金属工艺学基础知识(ppt)
合集下载
金属工艺学之焊接工艺课件(PPT 87张)

1.设备及焊接过程 焊接电源 控制箱 焊接小车
焊接热源:电弧热
溶池保护:焊剂(气、渣)
2019/2/21
29
金属工艺学
二、埋弧自动焊工艺 1)焊前准备 板厚小于14mm时,可不开坡口; 板厚为14~22mm时,应开Y型坡口; 板厚为22~50mm时,可开双Y型或U型坡口。
第四篇 焊接
Y型和双Y型坡口的角度为50°~ 60°
2019/2/21
药皮种类(低氢钠型) 抗拉强度500MPa 结构钢焊条
14
金属工艺学
酸性焊条: 在熔渣中以酸性氧化物为主 (TiO2、SiO2、Fe2O3) 在熔渣中以碱性氧化物为主 碱性焊条: (K2O、Na2O、CaO、MnO) 9. 电焊条的选用
第四篇 焊接
(1) 等强度原则:低碳钢和普通低合金钢构件,一般都要求焊缝金属 与母材等强度, 因此可根据钢材强度等级来选用相应的焊条。 (2) 同一强度等级的酸性焊条和碱性焊条的选用。主要应考虑:焊接 件的结构形状、钢板厚度、载荷性质和抗裂性能而定; (3) 低碳钢与低合金结构钢焊接,可按某一种钢接头中强度较低的钢 材来选用相应的焊条。 (4) 焊接不锈钢或耐热钢等有特殊性能要求的钢材,应选用相应的专 用焊条。
18
金属工艺学
第四篇 焊接
焊缝的组织和性能
热源移走后,熔池焊 缝中的液体金属立刻开始 冷却结晶,以垂直熔合线 的方式向熔池中心生长为 柱状树枝晶。 低熔点物质将会被推向 焊缝最后结晶部位,形成 成分偏析。
2/21/2019 3:56 PM
金属工艺学
第四篇 焊接
第四节
焊接应力与变形
一、焊接应力与变形产生的原因 根本原因:焊件在焊接过程中受到局部加热和快速冷却。
金属工艺学课件

金工实习理论—冷加工
条件:材料б↗(塑性大)硬度HRC↘ V↗ f↘γ↗
解释: 材料б↗
V↗θ°C↗
刀具前刀面金属微熔状态起
润滑作用
f↘切屑厚度小,金属层不易断裂 γ↗切屑变形小,金属层不易断裂 优点:切削力较平稳(不易振动)加工表面光滑(Ra↘) 缺点: 断屑困难,易缠绕工件和刀具,损坏刀具刮伤工件。 注意:需要有断屑措施。
车削细长轴时取主偏角等于75~90°的车刀; 副偏角为5°~15°。
4. 刀具的工作角度
金工实习理论—冷加工
1)刀尖安装高低对工作角度的影响
刀尖与工件回转中心等高 γ0e = γ0
刀尖高于工件回转中心 γ
0e>γ 0
α0e = α0
α
0e<α 0
刀尖低于工件回转中心
γ
0e<γ 0
α
0e>α 0
金工实习理论—冷加工
Fc vc Pm KW 1000 60
四、切削热和切削液 (一) 切削热的产生、传出及对加工的影响 1.切削热的主要来源 ①切削层的弹塑性变形(是热
量的主要来源);
②刀具与工件之间的摩擦;
③刀具与切屑之间的摩擦。
金工实习理论—冷加工
2.切削热产生的三个区域 ①剪切面:弹塑性变形; ②刀具前刀面与切屑接触区; ③主后刀面与工件接触区。 3.切削热的传出途径及对切削加工的影响 75%——切屑 改变切屑的颜色,银白色或淡黄色 温度不高/紫色或紫黑色温度较高; 切削热 20%——工件 受热膨胀或变形,影响精度↘ 磨削时易退火; 4% ——刀具 HRC↘ 耐磨性↘ 刀具寿命↘ 1% ——空气
3)热处理性好,淬火不易变形
制造形状复杂的低速切削的刀具。如:铰刀、 用途: 丝锥、板牙等。
金属工艺学PPT

零件直径较小,但很高。
需要精细清理坯料表面,除净坯料表面的氧化皮、脱碳层及其它缺陷等。
选用超塑性材料可以一次拉深成型,质量很好,零件性能无方向性。
