2013湘教版数学七年级下册期末试卷
湘教版七年级下册数学期末考试试卷含答案

湘教版七年级下册数学期末考试试卷含答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--湘教版七年级下册数学期末考试试题一、单选题1.下列各图标中,是轴对称图形的个数有( )A .1个B .2个C .3个D .4个2.以{x =1x =−1为解的二元一次方程组是( )A .{x +x =0x −x =2B .{x +x =0x −x =−2 C .{x +x =0x −x =1 D .{x +x =0x −x =−1 3.若x 2−x 2=3,则(x +x )2⋅(x −x )2的值是( ) A .3B .6C .9D .184.如图,AB ∥CD ,AE 平分∠xxx 交CD 于点E ,若∠x =40°,则∠xxx 的度数是( )A .40°B .70°C .110°D .130°5.如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是( )A .∠1=∠3B .∠1=∠6C .∠2=∠6D .∠5=∠76.把x 2y ﹣2y 2x+y 3分解因式正确的是A .y (x 2﹣2xy+y 2)B .x 2y ﹣y 2(2x ﹣y )C .y (x ﹣y )2D .y (x+y )27.有一组数据:3,5,5,6,7,这组数据的众数为( ) A .3B .5C .6D .78.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元.设大圆珠笔为x 元/枝,小圆珠笔为y 元/枝,根据题意,列方程组正确的是( ) A .{3x −2x =112x +3x =14 B .{3x +2x =112x +3x =14 C .{14x +11x =32x +3x =11D .{3x +2x =142x +3x =119.已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( ). A .0B .1C .﹣1D .﹣210.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A .4 B .3 C .2 D .1二、填空题11.计算(−2x 3y 2)3⋅4xy 2=________________________. 12.因式分解:6(x ﹣3)+x (3﹣x )= .13.已知21x y =⎧⎨=⎩是二元一次方程组7{1ax by ax by +=-=的解,则a b -= .14.如图,将ABC ∆向右平移5cm 得到DEF ∆,如果ABC ∆的周长是16cm ,那么五边形ABEFD 的周长是________cm.15.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=35°,则∠2的度数为_____.16.已知直线a b c ∥∥,a 与b 的距离是2cm ,b 与c 的距离是3cm ,则a 与c 的距离是________cm.17.某校七年级(1)班50名同学中,13岁的有25人,14岁的有23人,15岁的有2人,则这个班同学年龄的中位数是________岁. 18.已知3m a =,2n a =,则2m n a +=________.三、解答题19.先化简,再求值:2(2)(2)(2)x x x +---,其中14x =20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影).(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴; (2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可).21.给出三个多项式:a 2+3ab ﹣2b 2,b 2﹣3ab ,ab+6b 2,任请选择两个多项式进行加法运算,并把结果分解因式.22.如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC ∥BD ,∠A =∠B ,试猜想AE 与BF 的位置关系,并说明理由.23.某班在甲、乙两名同学中选拔一人参加学校数学竞赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:回答下列问题:(1)请分别求出甲、乙两同学测试成绩的平均数;(2)经计算知26S =甲,226S =乙,你认为选拔谁参加比赛更合适,说明理由.24.某同学在计算3(4+1)(24+1)时,把3写成(4﹣1)后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(24+1)=(4﹣1)(4+1)(24+1)=(24﹣1)(24+1)=216﹣1=255.请借鉴该同学的经验,计算:2481511111111122222⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.25.某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工后销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可用几天粗加工,再用几天精加工后销售;请问厂长应采用哪位说的方案做,获利最大?26.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可得到∠APB,∠A,∠B之间的数量关系是:∠APB=________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系如何?为此,小明进行了下面不完整的推理证明.请将这个证明过程补充完整,并在括号内填上依据.过点P作PE∥AC.∴∠A=∠APE(________________________________)∵AC∥BD,∴BD∥PE(________________________________)∴∠B=∠BPE,∵∠APB=∠BPE−∠APE,∴∠APB=________________.(________________)(3)随着以后的学习你还会发现平行线的许多用途.如图3,在小学中我们已知道,三角形ABC中,∠A+∠B+∠C=180°.试构造平行线说明理由.参考答案1.C【解析】【分析】根据轴对称图形的定义判断即可.【详解】解:第一、二、四个图形沿如下图所示直线折叠后,直线两旁的部分能够完全重合,是轴对称图形,而第三个图形则不可以,所以轴对称图形有3个.故选:C【点睛】本题考查了轴对称图形,判断轴对称图形的关键是看这个图形能否沿一条直线折叠后,直线两旁的部分能够完全重合.2.A【解析】【分析】将{x=1y=−1代入四个选项判断即可.【详解】解:将{x=1y=−1代入A得{1−1=01−(−1)=2,满足两个方程,故A正确.故选:A【点睛】本题考查了二元一次方程组的解,即二元一次方程组的解是构成二元一次方程组的两个方程的公共解,本题采用排除法较为简便.3.C【解析】【分析】根据平方差公式可得(a+b)⋅(a−b)的值,易知(a+b)2⋅(a−b)2的值.【详解】解:由a2−b2=3可知(a+b)⋅(a−b)=3,所以(a+b)2⋅(a−b)2=[(a+b)⋅(a−b)]2=32=9故选:C【点睛】本题考查了平方差公式,利用平方差公式对式子适当变形是解题的关键. 4.B【分析】根据平行线的性质可知∠BAC,由角平分线的性质可知∠BAE,根据两直线平行内错角相等可得结论.【详解】解:∵AB∥CD∴∠C+∠BAC=180°,∠AEC=∠BAE∵∠C=40°∴∠BAC=140°∵ AE平分∠CAB∴∠BAE=12∠BAC=70°∴∠AEC=70°故选:B【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练应用平行线的性质求角的度数是解题的关键.5.C【解析】【分析】根据平行线的判定定理判断即可.【详解】解:∠1,∠3是对顶角,不能判断a∥b,A错误;∵∠6=∠8,∠1=∠6∴∠1=∠8,∠1,∠8是同旁内角,故其相等不能判断a∥b,B错误;∵∠6=∠8,∠2=∠6∴∠2=∠8,∠2,∠8是内错角,内错角相等,两直线平行,所以a∥b,C正确;∠5,∠7是对顶角,不能判断a∥b,D错误;故选:C本题考查了平行线的判定,熟练掌握其判定方法是解题的关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.C【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式a后继续应用完全平方公式分解即可:()()222322x y2y x y y x2xy y y x y-+=-+=-故选C7.B【解析】试题分析:根据众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,因此众数是5.故选B考点:众数8.D【解析】【分析】根据“3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元”可得方程组.【详解】解:根据题意得{3x+2y=14 2x+3y=11故选:D【点睛】本题考查了二元一次方程组的实际应用,理清题中等量关系是解题的关键. 9.B【解析】试题分析:所求代数式前两项提取2,变形为2(a2+2a)-1,将已知等式代入得:2×1-1=1,故选B.考点:代数式求值.10.B【解析】【分析】可设2米的彩绳有x条,1米的彩绳有y条,根据题意可列出关于x,y的二元一次方程,为了不造成浪费,取x,y的非负整数解即可.【详解】解:设2米的彩绳有x条,1米的彩绳有y条,根据题意得2x+y=5,其非负整数解为:{x=0y=5,{x=1y=3,{x=2y=1,故在不造成浪费的前提下有三种截法.故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.11.−32x10y8【解析】【分析】先由幂的乘方法则计算乘方,再根据单项式乘单项式的计算方法计算即可. 【详解】解:(−2x3y2)3⋅4xy2=−8x9y6⋅4xy2=−32x10y8故答案为:−32x10y8【点睛】本题考查了单项式乘单项式,有乘方先算乘方,单项式乘单项式即把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式.12.(x ﹣3)(6﹣x )【解析】试题分析:原式变形后,提取公因式即可得到结果.解:原式=6(x ﹣3)﹣x (x ﹣3)=(x ﹣3)(6﹣x ),故答案为(x ﹣3)(6﹣x )点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.13.-1【解析】把21x y =⎧⎨=⎩代入二元一次方程组71ax by ax by +=⎧⎨-=⎩得2721a b a b +⎧⎨-⎩=①=②①+②得:4a=8,解得:a=2,把a=2代入①得:b=3,∴a-b=2-3=-1;故答案为-1.14.26【解析】【分析】 根据平移的性质对应线段相等可知AB+EF+DF 的值,由对应点所连线段相等且等于平移距离可知AD 、BE 的长,易知周长.【详解】解:由平移可得:5,,,AD BE cm DE AB DF AC EF BC =====,所以16ABC AB DF EF AB AC BC C cm ∆++=++==,五边形ABEFD 的周长为165526AB DF EF AD BE cm ++++=++=.故答案为:26【点睛】本题考查了平移的性质,平移前后的两个图形,对应线段平行且相等,对应角相等,对应点所连接的线段平行且相等,利用平移线段的性质可求线段的长度,利用角的性质可求平移图形中角的度数,灵活应用平移的性质是解题的关键.15.55°.【解析】【分析】∠1和∠3互余,即可求出∠3的度数,根据平行线的性质:两直线平行,同位角相等可求∠2的度数【详解】如图所示:因为三角板的直角顶点在直线b上.若∠1=35°,所以∠3=90°-35°=55°,因为a∥b,所以∠2=∠3=55°故填55°【点睛】本题主要考查平行线的基本性质,熟练掌握基础知识是解题关键16.1或5【解析】【分析】直线c可能在直线b的上方或下方,分情况讨论,根据平行线间的距离即可求解【详解】∥∥,所以a与c的距离解:如图,若直线c在直线b的上方,因为直线a b c=-=.321如图,若直线c 在直线b 的下方,因为直线a b c ∥∥,所以a 与c 的距离325=+=.故答案为:1或5【点睛】本题考查了平行线间的距离,平行线间的距离处处相等,正确理解平行线间距离的含义是解题的关键.17.【解析】【分析】将年龄按从小到大顺序排列,取最中间两个数的平均值即可.【详解】解:由题意可知处于最中间位置的年龄为13岁和14岁, 所以这个班同学年龄的中位数是131413.52+=岁. 