关键.23.(1)(2【解析】【分析】(1)如图2,先利用勾股定理计算出PB=2,再证明△APB∽△DCP,然后利用相似比可计算出PC;(2)设线段EF的中点为O,连接OP,OB,如图1,利用直角三角形斜边上的中线性质得OP=OB=12EF,则利用线段垂直平分线定理的逆定理可得O点在线段BP的垂直平分线上,再确定旋转开始和停止时EF的中点位置,然后根据三角形中位线性质确定线段EF的中点所经过的路径(线段)长.【详解】(1)如图2,在矩形ABCD 中,∠A=∠D=90°,∵AP=1,AB=3∴221(3) ,∵∠ABP+∠APB=90°,∠BPC=90°,∴∠APB+∠DPC=90°,∴∠ABP=∠DPC ,∴△APB ∽△DCP ,∴AP :CD=PB :CP ,即13=2:PC ,∴3,(2)设线段EF 的中点为O ,连接OP ,OB ,如图1,在Rt △EPF 中,OP=12EF ,在Rt △EBF 中,OB=12EF ,∴OP=OB ,∴O 点在线段BP 的垂直平分线上,如图2,当点E 与点B 重合时,点F 与点C 重合时,EF 的中点为BC 的中点O ,当点E 与点,A 重合时,EF 的中点为PB 的中点O ,∴OO′为△PBC 的中位线,∴OO′=123∴线段EF 3【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决(2)小题的关键是判断O 点在线段BP 的垂直平分线上.24.(1)E (n ,1);F (n-2,2);(2)点P 坐标为(73,43);(3)①见解析,+.【解析】【分析】(1)由翻折知四边形ABFD 是正方形,据此得DF=AB=AD=2、OD=CF=BC-BF=n-2,即可得出点F 坐标,由E 为AB 中点可得点E 的坐标;(2)OD=1知n=3,据此得出点B 、D 、E 、F 的坐标,分别求得直线BD 和直线EF 的解析式,联立方程组即可求得BD 与EF 的交点P 的坐标;(3)①作点F 关于y 轴的对称点F′、作点P 关于x 轴的对称点P′,连接F′P′交y 轴于点M 、交x 轴于点N ;②由n=3结合(2)知点P 、F 及其关于坐标轴的对称点,利用勾股定理求解可得.【详解】(1)∵B (n ,2),∴AB=OC=2、OA=BC=n ,由翻折知△DAB ≌△DFB ,∴∠DAB=∠DFB=90°、BA=BF=2,∵∠ABF=90°,∴四边形ABFD 是正方形,∴DF=AB=AD=2,∴OD=CF=BC-BF=n-2,则F (n-2,2),∵E 为AB 中点,∴AE=BE=1,∴E (n ,1);(2)若OD=1,则n-2=1,即n=3,∴B (3,2)、D (1,0)、E (3,1)、F (1,2),设BD 所在直线解析式为y=kx+b ,将点B (3,2)、D (1,0)代入,得:320k b k b +⎧⎨+⎩==,解得:11 kb⎧⎨-⎩==,∴BD所在直线解析式为y=x-1;设EF所在直线解析式为y=mx+n,将E(3,1)、F(1,2)代入,得:312 m nm n+⎧⎨+⎩==,解得:1252mn==⎧-⎪⎪⎨⎪⎪⎩,∴EF所在直线解析式为y=-12x+52;由11522y xy x-⎧⎪⎨-+⎪⎩==可得7343xy⎧⎪⎪⎨⎪⎪⎩==,所以点P坐标为(73,43);(3)①如图所示,作点F关于y轴的对称点F′、作点P关于x轴的对称点P′,连接F′P′交y轴于点M、交x轴于点N,②若n=3,由(2)知P(73,43)、F(1,2),则F′(-1,2)、P′(73,-43),∴,.∴C四边形PFMN【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、待定系数法求函数解析式、轴对称-最短路线问题及勾股定理.。

人教版数学八年级下册期中测试卷4套(含答案解析)

人教版数学八年级下册期中测试卷4套(含答案解析)

人教版数学八年级下册期中测试卷一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.203.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列计算错误的是()A.B.C.D.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.6.下列根式中,是最简二次根式的是()A.B.C.D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.89.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.7612.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3二、填空题13.已知,则x+y=.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、解答题19.计算:2×3++|﹣1|﹣π0+()﹣1.20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.21.先化简,后计算:,其中a=,b=.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【专题】选择题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【考点】勾股定理.【专题】选择题.【分析】因为知道两个直角边长,根据勾股定理可求出斜边长.【解答】解:∵三角形的两直角边长为12和16,∴斜边长为:=20.故选D.【点评】本题考查勾股定理的应用,根据两直角边长可求出斜边长.3.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【专题】选择题.【分析】根据一次函数y=﹣x+1中k=﹣<0,b=1>0,判断出函数图象经过的象限,即可判断出一次函数y=﹣x+1的图象不经过的象限是哪个.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选C.【点评】此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b <0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.4.下列计算错误的是()A.B.C.D.【考点】二次根式的加减法.【专题】选择题.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.【考点】勾股定理;坐标与图形性质.【专题】选择题.【分析】连接PO,在直角坐标系中,根据点P的坐标是(,),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【解答】解:连接PO,∵点P的坐标是(,),∴点P到原点的距离==3.故选A.【点评】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.6.下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【专题】选择题.