复合挤压 径向挤压 如130汽车差速器行星齿轮,钢坯锻造需用2500~3000kN压力机,粉末锻造只需800kN压力机。
电液成型是利用液体中强电流脉冲放电所产生的强大冲击波对金属进行加工的一种高能高速成型方法。 精密模锻是在模锻设备上锻造出形状复杂、锻件精度高的模锻工艺。
可以加工热塑性差的材料。
如曲柄压力机、摩擦压力机或高速锤等。
锻件精度高,表面光洁,可实现少、无切削加工。
原材料配制→熔炼→浇注→加压成型→脱模→冷却→热处理→检验→入库。
3.5.2 零件的轧制
零件轧制的特点:
ü设备结构简单,吨位小。 ü劳动条件好,易于实现机械化和自动化,生产率高。 ü轧制时模具可用价廉的球墨铸铁或冷硬铸铁来制造, 节约贵重的模具钢材,加工也较容易。 ü锻件质量好。 材料利用率高,可达到90%以上,即达 到少切屑,甚至无切屑。
1.板料冲压
零件直径较小,但很高。选用 超塑性材料可以一次拉深成型,质 量很好,零件性能无方向性。
粉末锻造是粉末冶金成型方法和锻造相结合 的一种金属加工方法。它是将粉末预压成型后, 在充满保护气体的炉子中烧结制坯,将坯料加热 至锻造温度后模锻而成。
粉末锻造的优点(与模锻相比)
Ø材料利用率高,可达90%以上。而模锻的材料 利用率只有50%左右。 Ø机械性能高。材质均匀无各向异性,强度、塑 性和冲击韧性都较高。
Ø锻件精度高,表面光洁,可实现少、无切削加工。
Ø生产率高。每小时产量可达500~1000件。
Ø锻造压力小。如130汽车差速器行星齿轮,钢坯 锻造需用2500~3000kN压力机,粉末锻造只需 800kN压力机。
金属工艺学基础知识

钢。
第二十七页,编辑于星期三:十点 四十分。
第二节 低合金钢
合金钢:碳钢中加入一种或几种合金元素
? 常加合金元素 : Mn Si Cr Ni Mo W V Ti B( 硼) 稀土元素 (Xt)等
低合金钢:合金总含量较低 (<3%),含碳量也较低的 合金结构钢 .
性能 :较高的强度、塑性、韧性和耐蚀性,大
?
又名 风钢 或锋钢,意思是 淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分
第十七页,编辑于星期三:十点 四十分。
相图中主要线的含义
? ACD 线—液相线 是不同成分铁碳合金开始结晶的温度线。
? AECF线 —固相线 各种成分的合金均处在固体状态。结晶温度终 止线。
? ECF 水平线—共晶线 含碳量为 4.3%的液态合金冷却到此线时,在 1148 ℃由液态合金同时结晶出奥氏体和渗碳体的机械混合物,此反 应称为共晶反应。
多有良好的焊接性。
应用很广泛。
第二十八页,编辑于星期三:十点 四十分。
? 分类:
1.可焊接低合金高强钢
2.低合金耐候钢
3.低合金钢筋钢
4.铁道用低合金钢 5.矿用低合金钢
牌号同碳素结构钢
第二十九页,编辑于星期三:十点 四十分。
第三节 合金钢
合金钢:碳钢中加入一种或几种合金元素
? 常加合金元素 : Mn Si Cr Ni Mo W V Ti B( 硼) 稀土元素 (Xt) 等
晶体中的原子排列
第十一页,编辑于星期三:十点 四十分。
2.金属的同素异构转变
金属的同素异构转变的慨念
金属在固态下,随着温度的改变其 晶体结构发生变化的现象。
金属的同素异构转变的意义
可以用热处理的方法即可通过加 热、保温、冷却来改变材料的组织,
第二十七页,编辑于星期三:十点 四十分。
第二节 低合金钢
合金钢:碳钢中加入一种或几种合金元素
? 常加合金元素 : Mn Si Cr Ni Mo W V Ti B( 硼) 稀土元素 (Xt)等
低合金钢:合金总含量较低 (<3%),含碳量也较低的 合金结构钢 .
性能 :较高的强度、塑性、韧性和耐蚀性,大
?