故答案为:【点睛】本题考查了中位数,将一列数据按从小到大的顺序排列,处于最中间位置的数(处于最中间位置的有两个数则取其平均数)即为中位数,正确理解中位数的定义是求中位数的关键18.12【解析】【分析】根据同底数幂乘法的逆运算可知22m n m n a a a +=⋅,由幂的乘方的逆运算可知22()m n m n a a a a ⋅=⋅,再将3m a =,2n a =代入求解.解:2222()3212m n m n m n a a a a a +=⋅=⋅=⨯=.故答案为:12【点睛】本题考查了幂的运算,同底数幂的乘法逆运算m n m n a a a +=⋅,幂的乘方的逆运算 ()()mn m n n m a a a ==,灵活利用幂的逆运算将所求式转化为已知式是解题的关键. 19.原式48x =-;-7【解析】【分析】根据平方差公式和完全平方差公式先化简原式再代入求值即可.【详解】解:2(2)(2)(2)x x x +---()22444x x x =---+22444x x x =--+-48x =- 把14x =代入上式,得: 1484874x -=⨯-=- 【点睛】本题考查了乘法公式,平方差公式22()()a b a b a b +-=-,完全平方公式 222()2a b a ab b ±=±+,灵活应用乘法公式进行整式的化简是解题的关键. 20.见解析.【解析】【分析】(1)所添加的正方形要使图形有两条对称轴,故可添加在第二排第二列的位置;(2)要求只有一条对称轴,故可添加在第三排第五列的位置.解:(1)如图即为所求(2)如图即为所求【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的含义是画轴对称图形的前提. 21.(a+b)(a﹣b)【解析】试题分析:根据平方差公式,可得答案.试题解析:(a2+3ab﹣2b2)+(b2﹣3ab)=a2+3ab﹣2b2+b2﹣3ab=a2﹣b2=(a+b)(a﹣b).22.AE∥BF,理由见解析.【解析】【分析】根据两直线平行同位角相等,可判断∠B=∠DOE,再根据∠A=∠B,即可得到∠DOE=∠A,进而得出AC∥BD.【详解】AC∥BD,理由:∵AE∥BF,∴∠B =∠DOE .∵∠A =∠B ,∴∠DOE =∠A ,∴AC ∥BD .【点睛】本题考查了平行线的判定与性质,解答本题的关键是掌握:两直线平行同位角相等;同位角相等两直线平行.23.(1)83,83;(2)选拔甲参加比赛更合适,理由见解析.【解析】【分析】(1)求出甲乙两人各自的总成绩再除以测试次数即可;(2)方差越小数据越稳定,结合两人的平均分及方差可判断谁更合适.【详解】解:(1)甲的平均分为1(7986828583)835++++= 乙的平均分为:1(8879908177)835++++= (2)选拔甲参加比赛更合适,因为甲、乙两人的平均分相同.说明两人水平差不多,而22S S <甲乙,说明甲比乙发挥稳定,所以选拔甲参加比赛更合适【点睛】本题主要考查了平均数和方差,平均数常用来反映数据的总体趋势,方差用来反映数据的稳定性,方差越小越稳定,熟练掌握平均数的定义及方差的含义是解题的关键.24.2.【解析】试题分析:原式变形后,利用平方差公式计算即可得到结果.试题解析:原式=24815111111211111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=1615112122⎛⎫-+ ⎪⎝⎭=2. 考点:平方差公式.25.(1)74400元;(2)126300元;(3)第三种方案获利最大【解析】分析:(1)、若将毛竹全部进行粗加工后销售,则获利为93×800元;(2)、30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100;(3)、30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答.详解:(1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元;(2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元,未加工的毛竹63吨直接销售可获利63×100=6300元,因此共获利30×4000+63×100=126300元;(3)设x天粗加工,y天精加工,则,解之得所以9天粗加工数量为9×8=72吨,可获利72×800=57600元,21天精加工数量为21吨可获利21×4000=84000,因此共获利141600,所以(3)>(2)>(1),即第三种方案获利最大.点睛:此题关键是把实际问题抽象到解方程组中,利用方程组来解决问题,属于基础题型.得出等量关系是解题的关键.26.(1)∠APB=∠A+∠B;(2)见解析;(3)见解析【解析】【分析】(1)由两直线平行内错角相等可得∠APB,∠A,∠B之间的数量关系;(2)过点P作PE∥AC,易知BD∥PE,根据两直线平行内错角相等可得∠A=∠APE,∠B=∠BPE等量代换可得结论;(3)过点A作直线DE∥BC,由两直线平行内错角相等可得∠DAB=∠B,∠EAC=∠C,由平角的定义知∠DAB+∠BAC+∠EAC=180°,等量代换即可.【详解】解:(1)如图,过点P作PE∥AC.∴∠A=∠APE∵AC∥BD∴BD∥PE∴∠B=∠BPE∵∠APB=∠BPE+∠APE,∴∠APB=∠A+∠B所以∠APB,∠A,∠B之间的数量关系是:∠APB=∠A+∠B(2)过点P作PE∥AC.∴∠A=∠APE(两直线平行,内错角相等)∵AC∥BD,∴BD∥PE(如果两条直线都和第三条直线平行,那么这两条件直线也平行)∴∠B=∠BPE,∵∠APB=∠BPE−∠APE,∴∠APB=∠B−∠A.(等量代换)(3)过点A作直线DE∥BC,∵DE∥BC.∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,∴∠BAC+∠B+∠C=180°(等量代换)【点睛】本题考查了平行线的判定和性质,通过构造平行线将角进行拆分或合并是解题的关键.。
湘教版数学七年级下册第二学期期末 达标测试卷(含答案)

第二学期期末达标测试卷一、选择题(共10题,每题3分,共30分) 1. 下面四个图形中,是轴对称图形的是( )2. 如图,AB ∥CD ,直线l 分别交AB ,CD 于E ,F ,∠1=56°,则∠2的度数是( )A .56°B .146°C .134°D .124°(第2题) (第6题)3. 已知⎩⎨⎧x =-2,y =2是方程kx +2y =-2的解,则k 的值为( )A .-3B .3C .5D .-5 4. 下列运算正确的是( )A .4a 2-2a 2=2a 2B .(a 2)3=a 5C .a 2·a 3=a 6D .a 3+a 2=a 55. 下列从左到右的变形中,属于因式分解的是( )A .x 2-1=(x +1)(x -1)B .2xy 2=2x ·yC .(-x -1)2=x 2+2x +1D .x 2+2x +2=x (x +2)+26. 如图,三角形DEF 是由三角形ABC 平移得到的,若点A ,D 之间的距离为1,CE =2,则BC =( ) A .3 B .1 C .2 D .不能确定7. 下列多项式乘法,能用平方差公式计算的是( )A .(-3x -2)(3x +2)B .(-a -b )(-b +a )C .(-3x +2)(2-3x )D .(3x +2)(2x -3)8. 某生物兴趣小组按照老师的安排去采集标本,该小组共10人交回的标本数为:3名同学每人5件,2名同学每人6件,4名同学每人7件,1名同学10件.同学们交回的标本件数的众数和中位数分别为( ) A .众数4,中位数3 B .众数7,中位数7 C .众数7,中位数6 D .众数7,中位数6.59. 为响应国家“全民阅读,建设学习型社会”的倡议,某校欲购进《论语》《弟子规》两种图书以供学生阅读.购买《论语》80本、《弟子规》130本,共需要3 040元;购买《论语》60本、《弟子规》150本,共需要2 700元.设《论语》的单价为x 元,《弟子规》的单价为y 元,可列方程组为( ) A.⎩⎨⎧60x +130y =3 040,80x +150y =2 700 B.⎩⎨⎧130x +80y =3 040,60x +150y =2 700 C.⎩⎨⎧80x +150y =3 040,60x +130y =2 700 D.⎩⎨⎧80x +130y =3 040,60x +150y =2 70010. 如图,点E 在CA 的延长线上,DE ,AB 交于点F ,且∠BDE =∠AEF ,∠B=∠C ,∠EF A 比∠FDC 的余角小10°,P 为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,FM 为∠EFP 的平分线.下列结论:①CE ∥BD ;②AB ∥CD ;③FQ 平分∠AFP ;④∠QFM =20°.其中结论正确的序号是( )A .①②③④B .①②③C .②③D .①④ 二、填空题(共5题,每题3分,共15分) 11. 已知2m =5,2n =6,则2m +n =________.12. 因式分解:a 3-25a =________.13. 已知一组数据3,4,1,a ,2,a 的平均数为2,则这组数据的中位数是________. 14. 如图,直线a ,b 都与直线c 相交,给出下列条件:①∠1=∠2;②∠3=∠5;③∠1=∠4;④∠2+∠3=180°.其中能判定a ∥b 的条件是______________.(把你认为正确的序号填在横线上)3(第14题) (第15题)15. 如图,将三角形ABC 绕点A 逆时针旋转一定角度,得到三角形ADE .若∠CAE=63°,∠E =71°,且AD ⊥BC ,则∠BAC 的度数为________°. 三、解答题(共8题,共75分) 16. (8分)(1)计算:①(2x 2)4-x ·x 3·x 4; ②(x -1)(x 2+x +1).(2)因式分解:①a 2(1-m )+4(m -1); ②(x -y )2-4(x -y -1).17. (8分)解方程组:(1)⎩⎨⎧y =2x ,3x +5y =26; (2)⎩⎨⎧x +2y =7,2x +y =2.18. (8分)先化简,再求值:(a-3b)2+(2a+2b)(a-3b)+(a+b)2.其中a=b+2.19. (8分)在如图所示的方格纸中,(1)作三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的.20. (10分)如图,D是三角形ABC的边BC延长线上一点,连接AD,把三角形ACD绕点A顺时针旋转60°恰好得到三角形ABE,其中D,E是对应点.(1)若∠CAD=18°,求∠BAC,∠EAC的度数;(2)若S三角形ABD=9,S三角形ABE=3,求S三角形ABC.21. (10分)为了提高学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如下表:(1)经计算甲的平均成绩是8环,则a=________;(2)甲成绩的中位数是______环,乙成绩的众数是______环;(3)已知甲成绩的方差是1.2,请求出乙成绩的方差,并判断甲、乙两名队员谁的成绩更为稳定.22. (10分)某高校共有5个大餐厅和2个小餐厅.若同时开放1个大餐厅和2个小餐厅,可供1 600名学生就餐;若同时开放2个大餐厅和1个小餐厅,可供2 000名学生就餐.(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐.(2)餐厅装修升级期间,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放7个餐厅,能否供1 800名学生同时就餐?请说明理由.23. (13分)如图①,点F,G分别在直线AB,CD上,且AB∥CD.5(1)问题发现:若∠BFE=40°,∠CGE=130°,则∠GEF的度数为________.(2)拓展探究:∠GEF,∠BFE,∠CGE之间有怎样的数量关系?并说明理由.(3)深入探究:如图②,∠BFE的平分线FQ所在直线与∠CGE的平分线相交于点P,试探究∠GPQ与∠GEF之间的数量关系,请直接写出你的结论.答案一、1.A 2.D 3.B 4.A5.A【点拨】x2-1=(x+1)(x-1)符合因式分解的定义,选项A符合题意.6.A7.B8.D9.D10.A【点拨】①因为∠BDE=∠AEF,所以CE∥BD,结论①正确;②因为CE∥BD,所以∠B=∠EAF.因为∠B=∠C,所以∠EAF=∠C,所以AB∥CD,结论②正确;③因为AB∥CD,所以∠AFQ=∠FQP.因为∠FQP=∠QFP,所以∠AFQ=∠QFP,所以FQ平分∠AFP,结论③正确;④因为FM为∠EFP的平分线,所以∠MFP=12∠EFP=12∠EF A+12∠AFP.因为∠AFQ=∠QFP,所以∠QFP=12∠AFP,所以∠QFM=∠MFP-∠QFP=12∠EF A.