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】选择题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.8【考点】菱形的性质.【专题】选择题.【分析】首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:如图∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是:AC•BD=×4×4=8.故选C.【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算【考点】正方形的性质;全等三角形的判定与性质.【专题】选择题.【分析】由正方形ABCD中,FA=AE,易证得Rt△ABF≌Rt△ADE(HL),即可得S四边形AFCE =S正方形ABCD,求得答案.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠D=90°,AB=AD,即∠ABF=∠D=90°,在Rt△ABF和Rt△ADE中,,∴Rt△ABF≌Rt△ADE(HL),∴S Rt△ABF=S Rt△ADE,∴S Rt△ABF+S四边形ABCE=S Rt△ADE+S四边形ABCE,∴S四边形AFCE =S正方形ABCD=16.故选C.【点评】此题考查了正方形的性质以及全等三角形的判定与性质.注意证得Rt △ABF≌Rt△ADE是关键.10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.【考点】正方形的判定.【专题】选择题.【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:过B点作BF⊥CD,与DC的延长线交于F点,则有△BCF≌△BAE(ASA),则BE=BF,S四边形ABCD =S正方形BEDF=8,∴BE==.故选C.【点评】本题运用割补法把原四边形转化为正方形,其面积保持不变,所求BE 就是正方形的边长了;也可以看作将三角形ABE绕B点逆时针旋转90°后的图形.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.76【考点】函数解析式.【专题】选择题.【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【解答】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点评】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n (n+1).12.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3【考点】一次函数与一元一次不等式;一次函数的性质.【专题】选择题.【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b 看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【解答】解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选D.【点评】此题主要考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.13.已知,则x+y=.【考点】二次根式的性质.【专题】填空题.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.【点评】本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【专题】填空题.【分析】由勾股定理的逆定理,判断三角形为直角三角形,再根据直角三角形的性质直接求解.【解答】解:∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC 是直角三角形,∴BD=AC=cm.【点评】解决此题的关键是熟练运用勾股定理的逆定理判定直角三角形,明确了直角三角形斜边上的中线等于斜边上的一半之后此题就不难了.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).【考点】一次函数的性质.【专题】填空题.【分析】设一次函数的解析式为y=kx+b(k≠0),再根据y随着x的增大而减小得出k的取值范围,把点(0,﹣3)代入函数解析式得出k+b的值,写出符合条件的解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵y随着x的增大而减小,∴k<0,∵图象过点(0,﹣3),∴b=﹣3,∴符合条件的解析式可以为:y=﹣x﹣3.故答案为:y=﹣x﹣3(答案不唯一).【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k <0时,y随x的增大而减小是解答此题的关键.16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.【考点】勾股定理.【专题】填空题.【分析】利用勾股定理列式求出AB,再根据阴影部分的面积等于阴影部分所在的两个半圆的面积加上△ABC的面积减去大半圆的面积,列式计算即可得解.【解答】解:∵AC=12,BC=5,∴AB===13,∴阴影部分的面积=π()2+π()2+×12×5﹣π()2=π+π+30﹣π=30.故答案为:30.【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图象表示出阴影部分的面积是解题的关键.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【考点】正方形的性质;全等三角形的判定与性质.【专题】填空题.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.【考点】函数图象的实际应用.【专题】填空题.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为;①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.19.计算:2×3++|﹣1|﹣π0+()﹣1.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【专题】解答题.【分析】根据二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质计算即可.【解答】解:2×3++|﹣1|﹣π0+()﹣1=×3+2+﹣1﹣1+2=6+3.【点评】本题考查了二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质,熟记运算法则是解题的关键,20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【专题】解答题.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.【点评】本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.21.