福建省仙游县枫亭中学2019-2020学年高二数学上学期期末考试试题含解析

合集下载

2019-2020年高二上学期期末考试 数学理 含答案

2019-2020年高二上学期期末考试 数学理 含答案

2019-2020年高二上学期期末考试 数学理 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求。

) 1.下列命题正确的是A .若a 2>b 2,则a >b B .若1a >1b,则a <bC .若ac >bc ,则a >bD .若a <b , 则a <b2.抛物线28y x =-的焦点坐标是A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0)3. 设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22D. ln 24.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词, 然而他的实际效果大哩,原来这句话的等价命题是 A .不拥有的人们不一定幸福 B .不拥有的人们可能幸福 C .拥有的人们不一定幸福 D .不拥有的人们不幸福 5.不等式21≥-xx 的解集为A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞6.下列有关选项正确的...是 A .若q p ∨为真命题,则p q ∧为真命题. B .“5x =”是“2450x x --=”的充要条件.C .命题“若1x <-,则2230x x -->”的否命题为:“若1x <-,则2320x x -+≤”. D .已知命题p :R x ∈∃,使得210x x +-<,则p ⌝:R x ∈∀,使得210x x +-≥7.设0,0.a b >>1133aba b+与的等比中项,则的最小值为 A . 8 B . 4 C . 1D . 148. 如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为1234e e e e 、、、,其大小 关系为A.1243e e e e <<<B.1234e e e e <<<C.2134e e e e <<<D.2143e e e e <<<9.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k 的值是A .1 B.15 C. 75 D. 3510 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为A 9B 12C 16D 1711.在正方体111111ABCD A B C D BB ACD -中,与平面的余弦值为A32B33 C 32D3612.已知点P 是ABC ∆的中位线EF 上任意一点,且//EF BC ,实数x ,y 满足PA xPB yPC ++=0.设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为S ,1S ,2S ,3S , 记11S S λ=,22SS λ=,33S Sλ=.则23λλ⋅取最大值时,2x y +的值为A .32 B.12C. 1D. 2第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4个小题,每小题5分,共20分) 13. 在△ABC 中,若=++=A c bc b a 则,222_14.当x y 、满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .15. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .16 对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 三、解答题求函数44313+-=x x y 在区间03⎡⎤⎣⎦,上的最大值与最小值以及增区间和减区间。

2019-2020学年高二年级上学期期末考试数学试卷附解答

2019-2020学年高二年级上学期期末考试数学试卷附解答

2019-2020学年高二年级上学期期末考试数学试卷一、填空题(每小题 3分,共36 分)1.关于,x y 的二元一次方程的增广矩阵为123015-⎛⎫⎪⎝⎭,则x y += 。

【答案】8-2.已知(5,1),(3,2)OA OB =-=,则AB 对应的坐标是 。

【答案】)(3,23.已知直线420ax y +-=与直线10x ay ++=重合,则a = 。

【答案】2-4.在正方体1111ABCD A B C D -中,E 是AB 中点,F 为BC 中点,则直线1A E 与1C F 的位置关系是 。

【答案】相交5.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 。

【答案】26.已知复数22iz i+=,则z 的虚部为 。

【答案】1- 7..经过动直线20kx y k -+=上的定点,方向向量为(1,1)的直线方程是 。

【答案】02=+-y x8.复数34i +平方根是 。

【答案】)(i +±29.过点(),0M 且和双曲线2222x y -=有相同的焦点的椭圆方程为 。

【答案】13622=+y x 10.已知双曲线22:1916x y C -=的左、右焦点分别为12,F F P ,为双曲线C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于 。

【答案】4811.平面上一机器人在行进中始终保持与点(1,0)F 的距离和到直线1x =-的距离相等。

若机器人接触不到过点(1,0)P -且斜率为k 的直线,则k 的取值范围是 。

【答案】)()(+∞∞,11-,-【解析】由抛物线定义可知,机器人的轨迹方程为x y 42=,过点)0,1(-P 且斜率为k 的直线方程为)1(+=x k y 代入x y 42=,可得0)42(2222=+-+k x k x k , 机器人接触不到过点)0,1(-P 且斜率为k 的直线,04)42422<--=∆∴k k (,1-<∴k 或1>k . 12.已知圆M :22(1)1x y +-=,圆N :22(1)1x y ++=.直线1l 、2l 分别过圆心M 、N ,且1l 与圆M 相交于,A B 两点,2l 与圆N 相交于,C D 两点。