因为AB∥CD,所以∠EF A=∠FDC.又因为∠EF A比∠FDC的余角小10°,所以∠EF A=(90°-∠FDC)-10°,所以∠EF A=40°,所以∠QFM=20°,结论④正确.综上所述:正确的结论有①②③④.二、11.3012.a(a-5)(a+5)13.1.514.①②④15.82【点拨】因为三角形ABC绕点A逆时针旋转一定角度,得到三角形ADE,所以∠ACB=∠E=71°,∠BAD=∠CAE=63°.因为AD⊥BC,所以∠CAD=90°-∠ACB=90°-71°=19°,所以∠BAC=∠BAD+∠CAD=63°+19°=82°.三、16.解:(1)①原式=16x8-x8=15x8.②原式=x3+x2+x-x2-x-1=x3-1.(2)①原式=a2(1-m)-4(1-m)=(1-m)(a2-4)=(1-m)(a+2)(a-2).②原式=(x-y)2-4(x-y)+4=(x-y-2)2.717.解:(1)⎩⎨⎧y =2x ,①3x +5y =26,②把①代入②,得3x +10x =26,解得 x =2,将x =2代入①,得y =2×2=4,所以方程组的解是⎩⎨⎧x =2,y =4.(2)⎩⎨⎧x +2y =7,①2x +y =2,②①+②,得3x +3y =9,所以x +y =3,③ ①-③,得y =4,②-③,得x =-1, 所以方程组的解是⎩⎨⎧x =-1,y =4.18.解:原式=(a -3b )2+2(a +b )(a -3b )+(a +b )2=[(a -3b )+(a +b )]2 =(2a -2b )2=4(a -b )2.因为a =b +2,所以a -b =2,所以原式=4×22=16. 19.解:(1)如图,三角形A 1B 1C 1即为所求.(2)先向右平移6格,再向下平移2格.(答案不唯一)20.解:(1) 因为把三角形ACD 绕点A 顺时针旋转60°恰好得到三角形ABE ,所以旋转角为60°,所以∠BAC =60°.易得∠DAE =60°.又因为∠CAD =18°, 所以∠EAC =∠EAD -∠CAD =42°.(2)若S 三角形ABD =9,S 三角形ABE =3,由旋转可知S 三角形ACD =S 三角形ABE =3,所以S三角形ABC=S 三角形ABD -S 三角形ACD =9-3=6.21.解:(1)8(2)8;79 (3)乙的平均成绩为110×(6+7+9+7+9+10+8+7+7+10)=8(环), 所以乙成绩的方差为110×[(7-8)2×4+(9-8)2×2+(10-8)2×2+(6-8)2+(8-8)2]=1.8,因为甲和乙的平均成绩都是8环,而甲成绩的方差小于乙成绩的方差,所以甲的成绩更为稳定.22.解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,依题意,得⎩⎨⎧x +2y =1 600,2x +y =2 000,解得⎩⎨⎧x =800,y =400.答:1个大餐厅可供800名学生就餐,1个小餐厅可供400名学生就餐. (2)能.理由如下:800×5×40%+400×2×30%=1 840(名), 因为1 840>1 800,所以同时开放7个餐厅,能供1 800名学生同时就餐. 23.解:(1)90°(2)∠GEF =∠BFE +180°-∠CGE .理由如下: 如图,过点E 作EH ∥AB , 所以∠FEH =∠BFE . 因为AB ∥CD ,EH ∥AB , 所以EH ∥CD ,所以∠HEG =180°-∠CGE ,所以∠GEF =∠FEH +∠HEG =∠BFE +180°-∠CGE .(3)∠GPQ +12∠GEF =90°.。
湘教版七年级下册数学期末考试题(附答案)

湘教版七年级下册数学期末考试题(附答案)1.由方程组正确答案:C改写:求解以下方程组:2.把方程正确答案:B改写:将以下方程化简:3.设正确答案:C改写:已知:4.若正确答案:D改写:如果5.多项式2x2-4xy+2x提取公因式2x后,另一个因式为()正确答案:A改写:将2x²-4xy+2x提取公因式2x得到2x(x-2y+1),因此另一个因式为x-2y。
6.下列分解因式正确的是()正确答案:C改写:将a²-6a+9分解因式得到(a-3)²。
7.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()正确答案:B改写:在图中,∠2与∠1互补,因此∠2=90°-∠1=60°。
8.直线l3与l1,l2相交得如图所示的5个角,其中互为对顶角的是()正确答案:D改写:在图中,∠1和∠5互为对顶角,因此选D。
9.下列各项中,不是由平移设计的是()正确答案:C改写:以下哪个图形不是通过平移得到的?10.下面四个手机APP图标中,可看作轴对称图形的是()正确答案:B改写:以下哪个图标是轴对称图形?11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()正确答案:C改写:在这组数据中,众数为2,因此2出现的次数最多。
中位数为3,平均数为(2+4+x+2+4+7)/6=19/6.12.一组数据2,4,x,6,8的众数为2,则x的值为()正确答案:A改写:在这组数据中,2出现的次数最多,因此x=2.13.在方程3x-y=5中,用含x的代数式表示y为________.正确答案:3x-5改写:将方程3x-y=5化简得到y=3x-5.14.若(x+2)(2x-n)=2x2+mx-2,则m+n=________.正确答案:0改写:将方程(x+2)(2x-n)=2x²+mx-2化简得到2n-3x²+2x=mx-2,因此m+n=0.15.若一个正方形的面积为4a2+12ab+9b2(a>,b>),则这个正方形的边长为________.正确答案:(2a+3b)改写:将正方形的面积4a²+12ab+9b²分解因式得到(2a+3b)²,因此正方形的边长为2a+3b。
【湘教版】七年级数学下期末试卷(带答案)

一、选择题1.在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A .B .C .D .2.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成.其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.49 B.64 C.81 D.1003.已知二元一次方程组2513377x yx y+=⎧⎨-=-⎩①②,用加减消元法解方程组正确的()A.①×5-②×7B.①×2+②×3 C.①×7-②×5D.①×3-②×2 4.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1 B.a=2,b=1 C.a=1,b=0 D.a=0,b=2 5.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y个,根据题意可得方程组()A.x y66x2y3+=⎧⎨=-⎩B.x y66x2y3+=⎧⎨=+⎩C.x y66y2x3+=⎧⎨=-⎩D.x y66y2x3+=⎧⎨=+⎩6.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点()A.(2,-1) B.(-1,2) C.(-2,1) D.(-2,2)7.如图,线段OA,OB分别从与x轴和y轴重合的位置出发,绕着原点O顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒ 8.估计30的值在哪两个整数之间( )A .5和6B .6和7C .7和8D .8和99.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A .102°B .112°C .120°D .128° 10.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-11.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米12.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>二、填空题13.某公园的门票是10元/人,团体购票有如下优惠: 购票人数 1-30人 31-60人60人以上票价无折扣超出30人的部分,票价打八折超出60人的部分,票价打五折分别购票,两个班一共应付598元.如果两个班作为一个团体购票,一共应付545元,则甲班有_____人,乙班有_____人. 14.我们称使方程2323x y x y++=+成立的一对数x ,y 为“相伴数对”,记为(),x y .(1)若()6,y是“相伴数对”,则y的值为______;(2)若(),a b是“相伴数对”,请用含a的代数式表示b=______.15.某人从A点沿北偏东60︒的方向走了100米到达点B,再从点B沿南偏西10︒的方向走了100米到达点C,那么点C在点A的南偏东__度的方向上.16.在平面直角坐标系中,点A(2,0)B(0,4),作△BOC,使△BOC和△ABO全等,则点C坐标为________17.有个数值转换器,原理如图所示,当输入x为27时,输出的y值是________________.18.小明在楼上点A处行到楼下点B处的小丽的俯角是32︒,那么点B处的小丽看点A处的小明的仰角是_______________度.19.关于x的不等式组3112xx a+⎧-<⎪⎨⎪<⎩有3个整数解,则a的取值范围是_____.20.若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x间宿舍,则可列不等式组为____三、解答题21.某商场销售A、B两种型号的计算器,两种计算器的进货价格分别为每台15元,20元.商场销售5台A型号和1台B型号计算器,可获利润38元;销售6台A型号和3台型号计算器,可获利润6元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于1250元的资金购进A、B两种型号计算器共70台,且全部售出后至少获利460元.问:最少需要购进A型号的计算器多少台?最多可购进A型号的计算器多少台?22.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元?23.若关于,x y的方程组37x yax y b-=⎧⎨+=⎩和关于,x y的方程组28x by ax y+=⎧⎨+=⎩有相同的解,求,a b 的值.24.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标; (2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 25.计算:(1)(1)|2|3-⨯-+ (2)2111(3)162⎛⎫-+---⨯ ⎪⎝⎭26.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,垂足为O ,若∠BOF=38°.(1)求∠AOC 的度数;(2)过点O 作射线OG ,使∠GOE=∠BOF ,求∠FOG 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4 去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.C解析:C【分析】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,观察图形,根据各边之间的组合关系,找出关于a、b的二元一次方程组,解方程组即可求出a、b值,进而即可得出正方形ABCD的边长,根据正方形的面积公式即可得出结论.【详解】设小长方形的长为a,宽为b,则大长方形的长为3a,宽为3b,由已知得:133a ba b a b=+⎧⎨=++⎩,解得:21ab=⎧⎨=⎩,∴正方形ABCD的边长AB=3a+3b=3×(2+1)=9,∴正方形ABCD的面积为9×9=81.故选:C.【点睛】本题考查了二元一次方程组的应用,解题的关键是找出关于a、b的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,观察图形根据各边之间的关系找出方程(或方程组)是关键.3.D解析:D【分析】方程组利用加减消元法变形,判断即可.【详解】解:用加减消元法解方程组2513377x yx y+=⎧⎨-=-⎩①②,用①×3-②×2可以消去x,选项A,B, C无法消去方程组中的未知数,故选:D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.4.C解析:C【分析】根据同类项的定义可得关于a、b的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a ba b-=⎧⎨+=⎩,解得:1ab=⎧⎨=⎩.