先化简,后计算:,其中a=,b=.【考点】二次根式的混合运算.【专题】解答题.【分析】先通分、化简,然后代入求值.【解答】解:,=,=,=.∵a=,b=,∴ab=•==1,a+b==,∴==.即:=.【点评】本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.【考点】用待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【专题】解答题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)C的坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设函数的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=1.5x﹣3;(2)在y=1.5x﹣3中,令x=0,解得y=﹣3;当y=0时,x=2,则A(2,0)B(0,﹣3);(3)在y=1.5x﹣3中,令x=4,解得:y=3,则P的坐标是:(4,3),设C的坐标是m,则|m﹣2|×3=6,解得:m=﹣2或6.则C的坐标是:(﹣2,0)或(6,0).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.【考点】翻折变换(折叠问题);勾股定理.【专题】解答题.【分析】首先设BE=xcm,由折叠的性质可得:DE=BE=xcm,即可得AE=9﹣x(cm),然后在Rt△ABE中,由勾股定理BE2=AE2+AB2,可得方程x2=(9﹣x)2+32,解此方程即可求得DE的长,继而可得AE的长,则可求得△ABE的面积.【解答】解:∵四边形ABCD是长方形,∴∠A=90°,设BE=xcm,由折叠的性质可得:DE=BE=xcm,∴AE=AD﹣DE=9﹣x(cm),在Rt△ABE中,BE2=AE2+AB2,∴x2=(9﹣x)2+32,解得:x=5,∴DE=BE=5cm,AE=9﹣x=4(cm),∴S=AB•AE=×3×4=6(cm2).△ABE【点评】此题考查了折叠的性质、长方形的性质以及勾股定理.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理;矩形的判定.【专题】解答题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【考点】正方形的性质;正方形的判定.【专题】解答题.【分析】(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q 分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.【解答】解:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠CDE=∠DAF,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.【点评】此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关键.人教版数学八年级下册期中测试卷一、选择题1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣36.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.57.若直角三角形两边分别是3和4,则第三边是()A.5B.C.5或D.无法确定8.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24B.12C.6D.89.若,则x的值等于()A.4B.±2C.2D.±410.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3二、填空题11.已知一直角三角形,两边长为3和4,则斜边上的中线长为.12.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.13.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.15.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、解答题16.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.17.若x,y为实数,且|x+2|+=0,求()2011.18.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.19.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.20.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.21.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.22.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.23.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C 的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.答案1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.【考点】二次根式有意义的条件.【专题】选择题.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=2【考点】二次根式的加减法;二次根式的乘除法.【专题】选择题.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.【点评】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm2【考点】勾股定理;等边三角形的性质.【专题】选择题.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.【点评】求高是关键,把三角形转化为解直角三角形问题就很易求出.5.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣3【考点】二次根式的性质.【专题】选择题.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

人教版八年级下册数学期中考试试卷含答案

人教版八年级下册数学期中考试试卷含答案