2019-2020学年高二上学期期末考试数学试卷(理科)含解答解析

2019-2020学年高二上学期期末考试数学试卷(理科)含解答解析

2019-2020学年高二上学期期末考试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 在一次数学测试中,成绩在区间上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,q是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为A. ¬¬B. ¬C. ¬¬D.【答案】A【解析】解:由题意值¬是“甲测试成绩不优秀”,¬是“乙测试成绩不优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”,则用¬¬表示,故选:A.求出¬,¬,结合或且非的意义进行求解即可.本题主要考查逻辑连接词的应用,结合复合命题之间的关系是解决本题的关键.2. 抛物线的焦点坐标是A. B. C. D.【答案】C【解析】解:在抛物线--,即,,,焦点坐标是,故选:C.先把抛物线的方程化为标准形式,再求出抛物线的焦点坐标.本题考查抛物线的标准方程和简单性质的应用,比较基础.3. 的一个必要不充分条件是A. B. C. D.【答案】D【解析】解:的充要条件为对于A是的充要条件对于B,是的充分不必要条件对于C,的不充分不必要条件对于D,是的一个必要不充分条件故选:D.通过解二次不等式求出的充要条件,通过对四个选项的范围与充要条件的范围间的包含关系的判断,得到的一个必要不充分条件.解决一个命题是另一个命题的什么条件,应该先化简各个命题,再进行判断,判断时常有的方法有:定义法、集合法.4. 已知双曲线C:的离心率为,则C的渐近线方程为A. B. C. D.【答案】D【解析】解:由题意可得,即为,由,可得,即,双曲线的渐近线方程为,即为.故选:D.运用双曲线的离心率公式可得,由a,b,c的关系和双曲线的渐近线方程,计算即可得到所求方程.本题考查双曲线的渐近线方程的求法,注意运用离心率公式和双曲线的方程,考查运算能力,属于基础题.5. 四面体OABC中,M,N分别是OA,BC的中点,P是MN的三等分点靠近,若,,,则A. B. C. D.【答案】B【解析】解:根据题意得,故选:B.运用平面向量基本定理可解决此问题.本题考查平面向量基本定理的简单应用.6. 点到直线的距离为d,则d的最大值为A. 3B. 4C. 5D. 7【答案】A【解析】解:直线即,令,解得,.可得直线经过定点.则当时,d取得最大值..故选:A.直线即,令,解得直线经过定点则当时,d取得最大值.本题考查了直线经过定点、相互垂直的直线,考查了推理能力与计算能力,属于基础题.7. 如图:在直棱柱中,,,P,Q,M分别是,BC,的中点,则直线PQ与AM所成的角是A.B.C.D.【答案】D【解析】解:以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系.设,则0,,2,,0,,1,.,..直线PQ与AM所成的角是.故选:D.以A为坐标原点,分别以AB,AC,所在直线为x,y,z轴建立空间直角坐标系,设,分别求出与的坐标,利用空间向量求解.本题考查异面直线所成角的求法,训练了利用空间向量求解空间角,是基础题.8. 《九章算术商功》:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?答曰:四万六千五百尺”所谓堑堵:就是两底面为直角三角形的直棱柱:如图所示的几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,则三棱台的表面积为A. 40B.C. 50D.【答案】B【解析】解:几何体是一个“堑堵”,,,M是的中点,过BCM的平面把该“堑堵”分为两个几何体,其中一个为三棱台,取的中点N,连结MN,BN,,,三棱台的表面积为:梯形梯形梯形.故选:B.取的中点N,连结MN,BN,则三棱台的表面积为梯形梯形梯形.本题考查三棱台的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9. 直线l过椭圆的左焦点F,且与椭圆交于P,Q两点,M为PQ的中点,O为原点,若是以OF为底边的等腰三角形,则直线l的斜率为A. B. C. D.【答案】B【解析】解:由,得,,.则,则左焦点.由题意可知,直线l的斜率存在且不等于0,则直线l的方程为.设l与椭圆相交于、,联立,得:.则PQ的中点M的横坐标为.是以OF为底边的等腰三角形,,解得:.故选:B.由椭圆方程求得椭圆的焦点坐标,设出直线方程和椭圆方程联立,由根与系数关系结合中点坐标公式求出M的坐标,由,求得直线l的斜率.本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,是中档题.10. 已知抛物线的焦点为F,准线为l,直线m过点F,且与抛物线在第一、四象限分别交于A,B两点,过A点作l的垂线,垂足为,若,则A. B. C. D. P【答案】C【解析】解:抛物线的焦点为,准线为l:,当直线m的斜率不存在时,,不满足题意;当直线m的斜率存在时,设直线m的方程为,与抛物线联立,得,消去y整理得,,又,,,.故选:C.讨论直线m的斜率不存在时,不满足题意;直线m的斜率存在时,设直线m的方程为,与抛物线联立消去y得的值;利用求出的值,再求的值,从而求得的值.本题考查了直线与抛物线方程的应用问题,也考查了分类讨论思想应用问题,是中档题.11. 已知椭圆C的两个焦点分别是,,短轴的两个端点分别为M,N,左右顶点分别为,,若为等腰直角三角形,点T在椭圆C上,且斜率的取值范围是,那么斜率的取值范围是A. B. C. D.【答案】C【解析】解:设椭圆方程为.由为等腰直角三角形,且,得,解得,.则椭圆C的方程为.则,.设,则,得,,,,又,,解得:.斜率的取值范围是.故选:C.由已知求得椭圆方程,分别求出,的坐标,再由斜率之间的关系列式求解.本题考查椭圆的简单性质,考查运算求解能力及推理运算能力,是中档题.12. 如图:已知双曲线中,,为左右顶点,F为右焦点,B为虚轴的上端点,若在线段BF上不含端点存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率e的取值范围是A.B.C.D.【答案】A【解析】解:由题意,,,则直线BF的方程为,在线段BF上不含端点存在不同的两点,使得构成以线段为斜边的直角三角形,,,,在线段BF上不含端点有且仅有两个不同的点,使得,可得,,,.故选:A.求出直线BF的方程为,利用直线与圆的位置关系,结合,即可求出双曲线离心率e 的取值范围.本题考查双曲线的简单性质,考查离心率,考查直线与圆的位置关系,属于中档题.二、填空题(本大题共4小题,共20.0分)13. “”是假命题,则实数m的取值范围是______.