2020高考物理突破大二轮浙江专用讲义:电学中的曲线运动

合集下载

高考物理二轮总复习精品课件 第2部分 专题整合高频突破 第3讲 力与物体的曲线运动

高考物理二轮总复习精品课件 第2部分 专题整合高频突破 第3讲 力与物体的曲线运动
力方向向上;当v2>b时,杆对小球弹力方向向下;所以当v2=c时,杆对
小球弹力方向向下,故小球对杆的弹力方向向上,C正确。若v2=2b,
2
则F+mg=m ,解得F=a=mg,故D正确。

-23-
新题演练
1 2 3 4 5
怎样得高分
1.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不
变,方向平行于岸边;小船相对于静水分别做匀加速、匀减速、匀
x=v0t①
1
h=2gt2②
设圆弧轨道半径为 R,由机械能守恒定律得
1
mgR= 0 2 ③
2
联立①②③式,并代入题给条件得
R=0.25 m。④
-29-
新题演练
1 2 3 4 5
-30-
怎样得高分
(2)环由b处静止下滑过程中机械能守恒,设环下滑至c点的速度大小
为v,有
1
mgh=2mv2⑤
环在c点速度的水平分量为

解得 v2=
小滑块在 O 点做平抛运动,则
1 2
R=2gt ,x=v0t
解得 2R≤x≤2R。
-18-
命题热点一
命题热点二
命题热点三
(3)如图所示,设小滑块出发点为P1,离开点为P2,由题意要求O1P1、
O2P2与竖直方向的夹角相等,设为θ,若离开滑道时的速度为v,
2
则小滑块在 P2 处脱离滑道的条件是 mgcos θ=m
命题热点三
解析:在南北方向上,帆板静止,所以在此方向上帆船相对于帆板
向北以速度v运动;在东西方向上,帆船静止,帆板向西以速度v运动,
所以在此方向上帆船相对于帆板向东以速度v运动;以帆板为参考

2020版高考物理新课标大二轮专题辅导与增分攻略1-1-3第三讲力学中的曲线运动

2020版高考物理新课标大二轮专题辅导与增分攻略1-1-3第三讲力学中的曲线运动

静止释放,忽略阻力作用,为使小球飞得最远,右端出口距离桌面的高度应设计为
()
A.0 m
B. 0.1 m
C. 0.2 m
D. 0.3 m
[ 解析 ] 从最高点到出口,满足机械能守恒,有
(H

h
)mg

1 2m
v
2,从出口飞出后小球
做平抛运动,有
x=
v
t,
h

1 2
gt2,可得
x= 2
H - h h,根据数学知识知,当
C.
v
2 2
D.
v
2 1
()
[解析 ] 如图所示, 当甲船在静水中的速度 v 1 与河岸垂直时, 甲船渡河时间最短. 乙船
以最短航程渡河,因为两船抵达地点相同,合速度方向相同,可知乙船在静水中的速度
v2
小于水流速度 v 水,不能垂直到达对岸, 则乙船在静水中速度 v 2 的方向与合速度方向垂直时
航程最短.
动公式
x

v
0t

1 2
at
2、
v
=v
0+
at
直接套用,注意先分解为两个分运动,必要时再合成
.
热点考向三 圆周运动问题
【典例】 (2018 ·全国卷Ⅲ )如图,在竖直平面内,一半径为 R 的光滑圆弧轨道 ABC 和
水平轨道 PA 在 A 点相切, BC 为圆弧轨道的直径, O 为圆心, OA 和 OB 之间的夹角为 α,
径 OP 的方向, 如右图 :
. [解析 ] 如图所示,弹丸从 P 点射出时的速度方向就是半径
OP 的方向,即与水平方向
vy 成 37 °由.平抛运动规律有 v x= tan37 ,°竖直方向的速度 v y= gt,竖直方向上的位移 h + Rsin37 °