人教版八年级下册数学期中考试试题一、单选题1)A .3B .2C .2D2④中,最简二次根式是()A .①②B .③④C .①③D .①④3x 的取值范围是()A .x >12B .x≥12C .x <12D .x >04.下列各组数中,能够组成直角三角形的是()A .3,4,5B .4,5,6C .5,6,7D .6,7,85.如图,已知四边形ABCD 是平行四边形,下列结论中错误的是()A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当AC=BD 时,它是矩形D .当∠ABC=90°时,它是正方形6.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是()A .4B .6C .8D .107.如图,在平行四边形ABCD 中,∠A +∠C =160°,则∠B 的度数是()A .130°B .120°C .100°D .90°8.若1≤x≤4,则化简1x -)A .25x -B .3C .32x-D .—39.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是()A .AD =BCB .AB =CDC .AD ∥BC D .∠A =∠C10.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长()A B .C .D .二、填空题11.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___.12=______.13.如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,则点C 的坐标是_______.14.如图,已知△ABC 中,AB =5cm ,BC =12cm ,AC =13cm ,那么AC 边上的中线BD 的长为____________cm.15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE a ⊥于点E 、BF a ⊥于点F ,若4DE =,3BF =,则EF 的长为______.16.如图,菱形ABCD 的边长为2,∠ABC=45°,则点D 的坐标为_____.三、解答题17.计算:(1)37-()37()2(22)(2)221()-01π-()-|2218.38a -172a -42a x x a --有意义,x 的取值范围是什么?19.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF、BD,求证:四边形ABDF是平行四边形.20.如图,在四边形ABCD中,AD∥BC且AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P以1cm/s的速度由A向D运动,点Q以2cm/s的速度由C向B运动.问几秒后直线PQ将四边形ABCD截出一个平行四边形?21.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)22.如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.23.在平面内,正方形ABCD与正方形CEFH如图放置,连接DE,BH,两线交于M,求证:(1)BH=DE;(2)BH⊥DE.24.如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.25.如图,在Rt△ABC中,∠B=90°,BC3C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.B【详解】B.2.C【解析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】是最简二次根式;=,被开方数含分母,不是最简二次根式;5=①③是最简二次根式.故选C.【点睛】本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.A【详解】由题意得,2x﹣1>0,解得12x .故选A.点睛:分析:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.根据被开方数大于等于0,分母不等于0列式计算即可得解.4.A【解析】解:A、∵32+42=9+16=25;52=25,∴32+42=52,则此选项线段长能组成直角三角形;B、∵42+52=16+25=41;62=36,∴42+52≠62,则此选项线段长不能组成直角三角形;C、∵52+62=25+36=61;72=49,∴52+62≠72,则此选项线段长不能组成直角三角形;D、∵62+72=36+49=85;82=64,∴62+72≠82,则此选项线段长不能组成直角三角形.故选:A.5.D【解析】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.6.C【解析】∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.7.C【解析】【分析】根据平行四边形的性质可得:∠A=∠C,∠A+∠B=180°,再根据∠A+∠C=160°计算出∠A 的度数,进而可算出∠B的度数.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180︒,∵∠A+∠C=160︒,∴∠A=80︒,∴∠B=180︒−80︒=100︒.故选C.【点睛】本题考查平行四边形的性质,对角相等,对边平行.8.A【解析】分析:根据x 的取值范围可知1-x <0,x-4<0,再根据绝对值的性质和二次根式的性质化简即可.详解:因为2816x x -+=(x-4)2∴原式可化为1x --因为1≤x≤4所以1-x <0,x-4<0,所以1x -=1x --=x-1-(4-x )=x-1-4+x =2x-5故选A.点睛:此题主要考查了的非负数的化简,关键是利用绝对值的性质和二次根式的性质求解即可.9.A 【解析】【分析】根据平行四边形的判定方法,逐项判断即可.【详解】解:A 、当AB ∥CD ,AD =BC 时,四边形ABCD 可能为等腰梯形,所以不能证明四边形ABCD 为平行四边形;B 、AB ∥CD ,AB =DC ,一组对边分别平行且相等,可证明四边形ABCD 为平行四边形;C 、AB ∥CD ,AD ∥BC ,两组对边分别平行,可证明四边形ABCD 为平行四边形;D 、∵AB ∥CD ,∴∠A +∠D =180°,∵∠A =∠C ,∴∠C +∠D =180°,∴AD ∥BC ,∴四边形ABCD 为平行四边形;故选:A .【点睛】本题主要考查平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.10.C 【解析】【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC 和△DCE 都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C .【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.11.2【解析】【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【详解】解:∵最简二次根式132-+b a 与a b -4是同类二次根式,∴31224b a b a -=⎧⎨+=-⎩,解得:11a b =⎧⎨=⎩,则a+b =2,故答案为:2.【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式.12.1【解析】【详解】分析:先根据二次根式的性质进行化简,再合并同类二次根式即可得解.