【答案】【解析】解:命题“”是假命题,则命题的否定是:,”是真命题,则,解得:故答案为:.特称命题与其否定的真假性相反,求解全称命题是真命题,求出m的范围即可.本题考查命题的真假判断与应用,考查等价转化思想与运算求解能力,属于基础题.14. 已知,若三向量共面,则实数______.【答案】【解析】解:,不平行,三向量共面,存在实数x,y,使,,解得,,.故答案为:.推导出不平行,由三向量共面,得存在实数x,y,使,列方程组能求出.本题考查的知识点是共线向量与向量及平面向量基本定理等基础知识,考查运算求解能力,是基础题.15. 如图,的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,则CD的长为______.【答案】【解析】解:由条件,知,.所以所以.故答案为:.由已知可得,,利用数量积的性质即可得出.本题考查面面角,考查空间距离的计算,熟练掌握向量的运算和数量积运算是解题的关键.16. 椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点,已知椭圆C,其长轴的长为2a,焦距为2c,若一条光线从椭圆的左焦点出发,第一次回到焦点所经过的路程为5c,则椭圆C的离心率为______.【答案】或或【解析】解:依据椭圆的光线性质,光线从左焦点出发后,有如图所示三种路径:图1中:,则;图2中:,则;图3中,,则.椭圆C的离心率为或或,故答案为:或或.由题意画出图形,分类求解得答案.本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.三、解答题(本大题共6小题,共70.0分)17. 已知命题p:方程表示双曲线;命题q:,若¬是¬的充分不必要条件,求实数k的取值范围.【答案】解:p真:得或,q真:,¬是¬的充分不必要条件,若¬是¬的充分不必要条件,则q是p的充分不必要条件,,则有或,或,即实数k的取值范围是或.【解析】求出命题p,q为真命题的等价条件,结合充分条件和必要条件的定义进行转化即可.本题主要考查充分条件和必要条件的应用,求出p,q为真命题的等价条件以及利用逆否命题的等价性进行转化是解决本题的关键.18. 在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求,的极坐标方程;Ⅱ若直线的极坐标方程为,设与的交点为M,N,求的面积.【答案】解:Ⅰ由于,,:的极坐标方程为,故C:的极坐标方程为:,化简可得.Ⅱ把直线的极坐标方程代入圆:,可得,求得,,,由于圆的半径为1,,的面积为.【解析】Ⅰ由条件根据,求得,的极坐标方程.Ⅱ把直线的极坐标方程代入,求得和的值,结合圆的半径可得,从而求得的面积的值.本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.19. 如图:直三棱柱中,,,,D为棱上的一动点,M,N分别是,的重心,求证:;若点C在上的射影正好为M,求DN与面ABD所成角的正弦值.【答案】证明:有题意知,,,两两互相垂直,以为原点建立空间直角坐系如图所示,则0,,2,,0,,2,设0,,0,,N分别为和,的重心,,,.解:在上的射影为M,面ABD,,又,,得,解得得,或舍,,,设面ABD的法向量为y,,则,取,得1,,设DN与平面ABD所成角为则,与平面ABD所成角的正弦值为.【解析】由,,两两互相垂直,以为原点建立空间直角坐系,利用向量法能证明.求出面ABD的法向量,利用向量法能求出DN与平面ABD所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20. 设抛物线C:,点,过点P作直线l,若l与C只有一个公共点,求l的方程过C的焦点F,交C与A,B两点,求:弦长;以A,B为直径的圆的方程.【答案】解:若l的斜率不存在,则l:,符合题意;分若l的斜率存在,设斜率为k,则l:;分由,消去y得,由,解得或,直线l的方程为:或;分综上所述,直线l的方程为:或或;分抛物线的焦点为,直线l的方程为:;设,,由,消去x得,;又,;分以AB为直径的圆的半径为;设AB的中点为,则,,圆心为,所求圆的方程为;综上所述,,所求圆的方程为分.【解析】讨论l的斜率不存在和斜率存在时,分别求出直线l的方程即可;写出直线l的方程,与抛物线方程联立求得弦长,再求以AB为直径的圆的方程.本题考查了直线与圆以及抛物线方程的应用问题,是中档题.21. 如图,在等腰梯形CDEF中,CB,DA是梯形的高,,,现将梯形沿CB,DA折起,使且,得一简单组合体ABCDEF如图示,已知M,N分别为AF,BD 的中点.Ⅰ求证:平面BCF;Ⅱ若直线DE与平面ABFE所成角的正切值为,则求平面CDEF与平面ADE所成的锐二面角大小.【答案】证明:Ⅰ连AC,四边形ABCD是矩形,N为BD中点,为AC中点.在中,M为AF中点,故.平面BCF,平面BCF,平面BCF.Ⅱ依题意知,且平面ABFE,在面ABFE上的射影是AE.就是DE与平面ABFE所成的角.故在中:.设且,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,则设分别是平面ADE与平面CDFE的法向量令,即取则平面ADE与平面CDFE所成锐二面角的大小为.运用椭圆的性质,合理地进行等价转化.【解析】连结AC,通过证明,利用直线与平面平行的判定定理证明平面BCF.先由线面垂直的判定定理可证得平面ABFE,可知就是DE与平面ABFE所成的角,解,可得AD及DE的长,分别以AB,AP,AD所在的直线为x,y,z轴建立空间直角坐标系,求出平面ADE与平面CDFE的法向量,代入向量夹角公式,可得答案.本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定与性质,直线与平面平行的判定,线面夹角,是立体几何知识的综合考查,难度较大.22. 已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为,离心率.Ⅰ求椭圆E的方程;Ⅱ过点作直线l交E于P、Q两点,试问在x轴上是否存在一定点M,使为定值?若存在,求出定点M的坐标;若不存在,请说明理由.【答案】解:Ⅰ,所求椭圆E的方程为:分Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,把代入整理得:,分假设存在定点,使得为定值当且仅当,即时,为定值这时分再验证当直线l的倾斜角时的情形,此时取,,存在定点使得对于经过点的任意一条直线l均有恒为定值.【解析】Ⅰ,由此能导出所求椭圆E的方程.Ⅱ当直线l不与x轴重合时,可设直线l的方程为:,由,整理得:,,假设存在定点,使得为定值由此入手能够推导出存在定点,使得对于经过点的任意一条直线l均有恒为定值.本题考查椭圆方程的求法和点M的存在性质的判断解题时要认真审题,注意挖掘题设中的隐含条件,灵活。