2020版高考物理二轮复习考点全排查讲义浙江专用版

2020版高考物理二轮复习考点全排查讲义浙江专用版

2020版高考物理二轮复习考点全排查讲义浙江专用版考点1匀变速直线运动考点2相互作用考点3牛顿运动定律考点4曲线运动考点5万有引力定律考点6机械能考点7静电场考点8恒定电流考点9磁场考点10电磁感应考点11交变电流考点12选修3-4 考点13选修3-5 考点14力学实验考点15电学实验考点1 匀变速直线运动考试标准质点和参考系1.质点(1)用来代替物体的有质量的点叫做质点.(2)研究一个物体的运动时,如果物体的形状和大小对所研究问题的影响可以忽略,就可以看做质点.(3)质点是一种理想化模型,实际并不存在.2.参考系(1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的.(2)比较两物体的运动情况时,必须选同一参考系.(3)选取不同的物体作为参考系,对同一物体运动的描述可能不同.通常以地面为参考系.位移和速度1.位移和路程2.速度与速率(1)平均速度:物体发生的位移与发生这段位移所用时间的比值,即v=ΔxΔt,是矢量,其方向就是对应位移的方向.(2)瞬时速度:运动物体在某一时刻或经过某一位置的速度,是矢量,其方向是物体的运动方向或运动轨迹的切线方向.(3)速率:瞬时速度的大小,是标量.加速度1.物理意义:描述物体速度变化快慢和方向的物理量. 2.定义式:a =Δv Δt =v -v 0Δt.3.决定因素:a 不是由v 、Δt 、Δv 来决定,而是由Fm来决定.4.方向:与Δv 的方向一致,由合外力的方向决定,而与v 0、v 的方向无关.匀变速直线运动的规律 1.匀变速直线运动沿着一条直线,且加速度不变的运动. 2.匀变速直线运动的基本规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)速度位移关系式:v 2-v 02=2ax .匀变速直线运动的三个推论1.连续相等的相邻时间间隔T 内的位移差相等, 即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.2.做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度. 平均速度公式:v =v 0+v2=2t v .3.位移中点速度2x v =v 02+v 22.自由落体运动1.条件:物体只受重力,从静止开始下落. 2.基本规律 (1)速度公式:v =gt . (2)位移公式:x =12gt 2.(3)速度位移关系式:v 2=2gx . 3.伽利略对自由落体运动的研究(1)伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论. (2)伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来.运动学图象 1.运动学图象的识别根据图象中横、纵坐标轴所代表的物理量,明确该图象是位移—时间图象(xt 图象),还是速度—时间图象(vt 图象),或是加速度—时间图象(at 图象),这是解读运动学图象信息的前提. 2.图象信息的解读考点2 相互作用考试标准弹力1.弹力(1)定义:发生形变的物体由于要恢复原状而对与它接触的物体产生的作用力.(2)产生条件:①物体间直接接触;②接触处发生形变.(3)弹力方向:(4)弹力有无的判断2.胡克定律(1)内容:在弹性限度内,弹力的大小和弹簧形变大小(伸长或缩短的量)成正比.(2)表达式:F=kx.①k是弹簧的劲度系数,单位是牛顿每米,用符号N/m表示;k的大小由弹簧自身性质决定.②x是弹簧长度的变化量,不是弹簧形变以后的长度.摩擦力1.静摩擦力与滑动摩擦力2.动摩擦因数(1)定义:彼此接触的物体发生相对运动时,摩擦力和正压力的比值.μ=F fF N.(2)决定因素:接触面的材料和粗糙程度.力的合成与分解1.合力与分力(1)定义:如果几个力共同作用产生的效果与一个力的作用效果相同,这一个力就叫做那几个力的合力,那几个力叫做这一个力的分力.(2)关系:合力与分力是等效替代关系.2.共点力作用在物体的同一点,或作用线交于一点的几个力.如图中各组力均为共点力.3.力的合成(1)运算法则①平行四边形定则:求两个互成角度的分力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.如图甲所示,F1、F2为分力,F为合力.②三角形定则:把两个矢量的首尾顺次连接起来,第一个矢量的首到第二个矢量的尾的有向线段为合矢量.如图乙,F1、F2为分力,F为合力.(2)两个力的合力范围:|F1-F2|≤F≤F1+F2;合力可以大于分力,也可以小于分力,还可以等于分力.(3)几种特殊情况的共点力的合成两力等大夹F4.力的分解方法(1)效果分解法:由力的作用效果确定分力的方向,根据平行四边形定则作出平行四边形,然后用数学知识求解.(2)正交分解法①定义:将已知力按互相垂直的两个方向进行分解的方法.②建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(使尽量多的力分布在坐标轴上);在动力学中,往往以加速度方向和垂直加速度方向为坐标轴建立坐标系.受力分析1.把指定物体(研究对象)在特定的物理环境中受到的所有外力都找出来,并画出受力示意图的过程. 2.一般步骤共点力的平衡 1.平衡状态物体处于静止状态或匀速直线运动状态. 2.平衡条件F 合=0或者⎩⎪⎨⎪⎧F x =0F y =0.3.平衡条件的推论(1)二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反.(2)三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任何一个力与另外两个力的合力大小相等,方向相反,并且这三个力的矢量可以形成一个封闭的矢量三角形. (3)多力平衡:如果物体在多个共点力的作用下处于平衡状态,其中任意一个力与其余几个力的合力大小相等,方向相反.考点3 牛顿运动定律考试标准知识内容考试要求牛顿第一定律惯性1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)意义:①揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律;②揭示了力与运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都具有惯性,与物体的运动情况和受力情况无关.牛顿第二定律力学单位制1.牛顿第二定律(1)内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同.(2)表达式:F=ma.(3)适用范围①牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.②牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.2.力学单位制(1)单位制:由基本单位和导出单位一起组成了单位制.(2)基本单位:基本物理量的单位.国际单位制中基本物理量共七个,其中力学有三个,是长度、质量、时间,单位分别是米、千克、秒.(3)导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体同时对前一个物体也施加力.2.内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.表达式:F=-F′.瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.5.判断超重和失重的方法连接体问题1.连接体的运动特点轻绳连接——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆连接——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧连接——在弹簧发生形变的过程中,两端物体的速度不一定相等;在弹簧形变最大时,两端物体的速度相等.2.处理连接体问题的方法考点4 曲线运动考试标准曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.3.运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧.5.合外力对运动的影响合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变物体速度的大小.(1)当合外力方向与速度方向的夹角为锐角时,物体的速度大小增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速度大小减小;(3)当合外力方向与速度方向垂直时,物体的速度大小不变.运动的合成与分解1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.2.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果.3.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.4.小船渡河问题(1)船的实际运动:是水流的运动和船相对静水的运动的合运动.(2)三种速度:船在静水中的速度v 船、水的流速v 水、船的实际速度v ,遵循平行四边形定则.平抛运动1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动. 2.性质:平抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动; (2)竖直方向:自由落体运动. 4.基本规律(如图)(1)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v x 2+v y 2=v 02+g 2t 2设合速度的方向与水平方向的夹角为θ,有tan θ=v y v x =gtv 0. (2)位移⎩⎪⎨⎪⎧水平方向:x =v 0t 竖直方向:y =12gt 2设合位移的大小s =x 2+y 2=(v 0t )2+(12gt 2)2合位移的方向与水平方向的夹角为α,有 tan α=y x =gt2v 0. (3)结论:①合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.