又名 风钢 或锋钢,意思是 淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分
第十七页,编辑于星期三:十点 四十分。
相图中主要线的含义
? ACD 线—液相线 是不同成分铁碳合金开始结晶的温度线。
? AECF线 —固相线 各种成分的合金均处在固体状态。结晶温度终 止线。
? ECF 水平线—共晶线 含碳量为 4.3%的液态合金冷却到此线时,在 1148 ℃由液态合金同时结晶出奥氏体和渗碳体的机械混合物,此反 应称为共晶反应。
多有良好的焊接性。
应用很广泛。
第二十八页,编辑于星期三:十点 四十分。
? 分类:
1.可焊接低合金高强钢
2.低合金耐候钢
3.低合金钢筋钢
4.铁道用低合金钢 5.矿用低合金钢
牌号同碳素结构钢
第二十九页,编辑于星期三:十点 四十分。
第三节 合金钢
合金钢:碳钢中加入一种或几种合金元素
? 常加合金元素 : Mn Si Cr Ni Mo W V Ti B( 硼) 稀土元素 (Xt) 等
晶体中的原子排列
第十一页,编辑于星期三:十点 四十分。
2.金属的同素异构转变
金属的同素异构转变的慨念
金属在固态下,随着温度的改变其 晶体结构发生变化的现象。
金属的同素异构转变的意义
可以用热处理的方法即可通过加 热、保温、冷却来改变材料的组织,
《金属工艺学》课件

金属的加工工艺
金属的铸造工艺
铸造工艺简介:将熔融的金属倒入模具中,冷却后形成所需形状的工艺 铸造方法:砂型铸造、金属型铸造、离心铸造等 铸造材料:铁、钢、铝、铜、锌等 铸造工艺特点:可生产复杂形状的零件,成本低,生产效率高
金属的锻造工艺
锻造方法:自由锻造、模锻、 冲压、挤压等
锻造工艺:将金属加热到一 定温度,通过锤打、挤压等 方式改变其形状和性能
切削工具:包括车刀、铣刀、钻头、 锯片等
切削方法:包括车削、铣削、钻削、 锯削等
切削参数:包括切削速度、进给量、 切削深度等
切削质量:包括表面粗糙度、尺寸精 度、形位精度等
切削效率:包括生产效率、能耗、刀 具寿命等
金属的热处理工艺
热处理的原理和分类
热处理的原理:通过改变金属的微观结构, 提高其力学性能和耐腐蚀性
金属的表面处理技术
表面涂装技术
目的:保护金 属表面,提高 耐腐蚀性、耐
磨性等性能
主要方法:电 镀、喷涂、热
浸镀等
电镀:利用电 解原理,在金 属表面形成一 层金属或合金
镀层
喷涂:利用高 压气流将涂料 喷涂到金属表 面,形成一层
保护层
热浸镀:将金 属加热到一定 温度,使其表 面形成一层金 属或合金镀层
智能化:利用人工智能技术, 实现金属加工的自动化、智 能化
数字化:利用数字化技术, 实现金属加工的精确控制和
优化
绿色化:采用环保技术和材 料,实现金属加工的绿色化
和可持续发展
绿色环保和可持续发展要求
减少能源消耗:提高能源利用效率, 降低生产过程中的能源消耗
循环利用:提高金属材料的回收利 用率,实现资源的循环利用
添加标题
添加标题
金属工艺学ppt课件

不合理
合理
第二节铸件构造与合金铸造性能的关系
铸件构造设计
防止铸造缺陷的合理构造
铸件的各壁之间应 均匀过渡,两个非 加工外表所构成的 内角应设计成圆角
不合理
合理
第二节铸件构造与合金铸造性能的关系
铸件构造设计
防止铸造缺陷的合理构造
铸件的各壁之间应 均匀过渡,两个非 加工外表所构成的 内角应设计成圆角
第二节 金属型铸造
• 二、金属型的铸造工艺 • 1. 必需喷刷涂料;衬料和外表涂料 • 2. 金属型应坚持一定的任务温度;铸铁件250-350,非
铁金属件ห้องสมุดไป่ตู้00-250度。减缓激冷。 • 3. 适宜的出型时间;尽早出型,小型铸铁件10-60s,铸
件温度约780-950度。 • 三、金属型铸造的特点和适用范围 • 优点:一型多铸,便于实现机械化和自动化消费,可大
铸件构造设计
简化工艺过程的合理构造
合理设计凸台和防 止侧壁具有防碍拔 模的部分凹陷构造
不合理
合理
第一节铸件构造与铸件工艺的关系
铸件构造设计
简化工艺过程的合理构造
设计铸件应合理 确定构造斜度
不合理
合理
第一节铸件构造与铸件工艺的关系