故选:C.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.5.B解析:B【分析】根据题中的等量关系列方程组即可【详解】解:依题意,得:x y66 x2y3+=⎧⎨=+⎩.故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.6.C解析:C【分析】以将向右平移1个单位,向上平移2个单位为坐标原点建立平面直角坐标系,然后写出炮的坐标即可.【详解】解:建立平面直角坐标系如图,炮(-2,1).故选C.【点睛】本题考查了坐标确定位置,准确确定出原点的位置是解题的关键.7.C解析:C【分析】先求出线段OA、OB第2020秒时旋转的度数,再除以360︒得到余几,确定最终状态时OA、OB的位置,再求夹角度数.【详解】⨯︒=︒,解:第2020秒时,线段OA旋转度数=20204590900⨯︒=︒,线段OB旋转度数=20203060600︒÷︒=︒,︒÷︒=︒,60600360168120 90900360252180此时OA、OB的位置如图所示,︒-︒=︒.OA与OB之间的夹角度数=270120150故选:C.【点睛】本题考查线段的旋转,解题的关键是利用周期问题的方法确定最终状态时OA、OB所在位置.8.A解析:A【分析】3030【详解】解:∵253036∴5306,∴在两个相邻整数5和6之间.故选:A.【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.A解析:A 【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a ),进一步求得∠BFC=154°-26°=128°(图b ),进而求得∠CFE=128°-26°=102°(图c ). 【详解】解:∵AD ∥BC ,∠DEF=26°, ∴∠BFE=∠DEF=26°, ∴∠EFC=154°(图a ), ∴∠BFC=154°-26°=128°(图b ), ∴∠CFE=128°-26°=102°(图c ). 故选:A . 【点睛】本题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.10.D解析:D 【分析】先解不等式得出23ax -≤,然后根据不等式只有2个正整数解可知正整数解为1和2,据此列出不等式组求解即可. 【详解】解:32x a +,32x a ∴-,则23ax-, ∵不等式只有2个正整数解, ∴不等式的正整数解为1、2,则2233a-≤<, 解得:74a -<-, 故答案为D . 【点睛】本题主要考查一元一次不等式的整数解,正确求解不等式并根据不等式的整数解的情况列出关于某一字母的不等式组是解答本题的关键.11.D解析:D 【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可. 【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x⨯≥ 解得:103x ≥ 故选:D 【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米.12.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵a<b∴a+2<b+2成立,则A 选项不符合题意; 当c=0时,22ac bc =,则B 选项符合题意;1122a b <成立,则C 选项不符合题意; -2a-1-2b-1>成立,则D 选项不符合题意. 故答案为B . 【点睛】本题考查了不等式的性质,掌握①不等式左右两边同时加(减)一个数(式)不等式符号不变;②给不等式左右两边同时乘(除)一个不为零的数(式),当该数(式)大于零时不等式符号不变,反之改变.二、填空题13.25【分析】设甲班有人乙班有人根据①超出60人的的费用=545-(300+30×10×08)②甲班费用+乙班费用=598列方程组求解即可【详解】设甲班有人乙班有人根据题意可得:解得:即甲班有36人乙解析:25 【分析】设甲班有x 人,乙班有y 人,根据“①超出60人的的费用=545-(300+30×10×0.8),②甲班费用+乙班费用=598”列方程组求解即可. 【详解】设甲班有x 人,乙班有y 人, 根据题意可得:()()60554554010300308598x y y x ⎧+-⨯=-⎪⎨++-⨯=⎪⎩,解得:3625x y =⎧⎨=⎩,即甲班有36人,乙班有25人. 故答案为:36;25 【点睛】本题主要考查二元一次方程组的应用,弄清表格中分段收费标准,根据费用确定其中蕴含的相等关系:①超出60人的的费用=545-(300+30×10×0.8)、②甲班费用+乙班费用=598是解题的关键.14.【分析】(1)根据使方程成立的一对数xy 为相伴数对记为(xy )将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b 代入计算即可用含a 的代数式表示b 【详解】(1)∵(6y )是相伴数对∴解得:;故解析:272-94a - 【分析】(1)根据使方程2323x y x y ++=+成立的一对数x ,y 为“相伴数对”,记为(x .y ),将x 换成6代入计算即可;(2)结合(1)将x 和y 换成a 和b ,代入计算即可用含a 的代数式表示b . 【详解】(1)∵(6,y )是“相伴数对”,∴662323y y ++=+, 解得:272y =-; 故答案为:272-; (2)∵(a ,b )是“相伴数对”, ∴2323a b a b ++=+, 解得:94b a =-; 故答案为:94a -. 【点睛】本题考查了一元一次方程和二元一次方程的应用,解决本题的关键是理解题目中“相伴数对”的定义,并运用.15.55【分析】在直角坐标系下现根据题意确定AB 点的位置和方向最后确定C 点的位置和方向依次连接ABC 三点根据角之间的关系求出∠5的度数即可【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到解析:55【分析】在直角坐标系下现根据题意确定A 、B 点的位置和方向,最后确定C 点的位置和方向.依次连接A 、B 、C 三点,根据角之间的关系求出∠5的度数即可.【详解】根据题意作图:∵从A 点沿北偏东60°的方向走了100米到达点B ,从点B 沿南偏西10°的方向走了100米到达点C ,∴∠1+∠2=60°,AB=BC=100,∴∠2=50°,且△ABC 是等腰三角形,∴∠BAC=180502︒-︒=65°, ∴∠5=180°-65°-60°=55°, ∴点C 在点A 的南偏东55°的方向上.故答案为:55.【点睛】本题考查了直角坐标系的建立和运用,运用直角坐标系来确定点的位置和方向. 16.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A (20)B (04)∴OB=4OA=2∵△BOC 与△AOB 全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【详解】如图所示:有三个点符合,∵点A (2,0),B (0,4),∴OB=4,OA=2,∵△BOC 与△AOB 全等,∴OB=OB=4,OA=OC=2,∴C 1(-2,0),C 2(-2,4),C 3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C 的位置分情况讨论.17.【分析】计算x 的立方根:当x=2727的立方根为3再把x=3代入得到它是无理数于是得到输出的值为【详解】解:当x=27时=33是有理数当x=3时为无理数所以输出的值为故答案为【点睛】本题考查了立方根 33【分析】计算x 的立方根:当x=27,27的立方根为3,再把x=333,它是无理数,于是33.【详解】解:当x=2733=27x =3,3是有理数,当x=333=3x 33 33. 33.【点睛】本题考查了立方根:若一个数的立方等于a ,那么这个数叫a 3a 18.【分析】根据题意画出图形然后根据平行线的性质可以求得点B 处的小丽看点A 处的小明的仰角的度数本题得以解决【详解】解:由题意可得∠BAC =32°∵AC ∥BO ∴∠ABO =∠BAC ∴∠ABO =32°即点B 处解析:32【分析】根据题意画出图形,然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数,本题得以解决.【详解】解:由题意可得,∠BAC=32°,∵AC∥BO,∴∠ABO=∠BAC,∴∠ABO=32°,即点B处的小丽看点A处的小明的仰角等于32度,故答案为32.【点睛】本题利用平行线间角的关系求仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.19.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a 的取值范围是解答的关键,必要时可借助数轴更直观.20.【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出 解析:()142626x x ≤+--<【分析】先根据“每间住 4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.三、解答题21.(1)A 、B 两种型号计算器的销售价格分别为21元、28元;(2)最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台【分析】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A 型号和1台B 型号计算器,可获利润38元;②销售6台A 型号和3台B 型号计算器,可获利润6元,由①②等量关系列出方程组,解方程即可; (2)根据题意表示出所用成本,进而得出不等式组求出即可.【详解】(1)设A 种型号计算器的销售价格是x 元,B 种型号计算器的销售价格是y 元,由题意得:551520386361532060x y x y +-⨯-=⎧⎨+-⨯-⨯=⎩, 解得:2128x y =⎧⎨=⎩答:A 、B 两种型号计算器的销售价格分别为21元、28元;(2)设购进A 型号的计算器z 台,则B 种计算器为(70-z )台,依题意得:1520(70)1250(2115)(2820)(70)460z z z z +-≤⎧⎨-+--≥⎩, 解得:3050z ≤≤,∴最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.答:最少需要购进A 型号的计算器30台,最多可购进A 型号的计算器50台.【点睛】考查了二元一次方程组和一元一次不等式组的应用,解题关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式组求解.22.(1)食品120件,则帐篷200件;(2)方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)方案一运费最少,最少运费是14800元.【分析】(1)设食品x 件,则帐篷(80)x +件,等量关系:帐篷件数+食品件数=320,列出一元一次方程,即可求出解;(2)先由不等关系得到一元一次不等式组,求出解集,再根据实际含义确定方案; (3)分别计算每种方案的运费,然后比较得出结果.【详解】解:(1)设食品x 件,则帐篷(80)x +件,由题意得:(80)320x x ++=,解得:120x =.∴帐篷有12080200+=件.答:食品120件,则帐篷200件;(2)设租用甲种货车a 辆,则乙种货车(8)a -辆,由题意得:4020(8)2001020(8)120a a a a +-⎧⎨+-⎩, 解得:24a .又a 为整数,2a ∴=或3或4,∴乙种货车为:6或5或4.∴方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)3种方案的运费分别为:方案一:220006180014800⨯+⨯=(元);方案二:320005180015000⨯+⨯=(元);方案三:420004180015200⨯+⨯=(元).148001500015200<<∴方案一运费最少,最少运费是14800元.【点睛】本题查了一元一次方程的应用和一元一次不等式组的应用.关键是弄清题意,找出等量或者不等关系.23.75a=-,115b=-.【分析】首先把3x-y=7和2x+y=8联立方程组,求得x、y的数值,再进一步代入原方程组的另一个方程,再进一步联立关于a、b的方程组,进一步解方程组求得答案即可.【详解】解:由题意得37 28 x yx y-=⎧⎨+=⎩,解得32 xy=⎧⎨=⎩,把32xy=⎧⎨=⎩代入原方程组+yax bx by a=⎧⎨+=⎩,得,3+232a bb a=⎧⎨+=⎩,解得75115ab⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.24.