所以做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点.②时间:由y =12gt 2,得t =2yg,平抛物体在空中运动的时间t 只由物体抛出时离地的高度y 决定,而与抛出时的初速度v 0无关.③速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(ΔvΔt =g )相等,且必沿竖直方向,如图所示.任意两时刻的速度与速度的变化量Δv 构成三角形,Δv 沿竖直方向.④与斜面结合的平抛运动,分解速度,如图甲所示,分解位移,如图乙所示.如图乙所示,小球抛出落到斜面上的时间t =2v 0tan θg;落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;经过t ′=v 0tan θg,小球距斜面最远,最大距离为(v 0sin θ)22g cos θ.斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动. 2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解(1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动. 4.基本规律(以斜上抛运动为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0; (2)竖直方向:v 0y =v 0sin θ,F 合y =mg .匀速圆周运动及描述 1.匀速圆周运动(1)定义:做圆周运动的物体,若在任意相等的时间内通过的圆弧长相等,该运动就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心. 2.运动参量匀速圆周运动的向心力 1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小F =m v 2r =mr ω2=m 4π2T2r =m ωv =4π2mf 2r .3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供. 5.几种典型运动模型离心运动和近心运动1.离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.受力特点(如图)(1)当F=0时,物体沿切线方向飞出;(2)当0<F<mrω2时,物体逐渐远离圆心;(3)当F>mrω2时,物体逐渐向圆心靠近,做近心运动.3.本质:离心运动的本质并不是受到离心力的作用,而是提供的指向圆心方向的合力小于做匀速圆周运动需要的向心力.考点5 万有引力定律考试标准知识内容 考试要求开普勒三定律a 31.行星绕太阳的运动通常按圆轨道处理.2.开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动.3.开普勒第三定律a 3T2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同.该定律只能用在同一中心天体的两星体之间.万有引力定律 1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r2,G 为引力常量,G =6.67×10-11N·m 2/kg 2.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 4.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体间相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =GM ′mr 2. 万有引力与重力的关系 1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F向.(1)在赤道上:G MmR 2=mg 1+m ω2R . (2)在两极上:G Mm R2=mg 0.(3)在一般位置:万有引力G Mm R2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR 2=mg . 2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R 2.天体质量和密度常用的估算方法宇宙速度 1.第一宇宙速度(1)第一宇宙速度又叫环绕速度,其数值为7.9km/s.(2)第一宇宙速度是人造卫星在地面附近环绕地球做匀速圆周运动时具有的速度. (3)第一宇宙速度是人造卫星的最小发射速度,也是人造卫星的最大环绕速度. (4)第一宇宙速度的计算方法.由G Mm R 2=m v 2R 得v =GMR; 由mg =m v 2R得v =gR .2.第二宇宙速度使物体挣脱地球引力束缚的最小发射速度,其数值为11.2km/s. 3.第三宇宙速度使物体挣脱太阳引力束缚的最小发射速度,其数值为16.7km/s.卫星运行参量的分析卫星运行参量相关方程结论考点6 机械能考试标准功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)恒力F的方向与位移l的方向一致时:W=Fl.(2)恒力F 的方向与位移l 的方向成某一夹角α时:W =Fl cos α. 5.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.变力功的分析与计算用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(hsin α-hsin β)功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式:(1)P =W t,描述时间t 内力对物体做功的快慢. (2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.动能定理1.内容:在一个过程中合力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:W =ΔE k =E k2-E k1=12mv 22-12mv 12.3.物理意义:合力的功是物体动能变化的量度. 4.适用条件:(1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.如图所示,物块沿粗糙斜面下滑至水平面;小球由内壁粗糙的圆弧轨道底端运动至顶端(轨道半径为R ).对物块有W G +W f1+W f2=12mv 2-12mv 02对小球有-2mgR +W f =12mv 2-12mv 02机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.2.机械能守恒的判断(1)只有重力做功时,只发生动能和重力势能的相互转化.如自由落体运动、抛体运动等. (2)只有系统内弹力做功,只发生动能和弹性势能的相互转化.如在光滑水平面上运动的物体碰到一个弹簧,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒. (3)只有重力和系统内弹力做功,只发生动能、弹性势能、重力势能的相互转化.如自由下落的物体落到竖直的弹簧上,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒.(4)除受重力(或系统内弹力)外,还受其他力,但其他力不做功,或其他力做功的代数和为零.如物体在沿斜面向下的拉力F 的作用下沿斜面向下运动,其拉力的大小与摩擦力的大小相等,在此运动过程中,其机械能守恒. 3.机械能守恒表达式几种常见的功能关系及其表达式能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.功能关系的理解和应用1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析.考点7 静电场考试标准知识内容考试要求电荷电荷守恒定律1.元电荷、点电荷(1)元电荷:e=1.60×10-19C,所有带电体的电荷量都是元电荷的整数倍.(2)点电荷:代表带电体的有一定电荷量的点,忽略带电体的大小、形状及电荷分布状况的理想化模型.2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变.(2)三种起电方式:摩擦起电、感应起电、接触起电.(3)带电实质:物体得失电子.(4)电荷的分配原则:两个形状、大小相同且带同种电荷的同种导体,接触后再分开,二者带等量同种电荷,若两导体原来带异种电荷,则电荷先中和,余下的电荷再平分.库仑定律1.内容真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.表达式F =k q 1q 2r2,式中k =9.0×109N·m 2/C 2,叫做静电力常量.3.适用条件真空中的静止点电荷.(1)在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式. (2)当两个带电体间的距离远大于其本身的大小时,可以把带电体看成点电荷.电场、电场强度 1.电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质. (2)基本性质:对放入其中的电荷有力的作用. 2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. (2)定义式:E =F q;单位:N/C 或V/m.(3)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向. 3.三个计算公式静电力做功和电势能 1.静电力做功(1)特点:静电力做功与路径无关,只与电荷量和电荷移动过程始、末位置间的电势差有关. (2)计算方法①W =qEd ,只适用于匀强电场,其中d 为带电体在沿电场方向的位移. ②W AB =qU AB ,适用于任何电场. 2.电势能(1)定义:电荷在电场中具有的势能,称为电势能.(2)说明:电势能具有相对性,通常把无穷远处或大地的电势能规定为零.。