铸件构造设计
简化工艺过程的合理构造
设计铸件应合理确定 构造斜度
不合理
大提高消费率。同时铸件的精度和外表质量比砂型铸造 显著提高。组织致密,力学性能得到显著提高。 • 缺陷:金属型的本钱高,消费周期长。同时铸造工艺要 求严厉,容易出现缺陷,灰铸铁件又难以防止白口缺陷 。 • 主要用于铜、铝合金铸件的大批量消费。如铝活塞、气 缸盖、油泵壳体、铜瓦等。
第三节 压力铸造
• 描画:是在高压下〔比压约为5-150MPa〕将液态 或半液态合金快速地(0.01-0.2s)压入金属铸型中 ,并在压力下凝固,以获得铸件的方法。
金属工艺学课件

分类
热处理技术可以分为退火、淬火、回火等多种方式。
应用
热处理技术广泛应用于钢铁、有色金属等领域,是提高金属性能和 延长使用寿命的重要手段。
05
金属工艺学的未来发展
新材料的应用
轻质金属材料
随着航空航天、汽车等行业的快速发展,轻质金属材料如 钛合金、铝合金等在金属工艺领域的应用将更加广泛。
高性能金属材料
80%
医疗器械
金属工艺学在医疗器械领域的应 用也十分重要,如人工关节、心 脏起搏器等医疗器械的制造。
02
金属材料的性质
金属材料的物理性质
01
02
03
04
导热性
金属材料具有良好的导热性, 可以用于制造各种散热器、加 热器等。
导电性
金属材料是电的良导体,广泛 用于电线、电缆等电气产品的 制造。
密度
金属材料的密度较大,质地较 重,具有较高的质量感和稳定 性。
智能制造技术
将信息技术与制造技术深度融合,实现生产过程 的智能化和柔性化,提高生产效率和产品质量。
3
精密加工技术
利用高精度机床和加工工具,实现金属零件的高 精度加工,提高产品的稳定性和可靠性。
环保与可持续发展
01
绿色制造技术
通过采用清洁能源、减少废弃物 排放等方式,实现生产过程的环 保和可持续发展。
金属工艺学的重要性
金属工艺学在工业生产、航空航天、交通运输、医疗器械等领域 具有广泛应用,对于推动科技进步和社会发展具有重要意义。
金属工艺学的历史与发展
古代金属工艺
早在公元前,人类就开始使用金属,如铜、铁等, 用于制造工具和武器。
工业革命时期的金属工艺
随着工业革命的兴起,金属工艺得到了迅速发展, 各种新的加工技术不断涌现。
热处理技术可以分为退火、淬火、回火等多种方式。
应用
热处理技术广泛应用于钢铁、有色金属等领域,是提高金属性能和 延长使用寿命的重要手段。
05
金属工艺学的未来发展
新材料的应用
轻质金属材料
随着航空航天、汽车等行业的快速发展,轻质金属材料如 钛合金、铝合金等在金属工艺领域的应用将更加广泛。
高性能金属材料
80%
医疗器械
金属工艺学在医疗器械领域的应 用也十分重要,如人工关节、心 脏起搏器等医疗器械的制造。
02
金属材料的性质
金属材料的物理性质
01
02
03
04
导热性
金属材料具有良好的导热性, 可以用于制造各种散热器、加 热器等。
导电性
金属材料是电的良导体,广泛 用于电线、电缆等电气产品的 制造。
密度
金属材料的密度较大,质地较 重,具有较高的质量感和稳定 性。
智能制造技术
将信息技术与制造技术深度融合,实现生产过程 的智能化和柔性化,提高生产效率和产品质量。
3
精密加工技术
利用高精度机床和加工工具,实现金属零件的高 精度加工,提高产品的稳定性和可靠性。
环保与可持续发展
01
绿色制造技术
通过采用清洁能源、减少废弃物 排放等方式,实现生产过程的环 保和可持续发展。
金属工艺学的重要性
金属工艺学在工业生产、航空航天、交通运输、医疗器械等领域 具有广泛应用,对于推动科技进步和社会发展具有重要意义。
金属工艺学的历史与发展
古代金属工艺
早在公元前,人类就开始使用金属,如铜、铁等, 用于制造工具和武器。
工业革命时期的金属工艺
随着工业革命的兴起,金属工艺得到了迅速发展, 各种新的加工技术不断涌现。
金属工艺学全套课件大全

布氏硬度试验
2.洛氏硬度 (1)试验原理:用顶角为1200的金刚石圆锥或直径 为1.588mm的淬火钢球作压头,在初始试验力F1(98N) 及总试验力F作用下,将压头压入试样表面,按规定保持时 间后卸除主试验力,用测量的残余压痕深度增量计算硬度。 (2)符号