(1)见解析,B1(﹣4,﹣5);(2)见解析,B2(4,5);(3)(2﹣a,b).【分析】(1)分别作出点A、B、C关于x轴的对称点,再依次连接可得△A1B1C1;(2)分别作出点A、B、C关于y轴的对称点,再依次连接可得△A2B2C2;(3)利用对称轴为直线x=1,进而得出P点的对应点坐标.【详解】(1)如图所示,△A1B1C1即为所求,点B1的坐标为(﹣4,﹣5);(2)如图所示,△A 2B 2C 2即为所求,点B 2的坐标为(4,5);(3)∵△ABC 的内部一点P (a ,b ),设点P 关于直线m 对称的点P ′的横坐标为:x , 则2a x +=1,故x =2﹣a , ∴点P 关于直线m 对称的点的坐标是(2﹣a ,b ).故答案为:(2﹣a ,b ).【点睛】本题主要考查作图−轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并根据轴对称变换的定义和性质得出变换后的对应点位置.25.(1)1;(2)1112.【分析】(1)先计算绝对值,再计算乘法,最后计算加法;(2)先同时计算乘方、减法、化简算术平方根,再计算乘法,最后计算加减法.【详解】(1)(1)|2|3-⨯-+=(1)23-⨯+=-2+3=1;(2)2111(3)162⎛⎫-+--- ⎪⎝⎭=11(3)42-+--⨯ =1122-+ =1112.【点睛】此题考查有理数的混合运算,掌握绝对值的化简,乘方法则,求数的算术平方根,有理数的加减法计算法则,乘除法计算法则是解题的关键.26.(1)52°;(2)图见解析,26°或102°【分析】(1)依据OF⊥CD,∠BOF=38°,可得∠BOD=90°−38°=52°,依据对顶角相等得到∠AOC =52°;(2)分两种情况求解即可.【详解】(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG的度数为26°或102°.【点睛】本题考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力,并注意数形结合.。
湘教版七年级下册数学期末考试题试卷

湘教版七年级下册数学期末考试试卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(本大题共10题,每小题3分,满分30分) 1.(x 4)2等于( )A .x 6B .x 8C .x 16D .2x 42.在一次射击中,运动员命中的环数是7,9,9,10,10,其中9是( ) A .平均数 B .中位数 C .众数 D .既是平均数又是中位数、众数 3.下列图案是轴对称图形的是( )4.下列各式中,与(1-a )(-a -1)相等的是( ) A .a 2-1 B .a 2-2a +1 C .a 2-2a -1 D .a 2+15.方程3y +5x =27与下列方程组成的方程组的解是⎩⎪⎨⎪⎧x =3,y =4的是( )A .4x +6y =-6B .4x +7y -40=0C .2x -3y =13D .以上答案都不对 6.下列四个说法中,正确的是( ) A .相等的角是对顶角B .平移不改变图形的形状和大小,但改变直线的方向C .两条直线被第三条直线所截,内错角相等D .两直线相交形成的四个角相等,则这两条直线互相垂直7.同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( ) A .a ∥d B .b ⊥d C .a ⊥d D .b ∥c 8.下列式子变形是因式分解的是( )A .x (x -1)=x 2-1B .x 2-x =x (x +1)C .x 2+x =x (x +1)D .x 2-x =x (x +1)(x -1)9.如果x 2+kx +25是一个完全平方式,那么k 的值是( ) A .5 B .±5 C .10 D .±10 10.已知∠A ,∠B 互余,∠A 比∠B 大30度.设∠A ,∠B 的度数分别为x °,y °,下列方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =180,x =y -30B.⎩⎪⎨⎪⎧x +y =180,x =y +30C.⎩⎪⎨⎪⎧x +y =90,x =y +30D.⎩⎪⎨⎪⎧x +y =90,x =y -30 二、填空题(本大题共8小题,每题3分,满分24分) 11.已知a -b =3,则a (a -2b )+b 2的值为________.12.若(x -1)(x +3)=x 2+px -3,则p =________. 13.计算20162-2015×2017=________.14.钟表的分针匀速旋转一周需要60min ,经过20min ,分针旋转了________.15.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为________分.16.如图,直线l 1∥l 2,AB ⊥EF ,∠1=20°,那么∠2=________.第16题图 第17题图17.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为________.18.对于任意两个数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算“⊕”:(a ,b )⊕(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊕(p ,q )=(5,0),则p =________,q =________.三、解答题(本大题共2小题,每题6分,满分12分) 19.计算:(-2x 2y )3·3(xy 2)2.20.先化简,再求值:(x +3)2+(x +2)(x -2)-2x 2,其中x =-13.四、解答题(本大题共2小题,每小题8分,满分16分)21.在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x 4-y 4=(x -y )(x +y )(x 2+y 2),当x =9,y =9时,x -y =0,x +y =18,x 2+y 2=162,则密码为018162.对于多项式4x 3-xy 2,取x =10,y =10,用上述方法产生的密码是什么?22.(8分)某学校抽查了某班级某月10天的用电量(单位:度),数据如下表:度数 8 9 10 13 14 15 天数112312(1)这10天用电量的众数是________,中位数是________; (2)求这个班级平均每天的用电量.五、解答题(本大题共2小题,每题9分,满分18分) 23.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?24.如图,AB ∥CD ,∠A =128°,∠D =32°,求∠AED 的度数.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图,三角形ABC中,∠B=10°,∠ACB=20°,AB=4cm,三角形ABC逆时针旋转一定角度后与三角形ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.26.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,组织200名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?参考答案与解析1.B 2.D 3.A 4.A 5.B 6.D 7.C 8.C 9.D 10.C 11.9 12.2 13.1 14.120° 15.71 16.70° 17.50°18.1 -2 解析:根据题意可知(1,2)⊕(p ,q )=(p -2q ,q +2p )=(5,0),∴⎩⎪⎨⎪⎧p -2q =5,q +2p =0,解得⎩⎪⎨⎪⎧p =1,q =-2.19.解:原式=-8x 6y 3·3x 2y 4=-24x 8y 7.(6分)20.解:原式=x 2+6x +9+x 2-4-2x 2=6x +5.(3分)当x =-13时,原式=6×⎝⎛⎭⎫-13+5=-2+5=3.(6分)21.解:原式=x (4x 2-y 2)=x (2x +y )(2x -y ).(2分)当x =10,y =10时,x =10,2x +y =30,2x -y =10,(5分)故密码为103010或101030或301010.(8分)22.解:(1)13 13(4分)(2)110(8+9+10+10+13+13+13+14+15+15)=12(度).(7分) 答:这个班级平均每天的用电量为12度.(8分)23.解:设树上有x 只鸽子,树下有y 只鸽子.(1分)由题意得⎩⎪⎨⎪⎧y -1=13(x +y ),x -1=y +1.(3分)整理得⎩⎪⎨⎪⎧2y -x =3,y =x -2,(5分)解得⎩⎪⎨⎪⎧x =7,y =5.(8分)答:树上有7只鸽子,树下有5只鸽子.(9分)24.解:如图,过点E 作EF ∥AB .(2分)∵AB ∥CD ,∴EF ∥CD ,(4分)∴∠A +∠AEF =180°,∠FED =∠D .(6分)∵∠A =128°,∠D =32°,∴∠AEF =180°-128°=52°,∠FED =32°,(8分)∴∠AED =52°+32°=84°.(9分)25.解:(1)∵三角形ABC 逆时针旋转一定角度后与三角形ADE 重合,A 为公共顶点,∴旋转中心是点A .(2分)根据旋转的性质可知,∠CAE =∠BAD =180°-∠B -∠ACB =150°,∴旋转角度是150°.(4分)(2)由(1)可知,∠BAE =360°-150°×2=60°.(6分)由旋转的性质可知AD =AB =4cm ,AC =AE .又∵C 为AD 中点,(8分)∴AE =AC =12AD =2cm.(10分)26.解:(1)甲、乙、丙的民主评议得分分别为200×25%=50(分),200×40%=80(分),200×35%=70(分).(2分)(2)甲的平均成绩为75+93+503=2183≈72.67(分),乙的平均成绩为80+70+803=2303≈76.67(分),丙的平均成绩为90+68+703=2283=76(分).(5分)由于76.67>76>72.67,∴候选人乙将被录用.(6分)(3)甲的个人成绩为4×75+3×93+3×504+3+3=72.9(分),乙的个人成绩为4×80+3×70+3×804+3+3=77(分),丙的个人成绩为4×90+3×68+3×704+3+3=77.4(分).(9分)由于丙的个人成绩最高,∴候选人丙将被录用.(10分)。
湘教版七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一.选择题(本大题共9小题,每小题2分,共18分)1.“认识交通标志,遵守交通规则”,下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a•a2=a2B.(x3)2=x5C.(2a)2=4a2D.(x+1)2=x2+13.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.4a2﹣8a=a(4a﹣8)C.a+2a+2=(a﹣1)2+1D.x2﹣2x+1=(x﹣1)24.下列运算正确的是()A.(m+n)(﹣m+n)=n2﹣m2B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(x﹣1)2=x2﹣2x﹣15.下列说法错误的是()A.平移不改变图形的形状和大小B.对顶角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.同位角相等6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数B.平均数C.中位数D.方差7.如图.直线a∥b,直线L与a、b分别交于点A、B,过点A作AC⊥b于点C.若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°8.如图,下列条件中,能判定AD∥BC的是()A.∠C=∠CBE B.∠A+∠ADC=180°C.∠ABD=∠CDB D.∠A=∠CBE9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m﹣n)2D.m2﹣n2二、填空题(本大题共9小题,每小题2分,共18分)10.计算:(﹣2a)2﹣a2=.11.是二元一次方程2x+ay=5的一个解,则a的值为.12.若a+4b=10,2a﹣b=﹣1,则a+b=.13.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).14.