(浙江专用)2020版高考物理二轮复习专题一第3讲力学中的曲线运动课件

(浙江专用)2020版高考物理二轮复习专题一第3讲力学中的曲线运动课件

B.球位移大小 l=12 b2+(a+2c)2 C.人对网球做功 W=mg[b2+(16ah+2c)2]
D.网球初速度的大小 v0= 2gh[b2+(a+2c)2]
解析 网球运动的时间为 t= 2gh,故 A 错误;网球在水平方向的位移大小为 x=12 b2+(a+2c)2,所以网球的位移大小 l=12 4h2+b2+(a+2c)2,故 B 错 误;球的初速度的大小为 v0=xt =12 2gh[b2+(a+2c)2],人对网球做功 W=12mv20 =mg[b2+(16ah+2c)2],故 C 正确,D 错误。 答案 C
斜面上的平抛运动
【典例3】 (2019·浙江乐清上学期高三模拟) (多选)如图3所示,固定
斜面PO、QO与水平面MN的夹角均为45°,现由A点分别以v1、v2 先后沿水平方向抛出两个小球(可视为质点),不计空气阻力,其中
以v1抛出的小球恰能垂直于QO落于C点,飞行时间为t,以v2抛出
图3
的小球落在PO斜面上的B点,且B、C在同一水平面上,重力加速
MP为a,宽MN为b,发球线到网的距离为c,一个球员在练习发球时,站在发 球线的中点发球,将球打到对方左下方死角(单打边线与底线的交点),若击球 点的高度为h,网球被发出后做平抛运动(球可看做质点,不计空气的阻力), 重力加速度为g。则下列说法正确的是( )
图2
A.网球在空中运动的时间 t=
2 a2+h2 g
【典例4】 (2019·浙江桐乡高级中学高三模拟)甲、乙两个同学
对打乒乓球,设甲同学持拍的拍面与水平方向成α角,乙同学
持拍的拍面与水平方向成β角,如图4所示,设乒乓球击打拍
图4
面时速度与拍面垂直,且乒乓球每次击打球拍前与击打后速
度大小相等,不计空气阻力,则乒乓球击打甲的球拍的速度