=21|211=-=|.故答案为1.(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩.13.(5,4).【解析】【分析】利用菱形的性质以及勾股定理得出DO 的长,进而求出C 点坐标.【详解】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(﹣3,0),(2,0),点D 在y 轴上,∴AB=5,∴DO=4,∴点C 的坐标是:(5,4).故答案为(5,4).14.132【解析】【分析】先根据勾股定理的逆定理判断形状,即可得到结果.【详解】52+122=132∴△ABC 是直角三角形,∴AC边上的中线BD的长为132 cm.【点睛】解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.同时熟记直角三角形斜边的中线等于斜边的一半.15.1或7【解析】【分析】如图1或2,证明△ABF≌△DAE,得到BF=AE=3,AF=DE=4,即可解决问题.【详解】如图1,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD;∵BF⊥EF,DE⊥EF,∴∠FBA+∠FAB=∠FAB+∠DAE,∴∠FBA=∠DAE;在△ABF与△DAE中,∠FBA=∠DAE,AB=AD,∠BAF=∠ADE,∴△ABF≌△DAE(ASA),∴BF=AE=3,AF=DE=4,∴EF=3+4=7;如图2,同理可证△ABF≌△DAE,∴BF=AE=3,AF=DE=4,∴EF=4−3=1;故答案为:7或1.【点睛】该题以正方形为载体,以考查正方形的性质、全等三角形的判定及其性质的应用为核心构造而成;解题的关键是深入把握题意,准确找出图形中隐含的等量关系.16.(22+,2).【解析】【分析】直接利用菱形的性质结合锐角三角三角函数关系得出D 点坐标即可.【详解】解:过点D 作DE x ⊥轴,垂足为E .∵菱形的边长为2,∠ABC=45°,∴CO=DC=2,∠DCE=45°,在Rt CDE △中,,CE DE =2224CE DE CD +==2,CE DE ∴==22,OE OC CE ∴=+=+∴点D 坐标为()22,2.+故答案为()22,2.+17.(1)2(2)2【解析】【详解】分析:(1)根据平方差公式和二次根式的性质,进行二次根式的求和运算求解即可;(2)根据完全平方公式,零次幂的性质,绝对值的性质求解即可.详解:(1)3(3(2-2(2)21)-01π-()-|2点睛:此题主要考查了实数的运算,关键是利用乘方公式、二次根式的性质、零次幂的性质和绝对值的性质进行计算.18.a =5;5≤x ≤10【解析】【详解】试题分析:先根据二次根式的定义,列方程求出a 次根式的定义列出不等式组,求出x 的取值范围即可.∴3a -8=17-2a∴a =52020{50x x -≥-≥解得:510x ≤≤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,证出AB ∥DF ,即可得出结论.【详解】详解:证明:()1BE FC = ,BC EF ∴=,在ABC 和DFE 中,AB DF AC DE BC EF =⎧⎪=⎨⎪=⎩,ABC ∴≌()DFE SSS ;()2解:如图所示:由()1知ABC ≌DFE ,ABC DFE ∴∠=∠,//AB DF ∴,AB DF = ,∴四边形ABDF 是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.20.2或3秒【解析】【分析】设点P,Q 运动的时间为ts ,分别表示出CQ 、BQ 、AP 、PD 的长,然后分为BQ=AP 和CQ=PD 两种情况构成平行四边形求解即可.【详解】设点P,Q 运动的时间为ts.依题意得:CQ=2t ,BQ=6-2t ,AP=t,PD=9-t.①当BQ=AP 时,四边形APQB 是平行四边形.即6-2t=t,解得t=2.②当CQ=PD时,四边形CQPD是平行四边形,即2t=9-t,解得t=3.∴经过2或3秒后,直线PQ将四边形ABCD截出一个平行四边形.【点睛】此题考查了平行四边形的判定方法及有关面积问题.关键把握“化动为静”的解题思想和分类讨论思想.21.(1)四边形EFGH是平行四边形,证明见解析;(2)当BD=AC且BD⊥AC时,四边形EFGH是正方形.【解析】【分析】(1)根据三角形中位线的性质得出EF∥HG,且EF=HG,从而得出平行四边形;(2)要使邻边相等则需要满足BD=AC,要使有一个角为直角则需要满足BD⊥AC,从而得出正方形.【详解】解:(1)四边形EFGH是平行四边形.∵E,F分别是边AB、BC的中点,∴EF∥AC,且EF=12 AC同理:HG∥AC,且HG=12 AC∴EF∥HG,且EF=HG∴四边形EFGH是平行四边形.(2)同(1)得到四边形EFGH为平行四边形,且EH=GH=12AC=12BD,∠EHG=90°,∴平行四边形EFGH为正方形.【点睛】此题考查了中点四边形,以及正方形的判定,熟练掌握中位线定理是解本题的关键.22.(1)见解析;(2)当BC=AF时,四边形ABFC是矩形,理由见解析【解析】【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;(2)由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC 是矩形.【详解】(1)证明:∵四边形ABCD 是平行四边形∴AB ∥CD ,AB=CD∴BAE CFE ∠=∠,ABE FCE∠=∠∵E 为BC 的中点∴BE=EC∴△ABE ≌△FCE∴AB=CF.(2)解:当BC=AF 时,四边形ABFC 是矩形.理由如下:∵AB ∥CF ,AB=CF∴四边形ABFC 是平行四边形∵BC=AF∴四边形ABFC 是矩形.23.(1)证明见解析(2)证明见解析【解析】【详解】试题分析:(1)根据正方形的性质可得BC =CD ,CE =CH ,∠BCD =∠ECH =90°,然后求出∠BCH =∠DCE ,再利用“边角边”证明△BCH 和△DCE 全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH =∠CDE ,然后根据三角形的内角和定理求出∠DMB =∠BCD =90°,再根据垂直的定义证明即可.试题解析:(1)在正方形ABCD 与正方形CEFH 中,BC =CD ,CE =CH ,∠BCD =∠ECH=90°,∴∠BCD +∠DCH =∠ECH +∠DCH ,即∠BCH =∠DCE ,在△BCH 和△DCE 中,{BC CDBCH DCE CE CH∠∠===,∴△BCH≌△DCE(SAS),∴BH=DE;(2)由(1)知△BCH≌△DCE∴∠CBH=∠EDC设BH,CD交于点N,则∠BNC=∠DNH∴∠CBH+∠BNC=∠EDC+∠DNH=90°∴∠DMN=180°-90°=90°∴BH⊥DE.【点睛】本题考查了全等三角形的判定与性质,正方形的性质,熟记性质并确定出全等三角形是解题的关键,也是本题的难点.24.(1)见详解;(2)【解析】【分析】(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF.(2)证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.【详解】解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D.∵点E、F分别是边BC、AD的中点,∴BE=DF.在△ABE和△CDF中,∵AB=CD,∠B=∠D,BE=DF,∴△ABE≌△CDF(SAS).(2)∵∠B=60°,AB=BC,∴△ABC是等边三角形.∵点E是边BC的中点,∴AE ⊥BC .在Rt △AEB 中,∠B=60°,AB=4,∴.25.(1)证明见解析;(2)能,103t =;(3)52t =或4时,△DEF 为直角三角形.【解析】【分析】()1在DFC △中,90DFC ∠= ,30C ∠= ,根据30°角直角三角形的性质及已知条件即可证得结论;()2先证得四边形AEFD 为平行四边形,使▱AEFD 为菱形则需要满足的条件为AE=AD ,由此即可解答;() 390EDF ①∠=时,四边形EBFD 为矩形.在Rt △AED 中求可得2AD AE =,由此即可解答;90DEF ∠= ②时,由()2知//EF AD ,则得90ADE DEF ∠=∠= ,求得cos60AD AE =⋅ ,由此列方程求解即可;90EFD ∠= ③时,此种情况不存在.【详解】()1在DFC △中,90DFC ∠= ,30C ∠= ,2DC t =,DF t ∴=.又AE t = ,AE DF ∴=.()2能,AB BC ⊥ ,DF BC ⊥,//AE DF ∴.又AE DF =,∴四边形AEFD 为平行四边形.tan305AB BC =⋅== ,210AC AB ∴==.102AD AC DC t ∴=-=-.若使▱AEFD 为菱形,则需AE AD =,即102t t =-,103t =.即当103t =时,四边形AEFD 为菱形.()390EDF ∠= ①时,四边形EBFD 为矩形.在Rt AED △中,30ADE C ∠=∠= ,2AD AE ∴=.即1022t t -=,52t =.90DEF ∠= ②时,由()2四边形AEFD 为平行四边形知//EF AD ,90ADE DEF ∴∠=∠= .9060A C ∠=-∠= ,cos60AD AE ∴=⋅ .即11022t t -=,4t =.90EFD ∠= ③时,此种情况不存在.综上所述,当52t =秒或4秒时,DEF 为直角三角形.【点睛】本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形与矩形之间的联系.难度适宜,计算繁琐.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年八年级下学期期中数学试卷一、选择题(每小题3分,共24分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D. x≥0且x≠1 3.(3分)下面的等式总能成立的是()A.=a B.=a2C.•=D.=4.(3分)在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A.1:2:1:2 B.1:2:2:1 C.1:2:3:4 D. 1:1:2:2 5.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D. AD=BC 6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D. 947.(3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D. 168.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4 C.1 D.二、填空题(每小题3分,共30分)9.(3分)计算:(﹣2)3+(﹣1)0= .10.(3分)若在实数范围内有意义,则x的取值范围是.11.(3分)若实数a、b满足,则= .12.(3分)当x≤0时,化简|1﹣x|﹣的结果是.13.(3分)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD= cm.14.(3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)15.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.16.(3分)如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD的面积是.17.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O 处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.18.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(本题共7小题,满分66分)19.(10分)(1)计算:÷﹣×(2)已知x=﹣2,求(9+4)x2﹣(+2)x+4的值.20.(8分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?21.(8分)如图是某中学教学楼前的一个菱形花坛ABCD,其边长为20m,∠ABC=60°,沿着菱形的对角线修了两条小路AC,BD,求两条小路的长和花坛的面积.22.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.23.(10分)观察探究,完成证明和填空.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.(1)求证:四边形EFGH是平行四边形;(2)请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?24.(11分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.25.(11分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.专题:计算题.分析:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.解答:解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.点评:本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D. x≥0且x≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:x≥0且x≠1.故选D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(3分)下面的等式总能成立的是()A.=a B.=a2C.•=D.=考点:二次根式的乘除法;二次根式的性质与化简.分析:根据二次根式的性质,即可解答.解答:解:A、=|a|,故错误;B、=|a|,故错误;C、正确;D、不能分解为,因为不知道a,b是否为非负数,故错误;故选:C.