2019-2020学年高二上学期期末考试数学试题(理科)附解答

2019-2020学年高二上学期期末考试数学试题(理科)附解答

2019-2020学年高二上学期期末考试数学试题(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合0,,,则A. B. 0, C. D.【答案】C【解析】解:;.故选:C.可求出B,然后进行并集的运算即可.考查描述法、列举法的定义,绝对值不等式的解法,以及并集的运算.2.已知数列中,,则A. 4B. 9C. 12D. 13【答案】D【解析】解:数列中,,则.故选:D.利用通项公式即可得出.本题考查了数列的通项公式,考查了推理能力与计算能力,属于基础题.3.已知椭圆C:中,,,则该椭圆标准方程为A. B. C. D.【答案】A【解析】解:根据题意,椭圆C:,其焦点在x轴上,若,,则,则椭圆的方程为;故选:A.根据题意,分析椭圆的焦点位置,由椭圆的几何性质可得b的值,代入椭圆的方程即可得答案.本题考查椭圆的标准方程,注意掌握椭圆标准方程的形式,属于基础题.4.若向量,,则A. B. C. 3 D.【答案】D【解析】解:向量,,0,,.故选:D.利用向量坐标运算法则求解0,,由此能求出的值.本题考查向量的模的求法,考查向量坐标运算法则、向量的模等基础知识,考查函数与方程思想,考查运算求解能力,是基础题.5.设a,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】C【解析】解:若,,不等式等价为,此时成立.,不等式等价为,即,此时成立.,不等式等价为,即,此时成立,即充分性成立.若,当,时,去掉绝对值得,,因为,所以,即.当,时,.当,时,去掉绝对值得,,因为,所以,即即必要性成立,综上“”是“”的充要条件,故选:C.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,利用不等式的性质结合分类讨论是解决本题的关键.6.若x,y满足,则的最小值为A. B. C. D.【答案】B【解析】解:x,y满足的区域如图:设,则,当此直线经过时z最小,所以z的最小值为;故选:B.画出平面区域,利用目标函数的几何意义求最小值.本题主要考查线性规划的应用,利用数形结合是解决本题的关键,比较基础.7.设抛物线上一点P到y轴的距离是2,则点P到该抛物线焦点的距离是A. 1B. 2C. 3D. 4【答案】C【解析】解:由于抛物线上一点P到y轴的距离是2,故点P的横坐标为2.再由抛物线的准线为,以及抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,故点P到该抛物线焦点的距离是,故选:C.由题意可得点P的横坐标为2,抛物线的定义可得点P到该抛物线焦点的距离等于点P 到准线的距离,由此求得结果.本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.8.设是等差数列的前n项和,若,,则A. B. 2017 C. 2018 D. 2019【答案】D【解析】解:设等差数列的公差为d,,,,化为:,解得.则.故选:D.设等差数列的公差为d,根据,,利用求和公式可得d,即可得出.本题考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.9.下列各组两个向量中,平行的一组向量是A. ,2,B. ,1,C. ,1,D. ,【答案】B【解析】解:在A中,,2,,,故A中两个向量不平行,故A错误;在B中,,1,,,故B中两个向量平行,故B正确;在C中,,1,,,故C中两个向量不平行,故C错误;在D中,,,,故D中两个向量不平行,故D错误.故选:B.利用向量平行的性质直接求解.本题考查平行向量的判断,考查向量与向量平行的性质等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.10.的内角A,B,C的对边分別为a,b,c,已知,,,则的面积是A. B. C. 1 D.【答案】B【解析】解:的内角A,B,C的对边分別为a,b,c,已知,利用正弦定理得:,整理得:,由于:,所以:,由于:,则:.由于:,,则:.故选:B.首先利用三角函数关系式的恒等变换和正弦定理求出B的值,进一步利用三角形的面积公式求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和三角形面积公式的应用.11.设,是双曲线C:的左,右焦点,O是坐标原点过作C的一条渐近线的垂线,垂足为P,若,则C的离心率为A. B. 2 C. D.【答案】C【解析】解:双曲线C:的一条渐近线方程为,点到渐近线的距离,即,,,,,在三角形中,由余弦定理可得,,即,即,,故选:C.先根据点到直线的距离求出,再求出,在三角形中,由余弦定理可得,代值化简整理可得,问题得以解决.本题考查了双曲线的简单性质,点到直线的距离公式,余弦定理,离心率,属于中档题.12.已知正方体的棱长为1,若P点在正方体的内部,且满足,则平面PAB与平面ABCD所成二面角的余弦值为A. B. C. D.【答案】B【解析】解:以A为坐标原点,AB,AD,分别为x,y,z轴,由,可得,0,,1,,则,0,,设平面PAB的法向量为y,,由,且,可得,且,可取,而平面ABCD的法向量为0,,则平面PAB与平面ABCD所成二面角的余弦值为.故选:B.以A为坐标原点,AB,AD,分别为x,y,z轴,求得P、A、B的坐标,可得向量AP,向量AB的坐标,设平面PAB的法向量为y,,由向量数量积为0,可得平面PAB的一个法向量,再由平面ABCD的法向量为0,,运用两个向量的夹角公式计算可得所求值.本题考查平面和平面所成角的求法,注意运用坐标法和平面的法向量,考查化简整理的运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知等比数列中,,,则______.