2020高考物理突破大二轮浙江专用讲义增分练专题六第3讲选考实验综合Word版含解析

2020高考物理突破大二轮浙江专用讲义增分练专题六第3讲选考实验综合Word版含解析

第3讲选考实验综合核心耍点提炼I网络构建(探究屯險感应的产牛条件涉及屯磁学类实p h杲究感应电流方1-1的规? n[採究变n 器线惱两端的电压与匝数的关系选考实验丫问口#申宀”[撮究口摆周期与摆反的其系单摆和碰憧实叫探穽碰拯中的不迪光学划剣测定玻璃的折射率t用以缝干涉测览光的波氏(同时练却使用游标凹测址头)烏考热点突破I考向U涉及电磁学类实验【典例1】如图1所示是三个成功演示电磁感应的实验,回答下列问题图1⑴图c 电路中仪器未连线,请按照实验的要求连好实验电路。

(2) _________________________________ 电流表指针偏转角跟感应电流的大小成 _____________________________________ 系。

(3) 第一个成功实验(如图a)中,将条形磁铁从同一高度插入到线圈中同一位置, 快速插入和慢速插入有什么量是相同的? __________________________________ , 什么量是不同的? ______________________________________________________ (4) 从三个成功的演示实验可归纳出的结论是解析(1)实验电路如图(2) 由电流表的原理知电流表指针的偏角与感应电流的大小成正比。

(3) 将条形磁铁从同一高度插入到线圈中同一位置,快速插入和慢速插入磁通量的变化量相同,所用的时间不同,则磁通量的变化率不同。

⑷通过三个实验可以得出:穿过闭合电路的磁通量发生变化,闭合电路就会产生感应电流;或闭合电路中感应电动势的大小与穿过这一电路的磁通量的变化率成正比。

答案(1)见解析图(2)正比(3)磁通量的变化量磁通量的变化率(4) 见解析【典例2】(1)为完成“探究变压器线圈两端的电压与匝数的关系”的实验,必须要选用的是 __________ (多选)。

A. 有闭合铁芯的原副线圈;B. 无铁芯的原副线圈;C. 交流电源;D. 直流电源;E. 多用电表(交流电压挡);F多用电表(交流电流挡)。

2020高考物理浙江专用版大二轮复习 课件 讲义 新选考考点全排查:第二部分 考点15

2020高考物理浙江专用版大二轮复习 课件 讲义 新选考考点全排查:第二部分 考点15

1.基本仪器的使用
电学
电阻(粗测)
欧姆表
①选择合适挡位;②换挡位需要重新欧姆调零;③指针示数乘以倍率,不估读
电阻箱
不估读
电流(电压)
电流表(电压表)
根据实验需要选择合适的量程,并要注意估读
2.电流表和电压表
量程
精确度
读数规则
电流表0~3A
0.1A
与刻度尺一样,采用 估读,读数规则较简单,只需在精确值后加一估读数即可
电压表0~3V
0.1V
电流表0~0.6A
0.02A
估读位与最小刻度在同一位,采用 估读
电压表0~15V
0.5V
估读位与最小刻度在同一位,采用 估读
3.实验要点
名称
装置图
常考要点
探究导体电阻与其影响因素(包括材料)的关系
①考读数:U、I、L及d(待测金属丝直径)
②考电路:电路设计或选择(限流、外接),实物连线或改错,器材选择
练习使用多用电表
①考读数:电压、电流、电阻挡的读数
②考使用:欧姆表选挡、调零、规范操作等
③考黑箱:多用电表探测黑箱内的元件
4.两种测量电路
内接法
外接法
电路结构
误差原因
电流表分压U测=Ux+UA
电压表分流I测=Ix+IV
测量数值
R测= >Rx
R测= <Rx
误差分析
测量值大于真实值
测量值小于真实值
适用条件
Rx≫RA
RV≫Rx
适用测量
大电阻
小电阻
5.两种控制电路
限流式接法
分压式接法
电路图
滑片P开始位置b端a端 Nhomakorabea电压调节范围

浙江专用版2020版高考物理二轮复习新考点全排查考点4曲线运动


2v0tan θ
如图乙所示,小球抛出落到斜面上的时间
t = g ;落到斜面上时,速度的方向与水平
v0tan θ
方向的夹角 α 恒定,且 tan α=2tan θ,与初速度无关;经过 t ′= g ,小球距斜面
v0sin θ 2 最远,最大距离为 2gcos θ .
斜抛运动
1.定义:将物体以初速度 v0 斜向上方或斜向下方抛出,物体只在重力作用下的运动.
考试标准
考点 4 曲线运动
知识内容 曲线运动 运动的合成与分解 平抛运动 圆周运动、向心加速度、向心力 生活中的圆周运动
考试要求 b c d d c
曲线运动 1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向. 2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运 动. 3.运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方 向与速度方向不在同一条直线上. 4.合外力方向与轨迹的关系 物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力 方向指向轨迹的 “ 凹 ”侧. 5.合外力对运动的影响 合外力在垂直于速度方向上的分力改变物体速度的方向,合外力在沿速度方向上的分力改变 物体速度的大小. (1) 当合外力方向与速度方向的夹角为锐角时,物体的速度大小增大; (2) 当合外力方向与速度方向的夹角为钝角时,物体的速度大小减小; (3) 当合外力方向与速度方向垂直时,物体的速度大小不变.
t 只由物体抛出时离地的高度
y 决定,而与抛出时的初速度 v0无关. ③速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量
Δv ( Δ t = g) 相等,
且必沿竖直方向,如图所示.任意两时刻的速度与速度的变化量