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为.15.因式分解:(x﹣3)﹣2x(x﹣3)=.16.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.17.如图,将△ABC绕着点C按顺时针方向旋转20°后,B点落在B位置,A点落在A′位置,若AC⊥BC,则∠BCA′的度数是.18.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′,D′处,C′E交AF 于点G,若∠CEF=70°,则∠GFD′=°.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.先化简,再求值:2x(2x﹣y)﹣(2x﹣y)2,其中x=,y=﹣1.20.解方程组.21.如图,在正方形网格中,有格点三角形ABC(顶点都是格点)和直线MN.(1)画出三角形ABC关于直线MN对称的三角形A1B1C1(2)将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB2C2,在正方形网格中画出三角形AB2C2.(不要求写作法)22.推理填空:如图,∠1+∠2=180°,∠A=∠C,试说明:AE∥BC.解:因为∠1+∠2=180°,所以AB∥(同旁内角互补,两直线平行)所以∠A=∠EDC(),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC()23.某中学有15位学生利用暑假参加社会实践活动,到某公司销售部做某种商品的销售员,销售部为帮助学生制定合理的周销售定额,统计了这15位学生某周的销售量如下:45013060504035周销售量(件)人数113532(1)求这15位学生周销售量的平均数、中位数、众数;(2)假设销售部把每位学生的周销售定额规定为80件,你认为是否合理?为什么?如果不合理,请你从表中选一个较合理的周销售量作为周销售定额,并说明理由.24.我市某中学决定到超市购买一定数量的羽毛球拍和羽毛球,已知买1副羽毛球拍和1个羽毛球要花费35元,买2副羽毛球拍和3个羽毛球要花费75元,求购买10副羽毛球拍和20个羽毛球共需多少元?25.如图,直线a∥b,直线AB与a,b分别相交于点A,B,AC⊥AB,AC交直线b于点C.(1)若∠1=60°,求∠2的度数;(2)若AC=3,AB=4,BC=5,求a与b的距离.26.先仔细阅读材料,冉尝试解决问题完全平方公式a2±2ab+b2=(a±b)2及(a±b)2的值具有非负性的特点在数学学习中有着广泛的应用,例如求多项式2x2+12x﹣4的最小值时,我们可以这样处理:解:原式=2(x2+6x﹣2)=2(x2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x取什么数,都有(x+3)2的值为非负数,所以(x+3)2的最小值为0,当x=﹣3时,2(x+3)2﹣22的最小值是﹣22,所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:(1)请根据上面的解题思路探求:多项式x2+4x+5的最小值是多少,并写出此时x的值;(2)请根据上面的解题思路探求:多项式﹣3x2﹣6x+12的最大值是多少,并写出此时x的值.27.如图,MN∥OP,点A为直线MN上一定点,B为直线OP上的动点,在直线MN与OP之间且在线段AB的右方作点D,使得AD⊥BD.设∠DAB=α(α为锐角).(1)求∠NAD与∠PBD的和;(提示过点D作EF∥MN)(2)当点B在直线OP上运动时,试说明∠OBD﹣∠NAD=90°;(3)当点B在直线OP上运动的过程中,若AD平分∠NAB,AB也恰好平分∠OBD,请求出此时α的值参考答案与试题解析一.选择题(本大题共9小题,每小题2分,共18分)1.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.解:A、a•a2=a3,故此选项错误;B、(x3)2=x6,故此选项错误;C、(2a)2=4a2,正确;D、(x+1)2=x2+2x+1,故此选项错误.故选:C.3.解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意,故选:D.4.解:∵(m+n)(﹣m+n)=n2﹣m2,故选项A正确,∵(a﹣b)2=a2﹣2ab+b2,故选项B错误,∵(a+m)(b+n)=ab+an+bm+mn,故选项C错误,∵(x﹣1)2=x2﹣2x+1,故选项D错误,故选:A.5.解:A、平移不改变图形的形状和大小,正确;B、对顶角相等,正确;C、在同一平面内,垂直于同一条直线的两条直线平行,正确;D、两直线平行,同位角相等,错误;故选:D.6.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.7.解:∵AC⊥b,∴∠ACB=90°,∵∠1=50°,∴∠ABC=40°,∵a∥b,∴∠ABC=∠2=40°.故选:C.8.解:A、∵∠C=∠CBE,∴AB∥CD,故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD,故本选项错误;C、∵∠ABD=∠CDB,∴AB∥CD,故本选项错误;D、∵∠A=∠CBE,∴AD∥BC,故本选项正确.故选:D.9.解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2,又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2﹣4mn=(m﹣n)2.故选:C.二、填空题(本大题共9小题,每小题2分,共18分)10.解:(﹣2a)2﹣a2=4a2﹣a2=3a2,故答案为:3a2.11.解:将代入二元一次方程2x+ay=5,得2+3a=5,解得a=1,故答案为:1.12.解:∵a+4b=10①,2a﹣b=﹣1②,①+②可得:3a+3b=9,即:a+b=3.故答案为:3.13.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.14.解:∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.15.解:(x﹣3)﹣2x(x﹣3)=(x﹣3)(1﹣2x).故答案为:(x﹣3)(1﹣2x).16.解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.17.解:∵AC⊥BC,∴∠ACB=90°,∵∠ACB=∠A′CB′=90°,∴∠BCB′=∠ACA′=20°,∴∠BCA′=90°+20°=110°,故答案为110°.18.解:矩形纸片ABCD中,AD∥BC,∵∠CEF=70°,∴∠EFG=∠CEF=70°,∴∠EFD=180°﹣70°=110°,根据折叠的性质,∠EFD′=∠EFD=110°,∴∠GFD′=∠EFD′﹣∠EFG,=110°﹣70°,=40°.故答案为:40.三、解答题(本大题共9小题,19~23每小题6分,24~26每小题6分,27小题10分,共64分)19.解:2x(2x﹣y)﹣(2x﹣y)2=4x2﹣2xy﹣4x2+4xy﹣y2=2xy﹣y2,当x=,y=﹣1时,原式=2××(﹣1)﹣(﹣1)2=﹣2.20.解:①×2+②得:7x=14,即x=2,将x=2代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求.22.解:因为∠1+∠2=180°,所以AB∥DC(同旁内角互补,两直线平行)所以∠A=∠EDC(两直线平行,同位角相等),又因为∠A=∠C(已知)所以∠EDC=∠C(等量代换),所以AE∥BC(内错角相等,两直线平行)故答案为:DC,两直线平行,同位角相等;内错角相等,两直线平行.23.解:(1)这15位学生周销售量的平均数=(450×1+130×1+60×3+50×5+40×3+35×2)÷15=80,中位数为50,众数为50;(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.24.解:设购买1副羽毛球拍需要x元,购买1个羽毛球需要y元,根据题意得:,解得:,∴10x+20y=10×30+20×5=400.答:购买10副羽毛球拍和20个羽毛球共需400元.25.解:(1)∵直线a∥b,∴∠3=∠1=60°,又∵AC⊥AB,∴∠2=90°﹣∠3=30°;(2)如图,过A作AD⊥BC于D,则AD的长即为a与b之间的距离.∵AC⊥AB,∴×AB×AC=×BC×AD,∴AD==,∴a与b的距离为.26.解:(1)x2+4x+5=x2+4x+4+1=(x+2)2+1,当x=﹣2时,多项式x2+4x+5的最小值是1;(2)﹣3x2﹣6x+12=﹣3(x2+2x+1)+3+12=﹣3(x+1)2+15,当x=﹣1时,多项式﹣3x2﹣6x+12的最大值是15.27.解:(1)如图,过点D作EF∥MN,则∠NAD=∠ADE.∵MN∥OP,EF∥MN,∴EF∥OP.∴∠PBD=∠BDE,∴∠NAD+∠PBD=∠ADE+∠BDE=∠ADB.∵AD⊥BD,∴∠ADB=90°,∴∠NAD+∠PBD=90°.(2)由(1)得:∠NAD+∠PBD=90°,则∠NAD=90°﹣∠PBD.∵∠OBD+∠PBD=180°,∴∠OBD=180°﹣∠PBD,∴∠OBD﹣∠NAD=(180°﹣∠PBD)﹣(90°﹣∠PBD)=90°.(3)若AD平分∠NAB,AB也恰好平分∠OBD,则有∠NAD=∠BAD=α,∠NAB=2∠BAD =2α,∠OBD=2∠OBA.∵OP∥MN,∴∠OBA=∠NAB=2α,∴∠OBD=4α.由(2)知:∠OBD﹣∠NAD=90°,则4α﹣α=90°,解得:α=30°.1、只要朝着一个方向努力,一切都会变得得心应手。
【湘教版】七年级数学下期末试卷带答案

一、选择题1.下列说法正确的是( )A .抛掷一枚质地均匀的硬币两次,必有一次正面朝上B .“汽车累积行驶10000km ,从未出现故障”是不可能事件C .湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D .“0a ≥”是必然事件2.下列事件中,是必然事件的是( )A .多边形的外角和等于360°B .车辆随机到达一个路口,遇到红灯C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,正面向上 3.如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .16B .13C .12D .234.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D 处,若130∠=︒,则2∠的度数为( )A .30°B .60°C .50°D .55°5.下列轴对称图形中,对称轴最多的图形是( )A .B .C .D .6.在汉字“生活中的日常用品”中,成轴对称的有( )A .3个B .4个C .5个D .6个7.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 8.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对9.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD 10.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下表的关系:下列说法不正确的是( ) x/kg 0 1 2 3 4 5y/cm 20 20.5 21 21.5 22 22.5A .弹簧不挂重物时的长度为0cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .随着所挂物体的重量增加,弹簧长度逐渐边长D .所挂物体的重量每增加1kg ,弹簧长度增加0.5cm11.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°12.在括号内填上适当的单项式,使()2144y -+成为完全平方式应填( )A .12yB .24C .24y ±D .12 二、填空题13.从﹣3,π,|﹣4|,3,5这五个实数中随机取出一个数,这个数大于2的概率是___.14.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.15.如图有一张直角三角形纸片,两直角边AC =4cm ,BC =8cm ,把纸片的部分折叠,使点B 与点A 重合,折痕为DE ,则△ACD 的周长为_____.16.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E +∠F =_____°.17.