【答案】【解析】解:等比数列中,,,,解得,.故答案为:.由等比数列中,,,得到,由此能求出.本题考查等比数列的第7项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.14.已知,,,则的最小值为______.【答案】8【解析】解:当且仅当,时取等故答案为:8先变形:,然后根据基本不等式可求得最小值.本题考查了基本不等式及其应用,属基础题.15.已知,1,,则,______.【答案】【解析】解:,1,,,.故答案为:.利用空间向量夹角公式直接求解.本题考查向量夹角的余弦值的求法,考查空间向量夹角公式等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.16.设,若时均有成立,则______.【答案】【解析】解:若,则当时,,由二次函数的性质可知,不等式不可能在时恒成立,故当时不可能都有成立,故,故当时,,当时,,当时均有成立,故当时,,当时,,故是方程的实数根,故,解得:舍或,综上:,故答案为:.通过讨论a的范围以及函数恒成立问题,求出,进而得到是方程的实数根,求出a的值即可.本题考查了函数恒成立问题,考查分类讨论思想,转化思想,是一道中档题.三、解答题(本大题共6小题,共70.0分)17.解关于x的不等式【答案】解:当时,不等式化为,;分当时,原不等式化为,当时,不等式的解为或;当时,不等式的解为;当时,不等式的解为或;分综上所述,得原不等式的解集为:当时,解集为;当时,解集为或;当时,解集为;当时,解集为或.【解析】根据a的范围,分a等于0和a大于0两种情况考虑:当时,把代入不等式得到一个一元一次不等式,求出不等式的解集;当a大于0时,把原不等式的左边分解因式,再根据a大于1,及a大于0小于1分三种情况取解集,当a大于1时,根据小于1,利用不等式取解集的方法求出解集;当时,根据完全平方式大于0,得到x不等于1;当a大于0小于1时,根据大于1,利用不等式取解集的方法即可求出解集,综上,写出a不同取值时,各自的解集即可.此题考查了一元二次不等式的解法,考查了分类讨论及转化的数学思想根据a的不同取值,灵活利用不等式取解集的方法求出相应的解集是解本题的关键.18.如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点,平行于OM的直线l在y轴上的截距为,直线l交椭圆于A,B 两个不同点.求椭圆的方程;求m的取值范围.【答案】解:设椭圆方程为则分解得,分椭圆方程为;分直线l平行于OM,且在y轴上的截距为m又,的方程为:由直线方程代入椭圆方程,分直线l与椭圆交于A、B两个不同点,,分解得,且分【解析】设出椭圆的方程,利用长轴长是短轴长的2倍且经过点,建立方程,求出a,b,即可求椭圆的方程;由直线方程代入椭圆方程,利用根的判别式,即可求m的取值范围.本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.19.设数列的前n项和为,且满足,求数列的通项公式;若,求数列的前n项和.【答案】解:,当时,,得,,时,得,,符合上式.数列的通项公式为;,,得..【解析】由求得,验证成立后得数列的通项公式;把数列的通项公式代入,然后利用错位相减法求数列的前n项和.本题考查由数列的前n项和求数列的通项公式,训练了错位相减法求数列的和,是中档题.20.在中,角A,B,C的对边分别为a,b,c,,.求A的大小;若,求.【答案】解:,可得:,可得:,解得:,,,,.,.由可得:,,由三角形的面积公式可得:.【解析】由已知利用余弦定理可求,,联立解得,,利用余弦定理可求的值,结合范围,可求A的值.由已知及可得:,,由三角形的面积公式即可计算得解.本题主要考查了余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算了和转化思想,属于中档题.21.如图,已知四棱锥,是以AD为斜边的等腰直角三角形,,,,E为PD的中点.Ⅰ证明:平面PAB;Ⅱ求直线CE与平面PBC所成角的正弦值.【答案】证明:Ⅰ取AD的中点F,连结EF,CF,为PD的中点,,在四边形ABCD中,,,F为中点,,平面平面ABP,平面EFC,平面PAB.解:Ⅱ连结BF,过F作于M,连结PF,,,推导出四边形BCDF为矩形,,平面PBF,又,平面PBF,,设,由,得,,,,又平面PBF,,平面PBC,即点F到平面PBC的距离为,,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,到平面PBC的距离为,在中,由余弦定理得,设直线CE与平面PBC所成角为,则.【解析】Ⅰ取AD的中点F,连结EF,CF,推导出,,从而平面平面ABP,由此能证明平面PAB.Ⅱ连结BF,过F作于M,连结PF,推导出四边形BCDF为矩形,从而,进而平面PBF,由,得,再求出,由此能求出.本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.22.已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围.【答案】解:由题意可设椭圆方程为,由得,所以,椭圆方程为分由题意可知,直线l的斜率存在且不为0,故可设直线l的方程为,,,则由,消去y得.,且,.分因为直线OP,PQ,OQ的斜率依次成等比数列,所以,,即,又,所以,即分由于直线OQ的斜率存在,且,得且.设d为点O到直线l的距离,则,所以的取值范围为分【解析】根据中心在原点O,焦点在x轴上,离心率为的椭圆过点,利用待定系数法,求出几何量,可得椭圆的方程设直线l的方程为,代入椭圆方程,利用韦达定理,结合直线OP,PQ,OQ的斜率依次成等比数列,求出k的值,表示出面积,即可求出面积的取值范围.本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,综合性强.。