2020版高考物理复习专题讲义浙江专用版

2020版高考物理复习专题讲义浙江专用版专题一力与运动第1讲力与物体的平衡第2讲力与直线运动第3讲力与曲线运动专题二能量与动量第4讲功和功率功能关系第5讲力学中的动量与能量问题专题三电场与磁场第6讲电场与磁场的理解第7讲带电粒子在复合场中的运动专题四电路与电磁感应第8讲直流电路与交流电路第9讲电磁感应的综合应用第10讲电学中的动量和能量问题专题五方法专题第11讲物理图象问题第12讲应用数学知识和方法处理物理问题专题六选修第13讲机械振动和机械波电磁波第14讲光的折射全反射第15讲波粒二象性原子与原子核专题七实验题题型强化第16讲力学和光学实验第17讲电学实验力与物体的平衡专题定位 1.深刻理解各种性质力的特点,熟练掌握分析共点力平衡问题的各种方法;2.掌握匀变速直线运动的规律及运动图象问题;3.综合应用牛顿运动定律和运动学公式解决问题;4.熟练掌握平抛、圆周运动的规律,熟悉解决天体运动问题的两条思路.第1讲力与物体的平衡[相关知识链接]1.受力分析的步骤明确研究对象→隔离物体分析→画受力示意图→验证受力合理性.2.分析受力的思路(1)先数研究对象有几个接触处,每个接触处最多有两个力(弹力和摩擦力).(2)同时注意对场力的分析.(3)假设法是判断弹力、摩擦力是否存在及其方向的基本方法.3.注意(1)只分析研究对象受到的力.(2)只分析性质力,不分析效果力.(3)善于变换研究对象,分析不能直接判断的力.[规律方法提炼]1.整体法与隔离法在分析两个或两个以上的物体间的相互作用时,一般采用整体法与隔离法进行分析;采用整体法进行受力分析时,要注意各个物体的运动状态必须相同.2.共点力平衡的常用处理方法(1)合成法:物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反.(2)效果分解法:物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件.(3)正交分解法:物体受到三个或三个以上共点力的作用而平衡,通过建立平面直角坐标系将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件.(4)力的三角形法:对受三个共点力作用而平衡的物体,将力的矢量图平移使三力组成一个首尾依次相接的矢量三角形,根据数学知识求解未知力.例1 (2019·浙南名校联盟期末)如图所示,一个质量为4kg 的半球形物体A 放在倾角为θ=37°的斜面B 上静止不动.若用通过球心的水平推力F =10N 作用在物体上,物体仍静止在斜面上,斜面仍相对地面静止.已知sin37°=0.6,cos37°=0.8,取g =10m/s 2,则( )A .地面对斜面B 的弹力不变 B .地面对斜面B 的摩擦力增加8NC .物体A 受到斜面B 的摩擦力增加8ND .物体A 对斜面B 的作用力增加10N 答案 A解析 对A 、B 整体分析,力F 是水平的,竖直方向地面对B 的弹力不变,地面对B 的摩擦力增加10N,故A 项正确,B 项错误;对物体A 分析,加力F 前,斜面B 对物体A 的摩擦力F f =mg sin θ=24N,加力F 后,F f ′+F cos θ=mg sin θ,F f ′=16N,故减小8N,选项C 错误;加F 前A 对B 的作用力大小等于A 的重力,即40N,加F 后,A 对B 的作用力大小为F 2+G 2=102+402N =1017N,故D 项错误.拓展训练1 (2019·绍兴市3月选考)如图所示,攀岩者仅凭借鞋底和背部的摩擦停留在竖直的岩壁间,鞋子、背部与岩壁间的动摩擦因数分别为0.80和0.60.为了节省体力,他尽可能减小身体与岩壁间的正压力,使自己刚好不下滑.假设最大静摩擦力等于滑动摩擦力,下列判断正确的是( )A .攀岩者受到三个力的作用B .鞋子受到的静摩擦力方向竖直向下C .岩壁对鞋子的支持力大于岩壁对背部的支持力D .攀岩者背部受到的静摩擦力支撑了体重的37答案 D解析 对攀岩者分析,受重力、鞋与岩壁间弹力和摩擦力、背部与岩壁间弹力和摩擦力共五个力作用;重力方向竖直向下,鞋子和背部受到的静摩擦力方向竖直向上,故水平方向上两支持力大小相等,方向相反,F N1=F N2,又据平衡μ1F N1+μ2F N2=G ,可得F f2=μ2F N2=37G .拓展训练2 (多选)(2019·全国卷Ⅰ·19)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N ,另一端与斜面上的物块M 相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N ,直至悬挂N 的细绳与竖直方向成45°.