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.18.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.19.将如图1的长方形ABCD 纸片()//AD BC 沿EF 折叠得到图2,折叠后DE 与BF 相交于点P .如果70,EPF ∠=︒则PEF ∠的度数为____.20.2432[(31)(31)(31)(31)(31)1]3-+++++÷的个位数为___________.三、解答题21.有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?22.如图,方格纸中每个小正方形的边长均为1,四边形ABCD 的四个顶点都在小正方形的格点上(格点就是指网格中小正方形的顶点),点E 在BC 边上,且点E 在小正方形的格点上,连接AE .(1)在图中画出AEF ,使AEF 与AEB △关于直线AE 对称,点F 与点B 是对称点; (2)求AEF 与四边形ABCD 重叠部分的面积.23.如图,已知在ABC 和DBE 中,,12,AB DB A D =∠=∠∠=∠.求证:BC BE =.24.科学家研究发现,声音在空气中传播的速度y (米/秒)与气温x (°C )有关,当气温是0°C 时,音速是331米/秒;当气温是5°C 时,音速是334米/秒;当气温是10°C 时,音速是337米/秒;气温是15°C 时,音速是340米/秒;气温是20℃时,音速是343米/秒;气温是25°C 时,音速是346米/秒;气温是30°C 时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪一个是对应的值? (3)当气温是35°C 时,估计音速y 可能是多少?(4)能否用一个式子来表示两个变量之间的关系?25.如图所示,直线AB 、CD 相交于点O ,OE 是∠BOD 的平分线,∠AOE =140°.猜想与说理:(1)图中与∠COE 互补的角是 .(2)因为∠AOD +∠AOC =180°,∠BOC +∠AOC =180°,所以根据 ,可以得到∠AOD =∠BOC .探究与计算:(3)请你求出∠AOC 的度数.联想与拓展:(4)若以点O 为观测中心,OB 为正东方向,则射线OC 的方向是 . 26.先化简,再求值.(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,其中 1.5x =-,2y =. (2)已知2830a a --=,求(1)(3)(5)(7)a a a a --+--的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km ,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;D. “0a ≥”是必然事件,判断正确,符合题意.故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.A解析:A【分析】根据事件发生的可能性大小判断相应事件的即可.【详解】解:A 、多边形的外角和等于360°,是必然事件;B 、车辆随机到达一个路口,遇到红灯,是随机事件;C 、如果a 2=b 2,那么a =b ,是随机事件;D 、掷一枚质地均匀的硬币,正面向上,是随机事件;故答案为A .【点睛】本题考查了随机事件,解决本题的关键是正确理解必然事件、不可能事件、随机事件的概念.3.C解析:C【解析】【分析】利用轴对称图形的定义得出符合题意的图形,再利用概率公式求出答案.【详解】如图所示:当涂黑②④⑤时,与图中阴影部分构成轴对称图形, 则构成轴对称图形的概率为:3162= 故选:C .【点睛】此题主要考查了几何概率以及轴对称图形的定义,正确得出符合题意的图形是解题关键. 4.B解析:B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.5.D解析:D【分析】根据对称轴的概念、结合图形分别找出各个图形的对称轴,得到答案.【详解】A 中图形有一条对称轴;B 中图形有一条对称轴;C 中图形有两条对称轴;D 中图形有四条对称轴;故选:D .【点睛】此题考查轴对称图形,正确找出各个图形的对称轴是解题的关键.6.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.7.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.8.C解析:C【分析】 共有四对.分别为ADO ≌AEO ,ADC ≌AEB ,ABO ≌ACO ,BOD ≌COE .做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠ADO =∠AEO =90°,又∵∠1=∠2,AO =AO , ∴ADO ≌AEO ;(AAS )∴OD =OE ,AD =AE ,∵∠DOB =∠EOC ,∠ODB =∠OEC =90°,OD =OE , ∴BOD ≌COE ;(ASA )∴BD =CE ,OB =OC ,∠B =∠C ,∵AE =AD ,∠DAC =∠CAB ,∠ADC =∠AEB =90° ∴ADC ≌AEB ;(ASA )∵AD =AE ,BD =CE ,∴AB =AC ,∵OB =OC ,AO =AO ,∴ABO≌ACO.(SSS)所以共有四对全等三角形.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.A解析:A【详解】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CE,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,不符合题意;无法证明AC=CD,故A符合题意,故选A.10.A解析:A【分析】根据图表信息即可解题.【详解】解:由题可知当x=0时,y=20,说明当弹簧不挂重物时的长度为20cm,故A选项错误,故选A.【点睛】本题考查了用表格表示两个变量之间的关系,属于简单题,在表格中提取有效信息是解题关键. 11.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补. 12.C解析:C【分析】利用完全平方公式的结构特征判断即可;【详解】()()()2222412=24144-±+±-±+y y y y ;故答案选C .【点睛】本题主要考查了完全平方公式,准确判断是解题的关键. 二、填空题13.【解析】【分析】首先找出大于2的数字个数进而利用概率公式求出答案【详解】∵在﹣3π|﹣4|5这五个数中π|﹣4|5这3个数大于2∴随机取出一个数这个数大于2的概率是:故答案为:【点睛】本题考查了概率 解析:35【解析】【分析】首先找出大于2的数字个数,进而利用概率公式求出答案.【详解】∵在﹣3,π,|﹣4|,,5这五个数中,π,|﹣4|,5这3个数大于2,∴随机取出一个数,这个数大于2的概率是:, 故答案为:.【点睛】 本题考查了概率公式,正确应用概率公式是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.【解析】试题分析:先求出棕色所占的百分比再根据概率公式列式计算即可得解棕色所占的百分比为:1﹣20﹣15﹣30﹣15=1﹣80=20所以P (绿色或棕色)=30+20=50=考点:(1)概率公式;(2 解析:12【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%, 所以,P (绿色或棕色)=30%+20%=50%=.考点:(1)、概率公式;(2)、扇形统计图15.12cm 【分析】根据折叠的性质得到AD =BD 根据三角形的周长公式计算得到答案【详解】解:由折叠的性质可知AD =BD ∴△ACD 的周长=AC+CD+AD =AC+CD+DB =AC+BC =12(cm )故答案解析:12cm .【分析】根据折叠的性质得到AD =BD ,根据三角形的周长公式计算,得到答案.【详解】解:由折叠的性质可知,AD =BD ,∴△ACD 的周长=AC +CD +AD =AC +CD +DB =AC +BC =12(cm ),故答案为:12cm .【点睛】本题考查的是翻转变换的性质,掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.16.150【分析】连接OP 根据轴对称的性质得到再利用四边形的内角和是计算可得答案【详解】解:如图连接OPEF 分别为点P 关于OAOB 的对称点故答案为150【点睛】本题考查了轴对称的性质四边形的内角和性质证解析:150【分析】连接OP ,根据轴对称的性质得到60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠再利用四边形的内角和是360︒计算可得答案.【详解】解:如图,连接OP ,E ,F 分别为点P 关于OA ,OB 的对称点,,EOA POA POB FOB ∴∠=∠∠=∠30EOA FOB POA POB ∴∠+∠=∠+∠=︒60EOF ∴∠=︒,,E EPO F FPO ∴∠=∠∠=∠360E EPO F FPO EOF ∴∠+∠+∠+∠+∠=︒2()300E F ∴∠+∠=︒150E F ∴∠+∠=︒故答案为150.【点睛】本题考查了轴对称的性质,四边形的内角和性质,证得60EOF ∠=︒,,,E EPO F FPO ∠=∠∠=∠解本题的关键.17.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC 的三边长分别是abc ∴必须满足两边之和大于第三边两边的差小 解析:3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子18.时间温度【解析】【分析】早穿皮袄午穿纱围着火炉吃西瓜这句谚语中早午晚是时间早穿皮袄说明早上冷午穿纱说明中午热说明温度随着时间在变化【详解】早穿皮袄午穿纱围着火炉吃西瓜这句谚语反映了我国新疆地区一天中解析:时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.19.55°【分析】根据翻折可知对应角都相等另外两直线平行同旁内角互补利用这两条性质即可解答【详解】解:∵AE∥BF∴∠AEP=∠FPE=70°又∵折叠后DE 与BF相交于点P设∠PEF=x即∠AEP+2∠解析:55°【分析】根据翻折可知对应角都相等.另外两直线平行,同旁内角互补.利用这两条性质即可解答.【详解】解:∵AE∥BF,∴∠AEP=∠FPE=70°.又∵折叠后DE与BF相交于点P,设∠PEF=x,即∠AEP+2∠PEF=180°,即70°+2x=180°,x=55°.即∠PEF=55°,故答案为:55°.【点睛】解答此题的关键是要明白图形翻折变换后与原图形全等,对应的角和边均相等.20.7【分析】利用平方差公式计算即可得到结果【详解】原式=∵……∴对于来说其个位数字四个为一循环∵∴的个位数字为7故答案为:7【点睛】此题考查了平方差公式熟练掌握平方差公式是解本题的关键解析:7利用平方差公式计算即可得到结果.【详解】原式=()()()()()()()24816323131313131313113⎡⎤-+++++++÷⎣⎦ ()()()()()()2248163231313131313113⎡⎤=-++++++÷⎣⎦()()()()()4481632313131313113⎡⎤=-+++++÷⎣⎦()()()()8816323131313113⎡⎤=-++++÷⎣⎦()()()16163231313113⎡⎤=-+++÷⎣⎦()()3232313113⎡⎤=-++÷⎣⎦()643113⎡⎤=-+÷⎣⎦ 6433=÷633=∵133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,9319683=……∴对于3n 来说,其个位数字四个为一循环,∵63415...3÷=∴633的个位数字为7.故答案为:7【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.三、解答题21.选择A 转盘.理由见解析【解析】试题分析:由题意可以画出树状图,然后根据树状图求得到所有等可能的结果,找全满足条件的所有情况,再利用概率公式即可求得答案.试题选择A 转盘.画树状图得:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况,∴P (A 大于B )=,P (A 小于B )=,∴选择A 转盘.考点:列表法与树状图法求概率22.(1)图见解析;(2)6.【分析】(1)先根据轴对称的性质画出点F ,再顺次连接点A 、E 、F 即可得;(2)如图(见解析),利用直角AME △面积减去直角DMH △面积即可得.