点评:本题考查了二次根式的乘除法,解决本题的关键是二次根式的性质.4.(3分)在平行四边形ABCD 中,∠A:∠B:∠C:∠D的值可以是()A.1:2:1:2 B.1:2:2:1 C.1:2:3:4 D. 1:1:2:2考点:平行四边形的性质.分析:根据平行四边形的对角相等,容易得出结论.解答:解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴A正确,故选:A.点评:本题考查了平行四边形的对角相等的性质;熟练掌握平行四边形的性质是解决问题的关键.5.(3分)四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AC=BD C.AB=BC D. AD=BC考点:矩形的判定.分析:四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.解答:解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形.故选:B.点评:此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.6.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D. 94考点:勾股定理.专题:数形结合.分析:根据正方形的面积公式,结合勾股定理,能够导出正方形A,B,C,D 的面积和即为最大正方形的面积.解答:解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=9+25+4+9=47.故选:C.点评:能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.7.(3分)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D. 16考点:矩形的性质;翻折变换(折叠问题).专题:压轴题.分析:解:在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.解答:解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.点评:本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(3分)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣2B.3﹣4 C.1 D.考点:正方形的性质;角平分线的性质;等腰直角三角形.分析:根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.解答:解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选A.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二、填空题(每小题3分,共30分)9.(3分)计算:(﹣2)3+(﹣1)0=﹣7.考点:实数的运算;零指数幂.专题:计算题.分析:先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=﹣8+1=﹣7.故答案为:﹣7.点评:本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.10.(3分)若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:1﹣3x≥0,解得:x≤.故答案是:x≤.点评:本题考查的知识点为:二次根式的被开方数是非负数.11.(3分)若实数a、b满足,则=.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.解答:解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为012.(3分)当x≤0时,化简|1﹣x|﹣的结果是1.考点:二次根式的性质与化简.专题:压轴题.分析:依据绝对值和平方根的性质解题.解答:解:∵x≤0,∴1﹣x>0∴|1﹣x|﹣=1﹣x﹣|x|=1﹣x﹣(﹣x)=1.故答案为:1.点评:此题考查了绝对值和平方根的性质,要求掌握绝对值和平方根的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.13.(3分)如图,等腰△ABC中,AB=AC,AD是底边上的高,若AB=5cm,BC=6cm,则AD=4cm.考点:勾股定理.分析:先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.解答:解:根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD 中,由勾股定理得:AB2=BD2+AD2,所以,AD==4cm.故答案为:4.点评:本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.14.(3分)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)考点:菱形的判定.专题:开放型.分析:可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.解答:解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.点评:此题主要考查了菱形的判定,关键是掌握菱形的判定定理.15.(3分)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为25°.考点:平行四边形的性质.专题:压轴题.分析:由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=110°,即可求出∠DAE的度数.解答:解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故答案为:25°.点评:本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.16.(3分)如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD的面积是36.考点:勾股定理;勾股定理的逆定理.分析:先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.解答:解:∵∠ABC=90°,AB=3,BC=4,∴AC===5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,=AB•BC+AC•CD∴S四边形ABCD=×3×4+×5×12=36.故答案是:36.点评:本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.17.(3分)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.考点:菱形的性质;翻折变换(折叠问题).