2019-2020学年高二数学上学期期末考试试题(含解析)_38

2019-2020学年高二数学上学期期末考试试题(含解析)_38

2019-2020学年高二数学上学期期末考试试题(含解析)注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在答题卡上.2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四项中,只有一项是符合题目要求的)1.直线在轴上的截距为().A. B. C. D.【答案】D【解析】令,可得,解得,即直线在轴上的截距为.故选.2.圆心为,半径为的圆的方程为()A. B.C. D.【答案】A【解析】【分析】由题意先求出圆的标准方程,再把它化为一般方程,即可得答案.【详解】圆心为,半径为2的圆的方程为,即.故选:A.点睛】本题考查圆的标准方程和一般方程,考查函数与方程思想,考查运算求解能力,属于基础题.3.抛物线焦点坐标为()A. B.C. D.【答案】B【解析】【分析】将抛物线方程化为标准方程,求出即可得结果.【详解】整理抛物线方程得,焦点在轴,,焦点坐标为,故选B.【点睛】本题主要考查抛物线的方程与几何性质,属于简单题.由抛物线的方程求准线与焦点坐标,一定要化为标准方程.4.我国古代数学典籍《九章算术》第七章“盈不足”章中有一道“两鼠穿墙”问题:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问两鼠在第几天相遇?()A. 第2天 B. 第3天 C. 第4天 D. 第5天【答案】B【解析】【分析】用列举法求得前几天挖的尺寸,由此求得第几天相遇.【详解】第一天共挖,前二天共挖,故前天挖通,故两鼠相遇在第天.故选B.【点睛】本小题主要考查中国古代数学问题,考查等比数列的概念,属于基础题.5.是双曲线的左、右顶点,为双曲线上异于的一点,则直线的斜率之积为()A. B. C. D.【答案】C【解析】【分析】求出、坐标,设出,利用已知条件,列出关系式,求解即可.【详解】∵,是双曲线的左、右顶点,∴,,设,则双曲线,∴,直线,的斜率之积:.故选:C.【点睛】本题考查双曲线的简单性质的应用、直线的斜率的求法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.6.已知等差数列前项的和为,若,则()A. 154B. 153C. 77D. 78【答案】C【解析】【分析】根据题意,由,解可得,又由,计算即可得答案.【详解】根据题意,等差数列中,若,即,解得,又,∴.故选:C.【点睛】本题考查等差数列的前项和公式、等差数列的前项和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.7.已知直线,直线,且,则的值为()A. -1B.C. 或-2D. -1或-2【答案】D【解析】试题分析:由两直线平行可知系数满足值为-1或-2考点:两直线平行的判定8.设等比数列的前项和为,若则()A. B. C. D.【答案】B【解析】【分析】首先由等比数列前项和公式列方程,并解得,然后再次利用等比数列前项和公式,则求得答案.【详解】设公比为,则,∴,∴.故选:B.【点睛】本题考查等比数列前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.9.已知抛物线的焦点为F,Q为抛物线上一点,连接并延长交抛物线的准线于点P,且点P的纵坐标为负数,若,则直线PF的方程为()A. B.C. 或D.【答案】D【解析】【分析】根据的纵坐标为负数,判断出直线斜率大于零,设直线的倾斜角为,根据抛物线的定义,求得的值,进而求得,从而求得也即直线的斜率,利用点斜式求得直线的方程.【详解】由于的纵坐标为负数,所以直线斜率大于零,由此排除B,C选项.设直线的倾斜角为.作出抛物线和准线的图像如下图所示.作,交准线于点.根据抛物线的定义可知,且.依题意,故在直角三角形中,所以,故直线的斜率为,所以直线的方程为,化简得.故选:D.【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,考查数形结合的数学思想方法,属于中档题.10.等差数列的前项和为,公差为,则()A. 随的增大而减小B. 随的增大而增大C. 随的增大而增大D. 随的增大而增大【答案】D【解析】【分析】根据题意,由等差数列的性质依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A,,当时,随的增大而减小,与无关,故A错误;对于B,,当时,随的增大而增大,与无关,故B错误;对于C,,当时,等差数列为递减数列,随的增大而减小,故C错误;对于D,,当时,等差数列为递增数列,随的增大而增大,故D正确;故选:D.【点睛】本题考查等差数列前项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意数列的函数特性.11.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为()A B. C. D.【答案】A【解析】【分析】设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标【详解】设C(m,n),由重心坐标公式得,三角形ABC的重心为代入欧拉线方程得:整理得:m-n+4=0 ①AB的中点为(1,2), AB的中垂线方程为,即x-2y+3=0.联立解得∴△ABC的外心为(-1,1).则(m+1)2+(n-1)2=32+12=10,整理得:m2+n2+2m-2n=8 ②联立①②得:m=-4,n=0或m=0,n=4.当m=0,n=4时B,C重合,舍去.∴顶点C的坐标是(-4,0).