【详解】(1)先根据轴对称的性质画出点F ,再顺次连接点A 、E 、F 即可得到AEF ,如图所示:(2)如上图,设AEF 与四边形ABCD 重叠部分的面积为S , 则1122AME DMH S S S AM EM DM HM =-=⋅-⋅, ∵4AM =,4EM =,2DM =,2HM =, ∴11442222S =⨯⨯-⨯⨯, 82=-,6=,故AEF 与四边形ABCD 重叠部分的面积为6.【点睛】本题考查了画轴对称图形、直角三角形的面积公式,熟练掌握轴对称图形的画法是解题关键.23.见解析【分析】由12∠=∠,可得∠DBE=∠ABC ,用ASA 可证.【详解】证明:∵12∠=∠,∴12ABE ABE ∠+∠=∠+∠,即ABC DBE ∠=∠.在ABC 和DBE 中,ABC DBE AB DBA D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DBE ASA ≌,∴BC BE =.【点睛】本题考查了用ASA 证三角形全等和全等三角形的性质,解题关键是挖掘题目中的隐含条件,找到全等三角形进行证明.24.答案见解析【解析】试题分析:(1)将题干中的数据填写在有关气温和音速的2行8列的表格中即可 (2)根据变量的定义分析即可完成;(3)结合表格数据,根据传播速度与温度的变化规律即可得出答案;(4)结合表格数据,通过分析得出两个变量之间的关系.试题(1)填表如下: x(℃)0 5 10 15 20 25 … y(米/秒) 331 334 337 340 343 346 … (3)当气温是35℃时,估计音速y 可能是:352m/s ;(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0,y=331,故两个变量之间的关系为:y=331+35x . 25.(1)∠BOE 和∠DOE ;(2)同角的补角相等;(3)∠AOC =80°;(4)北偏西10°【分析】(1)根据互为补角的两角之和为180°可得出与∠COE 互补的角;(2)根据同角(或等角)的补角相等即可解答;(3)先求出∠BOE ,继而根据角平分线的性质得出∠DOB ,再由对顶角相等可得出∠AOC 的度数;(4)根据补角的定义求得∠BOC 的值,然后根据直角是90°和方向角的定义即可解答.【详解】解:(1)因为OE 是∠BOD 的平分线,∠COE+∠DOE=180°, 所以∠BOE =∠DOE ,故与∠COE 互补的角有:∠BOE 和∠DOE ;(2)因为同角(或等角)的补角相等,所以∠AOD +∠AOC =180°,∠BOC +∠AOC =180°时,∠AOD =∠BOC .即答案为:同角的补角相等;(3)由题意得,∠BOE=180°-∠AOE=40°,因为OE 是∠BOD 的平分线,所以∠BOD=2∠BOE=80°所以∠AOC=80°;(4)如图,MN 为南北方向,由(3)得∠AOC=80°,所以∠BOC=180°-∠AOC=180°- 80°=100°,又因为∠BOM=90°,所以∠MOC=∠BOC-∠BOM=100°- 90°=10°,故射线OC 的方向是北偏西10°.【点睛】本题考查补角和方位角的知识,结合图形进行考查比较新颖,注意掌握互为补角的两角之和为180°,另外本题还用到对顶角相等及角平分线的性质.26.(1)43344193x y x y -,36;(2)()22838a a -+,44 【分析】(1)先算积的乘方同时计算中括号内的单项式乘以多项式,合并同类项,再算单项式乘以多项式,赋值,计算即可;(2)先利用多项式乘以多项式法则展开,合并同类项,再整理,将条件整体代入求值即可.【详解】解:(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭, 2222221=2229x y x y xy x y xy ⎡⎤⋅-+-⎣⎦, 22221=439x y x y xy ⎡⎤⋅-⎣⎦,43344193x y x y =-, 把 1.5x =-,2y =, 原式()()433441-1.52-1.5293=⨯-⨯⨯⨯, 43344313-2-29232⎛⎫⎛⎫=⨯-⨯ ⎪ ⎪⎝⎭⎝⎭⨯⨯, 4811278+1691638=⨯⨯⨯⨯, 36=;(2)(1)(3)(5)(7)a a a a --+--,22431235a a a a =-++-+,221638a a =-+,()22838a a =-+,∵2830a a --=,∴283a a -=,原式233844=⨯+=.【点睛】本题考查整式乘除乘方混合运算化简求值问题,掌握整式幂指数运算法则,整式乘法与加减混合运算的顺序是解题关键.。
2013年新湘教版七年级下数学期末综合题.

2013年七年级下学期数学期末复习题一、填空题1、计算:x·x 2·x 3= ; (-x·(-21x= ; (-210= ; (a +2b( =a 2-4b 2; (2x -12= . (-x 2n y 3m z 2=____ _____.2、1,3,5,7,9这组数据的平均数是______ ,中位数是________, 方差是_________。
3、已知二元一次方程组⎩⎨⎧=+=+8272y x y x ,则x -y=___ __,x+y=__ ___.4、因式分解:=-822a ,3ab 2+a 2b =____________. 5、已知∠α=60°,则∠α的补角等于 . 6、已知|2a -b|是21-b (的相4(b a +=________.7、若-4n n m m y x y x 2227332+--是同类项,则与=__________. 8、多项式23x +y+3的次数是__________.9、如图,已知:AB ∥CD ,∠1=120°,则=∠C 度.10、当等腰三角形的一个外角为0100时,这个等腰三角形的内角分别是________ _____. 二、选择题(每小题3分,共30分11、下列图案中,不能用平移得到的图案是(A B C D12、下列运算正确的是(A . a 3+a 3=2a 6B . a 6÷a ﹣3=a 3 C . a 3a 3=2a 3D .(﹣2a 23=﹣8a 613、下面四个图形中,∠1,∠2不是同位角的是(A B C D 14、下列说法正确的是 (A、-1是单项式B、342x 是7次单项式 C、单项式a 的系数是0 D、单项式a 的次数是015、如图1,a ∥b ,∠1=65°,∠2=140°,则∠3=A .100°B .105°C .110°D .115°16、两条直线被第三条所截,则 (A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对 17、下面各式中计算正确的是 (A、(x -2(x+2=2x -2 B、 222(x x =--2C、(-2x -1(2x -1=142-x D 、 912432(22++=--x x x18、把代数式 322363x x y xy -+分解因式,结果正确的是(A .(3(3x x y x y +-B .223(2x x xy y -+C .2(3x x y -D .23(x x y - 19、数据82,60,71,93,95的极差是(A 、 60B 、 95C 、 24D 、 3520、如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >(如图1,将余下的部分剪开后拼成一个梯形(如图2,根据两个图形阴影部分面积的关系,可以得到一个关于,a b 的恒等式为((A (2222a b a ab b -=-+ (B (2 222a b a ab b +=++ (C 22((a b a b a b -=+- (D (2a ab a a b +=+ 图1 图2三、解答题21、解方程式组22、分解因式: 3223-2+=x y x y xy1321=--yx 2x+y=2a1图123 b23.计算: (1(2215105xy xy xy -÷ (22022201121-+⎪⎭⎫⎝⎛-24.先化简,再求值: (((1122-+-+a a a ,其中23-=a25、填空并完成以下证明:已知,如图,∠1=∠ACB ,∠2=∠3,FH ⊥AB 于H ,求证:CD ⊥AB . 证明:∵∠1=∠ACB (已知∴DE ∥BC (∴∠2= ( ∵∠2=∠3(已知∴∠3= ∴CD ∥FH ( ∴∠BDC =∠BHF ( 又∵FH ⊥AB ( ∴26、如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学大七年级数学入学测试卷
一.填空题:(每小题3分,共30分)
1.将方程3y –x = 2 变形成用含y 的代数式表示x ,则 x= 。
2.如果⎩⎨⎧-==12y x 是方程3mx -y =-1的解,则m =__________.
3. a 2
•a 3
•(- a)4
= ,6xy(- 31x +2
1
y )= 4、已知7,9x y x y +=-=,则22x y -=
5. 若2
6x
x k -+是x 的完全平方式,则k =__________。
6. 某工程队共有27人, 每天每人可挖土4方,或运土5方 为使挖出的土及时运走,应分配挖土的人是___________ 7.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,
如果∠EOD = 38°,则∠AOC =
8. 如图,直线12l l ∥,l 分别与12l l ,相交,如果2120
∠=o
, 那么1∠的度数是___________度. 9. 一个角的余角是这个角的补角的5
1,
则这个角的度数为___________
10 .一组数据2、3、3、3、4、5、6、6中,其平均数、众数、中位数、方差分
别是 、 、 、 。
二. 选择题: (每小题3分,共30分,) 题号 11 12 13 14 15 16 17 18 19 20 答案
11. 下列是二元一次方程的是 ( )
A.x x =-63
B.32x y =
C.01
=-y
x D. xy y x =-32
12.下列计算中,正确的是( )
A 、 (x-1)2=x 2-2x-1
B 、(2a+b)2=2a 2+4ab+b 2
C 、 (3x+2)2=9x 2+6x+4
D 、(21m –n)2=4
1
m 2-mn+n 2
l l 1
l 2
1
2
13.方程组⎩⎨⎧=-=+1348
3y x y x 的解是 ( )
A.⎩⎨⎧=-=31y x
B.⎩⎨⎧-==13y x
C.⎩⎨⎧-=-=13y x
D.⎩
⎨⎧-=-=31y x
14. 计算244
(3)
(
)3
a b a b ⋅-的结果是( ).
A .62
a
b B .6
4a
b - C .624a b - D .8a b
15. 下列计算正确的是( )
A. 4
48236a a a ⋅= B. 448a a a += C. 4
44
2a a a ⋅= D. 448
()a a =
16. 下列图形中,轴对称图形的个数是( )
A.1
B.2 C.3
D.4
17. 右图是一个旋转对称图形,要使它旋转后能与自身重合,
至少应将它绕中心点旋转的度数是( ) (A )30° (B )60°
(C )120° (D )180°
18. 已知(a+b)2=11,ab=2, 则(a –b)2的值应为 ( )
A 、11
B 、5
C 、 3
D 、19
19. 下列说法错误的是( )
A.内错角相等,两直线平行.
B.两直线平行,同旁内角互补.
C.相等的角是对顶角.
D.等角的补角相等.
20. 如图a b ∥,M
N ,分别在a b ,上,P 为两平行线间一点, 那么123∠+∠+∠=( )
A .180o
B .270o
C .360o
D .540o
a
b
M P N 1 2
3
三.解答题:(5+5+5+5+5分,)
21.解方程组、 ⎩⎨⎧=-=+11
533
2y x y x
22、(1)计算:(2x -3y )(3y +2x )-(4y -3x )(3x +4y )
(2)、分解因式:
21a 2(x -2a )2-4
1
a (2a -x )3
23.先化简,再求值 25x(0.4-y)2-10y(y -0.4)2,其中x=0.04,y=2.4.
24.完成推理填空:如图:已知∠A =∠F ,∠C =∠D ,求证:BD ∥CE 。
证明:∵∠A =∠F ( 已知 )
∴AC ∥DF ( ____________________________) ∴∠D =∠1 (_________________________) 又∵∠C =∠D ( ) ∴∠1=∠C ( )
∴BD ∥CE ( )
四、综合题(7+8分)
25. 如图所示,已知∠B=∠C ,AD ∥BC ,试证明:AD 平分∠CAE
26. 在解方程组2,
78ax by cx y +=⎧⎨-=⎩时,哥哥正确地解得3,2.x y =⎧⎨=-⎩,弟弟因把c 写错而解得
2,
2.
x y =-⎧⎨
=⎩,求a+b+c 的值.
D
E
A B
C
2
1。