已知M 始终保持静止,则在此过程中( )A .水平拉力的大小可能保持不变B .M 所受细绳的拉力大小一定一直增加C .M 所受斜面的摩擦力大小一定一直增加D .M 所受斜面的摩擦力大小可能先减小后增加 答案 BD解析 对N 进行受力分析如图所示,因为N 的重力与水平拉力F 的合力和细绳的拉力F T 是一对平衡力,从图中可以看出水平拉力F 的大小逐渐增大,细绳的拉力F T 也一直增大,选项A 错误,B 正确;M 的质量与N 的质量的大小关系不确定,设斜面倾角为θ,由分析可知F Tmin =m N g ,故若m N g ≥m M g sin θ,则M 所受斜面的摩擦力大小会一直增大,若m N g <m M g sin θ,则M 所受斜面的摩擦力大小可能先减小后增大,选项D 正确,C 错误.1.基本思路化“动”为“静”,“静”中求“动”. 2.两种方法(1)解析法:物体受到三个以上的力,且某一夹角发生变化时,将力进行正交分解,两个方向上列平衡方程,用三角函数表示各个作用力与变化角之间的关系,从而判断各力的变化. (2)图解法:物体一般受三个共点力作用;其中有一个大小、方向都不变的力;还有一个方向不变的力.画受力分析图,作出力的平行四边形或矢量三角形,依据某一参数的变化,分析各边变化从而确定力的大小及方向的变化情况.例2 (2019·江苏省模拟)如图所示,在粗糙的水平地面上放着一左侧截面是半圆的柱状物体B ,在B 与竖直墙之间放置一光滑小球A ,整个装置处于静止状态.现用水平力F 拉动B 缓慢向右移动一小段距离后,它们仍处于静止状态,在此过程中,下列判断正确的是( )A .小球A 对物体B 的压力逐渐增大 B .小球A 对物体B 的压力逐渐减小C .墙面对小球A 的支持力逐渐减小D .墙面对小球A 的支持力先增大后减小 答案 A解析 解法1 以A 球为研究对象,分析受力情况:受重力G 、墙面支持力F N 、B 的弹力F N B ,由平衡条件知F N 与F N B 的合力与G 大小相等,方向相反,将B 缓慢向右移动,F N 方向不变,F N B 沿逆时针方向缓慢转动,作出转动过程三个位置力的合成图如图甲所示,由图可知,F N 逐渐增大,F N B 逐渐增大,由牛顿第三定律知小球A 对物体B 的压力逐渐增大,故A 正确,B 、C 、D 错误.解法2 对A 球受力分析如图乙,得:竖直方向:F N B cos θ=G水平方向:F N =F N B sin θ 解得:F N B =Gcos θF N =G tan θB 缓慢向右移动一小段距离,A 缓慢下落,则θ增大,所以F N B 增大,F N 增大,由牛顿第三定律知小球A 对物体B 的压力逐渐增大,故A 正确,B 、C 、D 错误.拓展训练3 (2019·广东省“六校”第三次联考)为迎接新年,小明同学给家里墙壁粉刷涂料,涂料滚由滚筒与轻杆组成,示意图如图所示.小明同学缓缓向上推涂料滚(轻杆与墙壁夹角变小),不计轻杆的重力以及滚筒与墙壁的摩擦力.轻杆对涂料滚筒的推力为F 1,墙壁对涂料滚筒的支持力为F 2,以下说法中正确的是( )A .F 1增大B .F 1先减小后增大C .F 2增大D .F 2减小答案 D解析 以涂料滚为研究对象,分析受力情况,如图,F 1与F 2的合力与重力G 总是大小相等、方向相反.小明缓缓向上推涂料滚,F 1与竖直方向夹角减小,由图可知F 1逐渐减小,F 2逐渐减小,故选D.拓展训练4 (2019·温州市联考)2018年9月2号的亚运会中,中国队包揽了跳水项目的全部10金.图示为跳水运动员在走板时,从跳板的a 端缓慢地走到b 端,跳板逐渐向下弯曲,在此过程中,该运动员对跳板的( )A .摩擦力不断增大B .作用力不断减小C .作用力不断增大D .压力不断增大答案 A解析 运动员对跳板的作用力等于重力,故大小不变;摩擦力等于重力沿跳板面方向的分力,不断增大,压力等于重力垂直于跳板方向的分力,不断减小,故A 正确.[相关知识链接] 电场力(1)大小:F =Eq ,F =kq 1q 2r 2. (2)方向:正电荷受电场力的方向与电场强度的方向相同;负电荷受电场力的方向与电场强度的方向相反.[规律方法提炼]1.方法:与纯力学问题的分析方法一样,学会把电学问题力学化. 2.步骤(1)选取研究对象(整体法或隔离法).(2)受力分析,多了个电场力.(3)列平衡方程. 例3 (2018·嘉、丽3月联考)如图所示,水平地面上固定一个绝缘直角三角形框架ABC ,其中∠ACB =θ.质量为m 、带电荷量为q 的小圆环a 套在竖直边AB 上,AB 与圆环的动摩擦因数为μ,质量为M 、带电荷量为+Q 的小滑块b 位于斜边AC 上,a 、b 静止在同一高度上且相距L .