分析:根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF 为△ABD的中位线,根据三角形中位线定理求出即可.解答:解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.点评:本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.18.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.考点:翻折变换(折叠问题).专题:压轴题.分析:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.解答:解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(本题共7小题,满分66分)19.(10分)(1)计算:÷﹣×(2)已知x=﹣2,求(9+4)x2﹣(+2)x+4的值.考点:二次根式的混合运算.专题:计算题.分析:(1)根据二次根式的乘除法则运算;(2)把x的值代入原式,利用完全平方公式和平方差公式计算.解答:解:(1)原式=﹣+2=5﹣3+2=5﹣;(2)∵x=﹣2,∴原式=(9+4)(﹣2)2﹣(+2)(﹣2)+4=(9+4)(9﹣4)﹣(5﹣4)+4=81﹣80﹣1+4=4.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.(8分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?考点:勾股定理的应用.专题:计算题.分析:在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据AC=AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB1的长度,根据BB1=CB1﹣CB即可求得BB1的长度.解答:解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC=m=2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5m﹣0.7m=0.8m答:梯足向外移动了0.8m.点评:本题考查了勾股定理在实际生活中的应用,考查了勾股定理在直角三角形中的正确运用,本题中求CB1的长度是解题的关键.21.(8分)如图是某中学教学楼前的一个菱形花坛ABCD,其边长为20m,∠ABC=60°,沿着菱形的对角线修了两条小路AC,BD,求两条小路的长和花坛的面积.考点:菱形的性质;等边三角形的判定与性质;勾股定理.分析:先判定△ABC是等边三角形,根据等边三角形的三条边都相等可得AC=AB=BC,设对角线交点为O,根据菱形的对角线互相垂直求出OA,再利用勾股定理列式求出BO,然后求出BD,再利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.解答:解:∵四边形ABCD 是菱形,且∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC=20m,设AC、BD交于点O,则AO=10m,∴在直角三角形ABO中,BO2=AB2﹣AO2=202﹣102=300,∴BO=10m,∴BD=20m,=AC•BD,又∵S菱形ABCD=×20×20=200m2.∴S菱形ABCD点评:本题考查了菱形的性质,等边三角形的判定与性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.22.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.解答:证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.23.(10分)观察探究,完成证明和填空.如图,在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.(1)求证:四边形EFGH是平行四边形;(2)请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是平行四边形;当四边形ABCD变成矩形时,它的中点四边形是菱形;当四边形ABCD变成正方形时,它的中点四边形是正方形;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?考点:中点四边形.专题:探究型.分析:(1)连接BD.利用三角形中位线定理推出所得四边形对边平行且相等,故为平行四边形;(2)连接AC、BD.根据三角形的中位线定理,可以得到所得四边形的两组对边分别和原四边形的对角线平行,且分别等于原四边形的对角线的一半.若顺次连接对角线相等的四边形各边中点,则所得的四边形的四条边都相等,故所得四边形为菱形;若顺次连接对角线互相垂直的四边形各边中点,则所得的四边形的四个角都是直角,故所得四边形为矩形;若顺次连接对角线相等且互相垂直的四边形各边中点,则综合上述两种情况,故所得的四边形为正方形;(3)由以上法则可知,中点四边形的形状是由原四边形的对角线的关系决定的.解答:解:(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,正方形;(3)中点四边形的形状是由原四边形的对角线的大小关系和位置关系决定的.故答案为平行四边形、菱形、正方形.点评:此题综合运用了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.24.(11分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.考点:平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).分析:(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.解答:(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.点评:此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.25.(11分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?考点:直角梯形.专题:动点型.分析:(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.解答:解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t.(1)∵AD∥BC,即PQ∥CD,∴当PD=CQ时,四边形PQCD为平行四边形,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若PQ=DC,分两种情况:①PQ=DC,由(1)可知,t=6,②PQ≠CC,由QC=PD+2(BC﹣AD),可得方程:3t=24﹣t+4,解得:t=7.点评:此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.。

相关文档
最新文档