故选A【点睛】本题考查了直线方程,求直线方程的一般方法:①直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.②待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.12.设F是椭圆C:(a>b>0)的一个焦点,P是椭圆C上的点,圆x2+y2=与线段PF交于A,B两点,若A,B三等分线段PF,则椭圆C的离心率为()A. B.C. D.【答案】D【解析】【分析】取线段PF的中点H,连接OH,OA,由题意可得OH⊥AB,设|OH|=d,根据椭圆的定义以及在Rt△OHA中,可得a=5d,在Rt△OHF中,利用勾股定理即可求解.【详解】如图,取线段PF的中点H,连接OH,OA.设椭圆另一个焦点为E,连接PE.∵A,B三等分线段PF,∴H也是线段AB的中点,即OH⊥AB.设|OH|=d,则|PE|=2d,|PF|=2a-2d,|AH|=.在Rt△OHA中,|OA|2=|OH|2+|AH|2,解得a=5d.在Rt△OHF中,|FH|=,|OH|=,|OF|=c.由|OF|2=|OH|2+|FH|2,化简得17a2=25c2,.即椭圆C的离心率为.故选:D.【点睛】本题考查了求椭圆的离心率,解题的关键是理解题中的几何关系,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上相应位置)13.两条平行直线与间的距离为_______.【答案】【解析】【分析】将方程化成,再利用两条平行线之间的距离公式加以计算,即可得到与之间的距离.【详解】将化成,与之间的距离为,∴.故答案为:【点睛】本题考查两条平行线之间距离公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.14.已知抛物线的一条弦恰好以为中点,则弦所在直线方程是__________.【答案】【解析】设,,弦所在直线方程为,则,∵,在抛物线上∴∴∴,即∴弦所在直线方程为故答案为点睛:弦中点问题解法一般为设而不求,关键是求出弦所在直线方程的斜率,方法一利用点差法,列出有关弦的中点及弦斜率之间关系求解;方法二是直接设出斜率,利用根与系数的关系及中点坐标公式求得直线方程.15.已知圆上有且仅有三个点到双曲线的一条渐近线的距离为1,则该双曲线的离心率为________.【答案】【解析】【分析】求得圆心和半径,根据圆上有且仅有三个点到双曲线渐近线的距离为,判断出渐近线和圆的位置关系,根据点到直线距离公式列方程,由此求得双曲线的离心率.【详解】圆方程可化为,故圆心为,半径.由于圆上有且仅有三个点到双曲线的一条渐近线的距离为,所以圆心到渐近线的距离为.不妨设双曲线的一条渐近线为,即,由点到直线距离公式得.故答案为:.【点睛】本小题主要考查直线和圆的位置关系,考查双曲线的渐近线和离心率16.数列的前项和为,且满足且,则的最小值为_____.【答案】【解析】【分析】利用已知条件求出数列的公差,然后转化求解的最小值.【详解】由条件满足,得或,由知,当时,;当时,.故当前50项的公差为2,后50项的公差为1时,数列的前100项和最小.∴.故答案为:.【点睛】本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力,是中档题.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知双曲线的焦点为,且该双曲线过点.(1)求双曲线的标准方程;(2)若双曲线上的点满足,求的面积.【答案】(1)(2)4【解析】【分析】(1)设双曲线的方程为,运用双曲线的定义,以及两点的距离公式可得,结合,,的关系,可得,,即可得到所求双曲线的方程;(2)由双曲线的定义和直角三角形的勾股定理、面积公式,化简可得所求值.【详解】(1)设双曲线的方程为,由,,且该双曲线过点,可得,,又,,双曲线的标准方程为;(2)由,得,.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的面积的求法,注意运用勾股定理和定义法解题,考查运算能力.18.在平面直角坐标系中,设直线与圆交于不同两点.(1)求实数的取值范围;(2)若圆上存在点C使得为等边三角形,求实数的值.【答案】(1)(2)【解析】【分析】(1)由题意知圆心到直线的距离,即可解出答案.(2)有题知圆周角,得圆心角,则圆心到直线的距离,就可解得的值.【详解】(1)由题意知圆心到直线的距离,解得,∴的取值范围为;(2)为等边三角形,∴圆周角,得圆心角,则圆心到直线的距离,解得.【点睛】本题考查直线与圆的位置关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.19.已知是公比为整数的等比数列,,且成等差数列.(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1)(2)【解析】【分析】(1)设是公比为整数的等比数列,运用等比数列的通项公式和等差数列的中项性质,解方程可得首项和公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,化简可得所求和.【详解】(1)设数列的公比为,∵成等差数列,∴又,∴,解得或,∵公比为整数,∴舍去,∴∴.(2)由则①②由①②,得∴.【点睛】本题考查等比数列的通项公式和求和公式、等差数列的中项性质的运用,考查数列的错位相减法求和,化简运算能力,属于中档题.20.已知直线y=2x﹣m与抛物线C:y2=2px(p>0)交于点A,B.(1)m=p且|AB|=5,求抛物线C的方程;(2)若m=4p,求证:OA⊥OB(O为坐标原点).【答案】(1)y2=4x;(2)见解析【解析】【分析】(1)根据韦达定理和弦长公式列方程可得;(2)联立直线与抛物线,根据韦达定理以及斜率公式可证结论。