(3)表示方法
k h HR 0.002
用顶角为1200癿釐刚石囿锥戒直徂为1588mm癿淬火钋球作压头在初始试验力f198n及总试验力f作用下将压头压入试样表面按觃定保持旪间后卸除主试验力用测量癿残余压痕深度增量计算硬度
金属工艺学是一门有关机械 零件制 造方法及其用材的综合性技术基础 课。
1.内容: (1)系统介绍机械工程材料的性能、 应用及改进材料性能的工艺方法; (2)各种成形工艺方法及其在机械制
l0
100%
2.断面收缩率—试样拉断后,缩颈处横截 面积的最大缩减量与原始横截面积的百分比。
S 100% S0
(三)硬度 1.布氏硬度 F 0.102 2F (1)试验原理: HB D、F 、t、S ( N / mm2 ) 2 2 S D ( D D d ) 压 (2)符号 (3)表示方法 XXX HBS(W) XX / XXX / XX (4)应用范围: 测定结果较稳定、准确, 但不宜测薄件或成品件。 HBS用于测小于450 的材料;HBW用测小于650的材料。主要用来 测灰铸铁、有色金属及经退火、正火和调质处 理的钢材。
在符号前写出硬度值。
可直接测量成品或较薄工件,但
(4)应用范围 结果不够准确。
洛氏硬度试验原理图
(四)冲击韧度 冲击试样缺口底部横截面积上的冲击吸收功。
将被测材料制成标准U型或V型试样,缺 口背向摆锤冲击方向,摆锤举至H1 高度,然 后自由落下,冲断试样升至高度 H2 。摆锤冲 断试样所消耗的能量,即试样在冲击试验力一 次作用下折断时所吸收的功。 A = m g H 1 - m g H 2 = m g ( H 1 - H 2) J 冲击试样缺口底部处单位横截面积上的冲 击吸收功,称为冲击韧度。 α k = Ak /SN J/cm2 冲击吸收功 Ak 作为材料韧性判据。 冲击吸收功与温度、试样形状、尺寸、表 面粗糙度、内部组织和缺陷有关。
2.洛氏硬度 (1)试验原理:用顶角为1200的金刚石圆锥或直径 为1.588mm的淬火钢球作压头,在初始试验力F1(98N) 及总试验力F作用下,将压头压入试样表面,按规定保持时 间后卸除主试验力,用测量的残余压痕深度增量计算硬度。 (2)符号
(3)表示方法
k h HR 0.002
用顶角为1200癿釐刚石囿锥戒直徂为1588mm癿淬火钋球作压头在初始试验力f198n及总试验力f作用下将压头压入试样表面按觃定保持旪间后卸除主试验力用测量癿残余压痕深度增量计算硬度
金属工艺学是一门有关机械 零件制 造方法及其用材的综合性技术基础 课。
1.内容: (1)系统介绍机械工程材料的性能、 应用及改进材料性能的工艺方法; (2)各种成形工艺方法及其在机械制
l0
100%
2.断面收缩率—试样拉断后,缩颈处横截 面积的最大缩减量与原始横截面积的百分比。
S 100% S0
(三)硬度 1.布氏硬度 F 0.102 2F (1)试验原理: HB D、F 、t、S ( N / mm2 ) 2 2 S D ( D D d ) 压 (2)符号 (3)表示方法 XXX HBS(W) XX / XXX / XX (4)应用范围: 测定结果较稳定、准确, 但不宜测薄件或成品件。 HBS用于测小于450 的材料;HBW用测小于650的材料。主要用来 测灰铸铁、有色金属及经退火、正火和调质处 理的钢材。
在符号前写出硬度值。
可直接测量成品或较薄工件,但
(4)应用范围 结果不够准确。
洛氏硬度试验原理图
(四)冲击韧度 冲击试样缺口底部横截面积上的冲击吸收功。
将被测材料制成标准U型或V型试样,缺 口背向摆锤冲击方向,摆锤举至H1 高度,然 后自由落下,冲断试样升至高度 H2 。摆锤冲 断试样所消耗的能量,即试样在冲击试验力一 次作用下折断时所吸收的功。 A = m g H 1 - m g H 2 = m g ( H 1 - H 2) J 冲击试样缺口底部处单位横截面积上的冲 击吸收功,称为冲击韧度。 α k = Ak /SN J/cm2 冲击吸收功 Ak 作为材料韧性判据。 冲击吸收功与温度、试样形状、尺寸、表 面粗糙度、内部组织和缺陷有关。