2019-2020年高二上学期期末考试 数学文 含答案

2019-2020年高二上学期期末考试 数学文 含答案

2019-2020年高二上学期期末考试 数学文 含答案本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每题给出的四个选项中,只有一个是符合题目要求的.) 1.若a 、b 为正实数,则a b >是22a b >的 A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件2.抛物线2x y =的焦点坐标是 A .)0,41(-B. )41,0(-C. )41,0(D . )0,41(3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和11S =A. 58B. 88C. 143D. 1764. 已知下列四个命题:①“若xy=0,则x=0且y=0”的逆否命题;②“正方形是菱形”的否命题;③“若ac 2>bc 2,则a >b”的逆命题;④若“m >2,则不等式x 2﹣2x+m >0的解集为R”.其中真命题的个数为 A. 0个 B. 1个 C. 2个 D. 3个 5.曲线324y x x =-+在点(13),处的切线的倾斜角为A .120°B .30°C .60°D .45°6. 设n S 为等比数列{}n a 的前n 项和,525280S a a S +==,则 A .11-B .8-C .5D .117. 已知ABC ∆的顶点B 、C 在椭圆1322=+y x 上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是A.32B.6C. 34D. 128.在△ABC 中,角A ,B 所对的边长为a ,b ,则“a=b”是“acosA=bcosB”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分又不必要条件9. 设函数f (x )在定义域内可导,y=f (x则导函数y=f '(x )可能为A BC D10设变量x ,y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩.则目标函数z=2x+3y 的最小值为A . 6B. 7C. 8D. 2311.如图,某船在海上航行中遇险发出呼救信号,我海上救生艇在A 处获悉后,立即测出该船在方位角45°方向,相距10海里的C 处,还 测得该船正沿方位角105°的方向以每小时9海里的 速度行驶,救生艇立即以每小时21海里的速度前往 营救,则救生艇与呼救船在B 处相遇所需的时间为A.15小时 B.13小时 C. 25小时D. 23小时12. 已知双曲线(>0)mx y m -=221的右顶点为A ,若该双曲线右支上存在两点,B C 使得ABC ∆为等腰直角三角形,则该双曲线的离心率e 的取值范围是A.B .(1,2)C. D .(1,3)第Ⅱ卷(非选择题,共90分)二、填空题: (本大题4小题,每小题5分,共20分)13.已知32()32f x ax x =++且(1)4f '-=,则实数a 的值等于_________ 14.在ABC ∆中,角A,B,C 成等差数列且3=b ,则ABC ∆的外接圆面积为______15. 下列函数中,最小值为2的是①y =② 21x y x +=③(),(02)y x x x =-<④2y =16.已知F 是抛物线C :x y 42=的焦点,A 、B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于 ____.三、解答题(本大题共6小题,共70分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 17.(本题满分10分).在ABC ∆中,A B C 、、是三角形的三内角,a b c 、、是三内角对应的三边,已知222b c a bc +-=.(Ⅰ)求角A 的大小;(Ⅱ)若222sin sin sin A B C +=,求角B 的大小.18.(本题满分12分).已知双曲线与椭圆1244922=+y x 有共同的焦点,且以x y 34±=为渐近线. (1)求双曲线方程.(2)求双曲线的实轴长.虚轴长.焦点坐标及离心率.19.(本题满分12分).已知等差数列{}n a 满足818163a a 34a a 31a a >-=-=+且,(1)求数列{}n a 的通项公式;(2)把数列{}n a 的第1项、第4项、第7项、……、第3n -2项、……分别作为数列{}n b 的第1项、第2项、第3项、……、第n 项、……,求数列{}2nb 的前n 项和;20.(本题满分12分).函数f (x )= 4x 3+ax 2+bx+5的图像在x=1处的切线方程为y=-12x ; (1)求函数f (x )的解析式;(2)求函数f (x )在 [—3,1]上的最值。

2019-2020年高二上学期期末考试数学试题 含答案

2019-2020年高二上学期期末考试数学试题 含答案

2019-2020年高二上学期期末考试数学试题 含答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若ab >且c R ∈,则下列不等式中一定成立的是( )A .acbc > B .22a b > C .a c b c +>+ D .22ac bc >2.设数列,,,,…,则是这个数列的 ( )A.第6项B.第7项C.第8项D.第9项 3.已知△ABC 中,A 、B 、C 所对的边分别为a 、b 、c,且a b ==,B =60°那么角A 等于( )A.30° B .45° C .135° D .135°或45°4. 在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →= ( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 5.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是A . 0B .21 C .1 D . 26.对赋值语句的描述正确的是 ( )①可以给变量提供初值 ②将表达式的值赋给变量 ③可以给一个变量重复赋值 ④不能给同一变量重复赋值A. ①②③B. ①②C. ②③④D. ①②④7.已知等比数列{}n a 的公比13q =-,则13572468a a a a a a a a ++++++等于( )A.13-B.-3C.13D.3 8.设a 、b ∈R ,a 2+2b 2=6,则a +b 的最小值是( ) A .-2 2 B .-533 C .-3 D .-729.阅读右边的程序框图,运行相应的程序,则输出i 的值为( ) A .3 B .4 C .5 D .610.某单位有老年人28人,中年人44人,青年人72人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老年人中剔除一人,然后分层抽样 11.为了解某校高三学生的视力情况,随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最多一组学生数为a ,视力在4.6到5.0之间的频率为b ,则a , b 的值分别为( )A .0.27, 78B .54 , 0.78C .27, 0.78D .54, 7812.钝角△ABC 的三边长为连续自然数,则这三边长为( ) A .1,2,3 B .2,3,4 C .3,4,5D .4,5,6 二、填空题:本大题共4小题,每小题5分,满分20分13. 已知样本9,10,11,x,y 的平均数是10,则xy = 。

2019-2020年高二上学期期末综合测试数学试题 含答案

2019-2020年高二上学期期末综合测试数学试题 含答案

2019-2020年高二上学期期末综合测试数学试题 含答案一、 选择题(12×5分=60分) 1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。

2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、已知、为实数,则是的 ( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件4、已知命题[]2:"1,2,0"p x x a ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=,若命题“”是真命题,则实数的取值范围是 ( ) A. B. C. D.5,如图ABCD -A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=A 1B 14,则BE 1与DF 1所成角的余弦值是( )A .1517B .12C .817D .326、设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为( )A. B. C. D.37、设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A. B. C. D.8、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=09、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.; B.; C.; D..10、已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A. 2cm; B.; C.4cm; D.8cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档