圆环、滑块均视为质点,AC 光滑,则( )A .圆环a 带正电B .圆环a 受到的摩擦力为μk Qq L2 C .小球b 受到的库仑力为Mgtan θD .斜面对小球b 的支持力为Mgcos θ答案 D解析 a 、b 静止在同一高度上,故b 受到重力G b 、斜面的支持力F N b 及a 对b 的库仑引力F ,从而处于平衡状态,由于b 带正电,因此环a 带负电,故A 错误;环a 处于静止状态,受到的是静摩擦力,那么其大小为F f =mg ,并不是滑动摩擦力,因此不可能为F f =μk Qq L2,故B 错误;对b 受力分析有:库仑引力F =k Qq L 2,或F =Mg tan θ,而斜面对b 的支持力为F N b =Mgcos θ,故C 错误,D正确.拓展训练5 (2019·全国卷Ⅰ·15)如图,空间存在一方向水平向右的匀强电场,两个带电小球P 和Q 用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则( )A .P 和Q 都带正电荷B .P 和Q 都带负电荷C .P 带正电荷,Q 带负电荷D.P带负电荷,Q带正电荷答案 D解析对P、Q整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P、Q必带等量异种电荷,选项A、B错误;对P进行受力分析可知,匀强电场对它的电场力应水平向左,与Q对它的库仑力平衡,所以P带负电荷,Q带正电荷,选项D正确,C错误.拓展训练6(2019·浙江新高考研究联盟二次联考)如图所示,两个带电荷量分别为Q1与Q2的小球固定于相距为5d的光滑水平面上,另有一个带电小球A,悬浮于空中不动,此时A离Q1的距离为4d,离Q2的距离为3d.现将带电小球A置于水平面上某一位置,发现A刚好静止,则此时小球A到Q1、Q2的距离之比为( )A.3∶2B.2∶3C.3∶4D.4∶3答案 B解析小球A悬浮于空中时,Q1对其库仑力F1=k Q1q(4d)2,Q2对其库仑力F2=kQ2q(3d)2,由平衡条件F1=35mg,F2=45mg,得Q1Q2=43.将A置于水平面上Q1、Q2之间静止,则kQ1·qr12=kQ2·qr22,得r1r2=23,故选B.[相关知识链接]1.安培力(1)大小:F=BIL,此式只适用于B⊥I的情况,且L是导线的有效长度,当B∥I时F=0.(2)方向:用左手定则判断,安培力垂直于B、I决定的平面.2.洛伦兹力(1)大小:F洛=qvB,此式只适用于B⊥v的情况.当B∥v时F洛=0.(2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力永不做功.[规律方法提炼]1.立体平面化该模型一般由倾斜导轨、导体棒、电源和电阻等组成.这类题目的难点是题图具有立体性,各力的方向不易确定.因此解题时一定要先把立体图转化成平面图,通过受力分析建立各力的平衡关系. 2.带电体的平衡如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动.例4 (2019·台州3月一模)如图所示,在水平绝缘杆上用两条等长的平行绝缘丝线悬挂一质量为m 的通电导体棒.将导体棒放置在蹄形磁铁的磁场中,由于安培力的作用,当两条丝线与竖直方向均成30°角时,导体棒处于平衡状态,若重力加速度为g .则关于导体棒在平衡状态时的说法正确的是( )A .导体棒所在处的磁感应强度处处相等B .导体棒受到的安培力大小一定是12mgC .每条丝线对导体棒的拉力大小一定是33mg D .导体棒受到的安培力与拉力的合力大小一定是mg 答案 D解析 蹄形磁铁靠近两极处的两个磁铁之间才近似可以看作匀强磁场,其余部分不是匀强磁场,所以可知导体棒所在处的磁感应强度不会处处相等,故A 错误;当安培力的方向与细线垂直时,安培力最小,F =mg sin30°=12mg ,所以导体棒受到的安培力大小不一定是0.5mg ,故B 错误;安培力等于0.5mg 时,两条丝线的拉力的和等于32mg ,每条丝线对导体棒的拉力大小都是34mg ,故C 错误;导体棒受到的安培力与拉力的合力大小一定与重力大小相等,方向相反,故D 正确.拓展训练7 均匀带正电的薄圆盘的右侧,用绝缘细线A 、B 悬挂一根水平通电直导线ab ,电流方向由a 到b ,导线平行于圆盘平面.现圆盘绕过圆心的水平轴沿如图所示方向匀速转动,细线仍然竖直,与圆盘静止时相比,下列说法正确的是( )A .细线所受弹力变小B .细线所受弹力不变C .细线所受弹力变大D .若改变圆盘转动方向,细线所受弹力变大 答案 C解析 圆盘静止时,通电直导线受到竖直向上的弹力和竖直向下的重力,两者等大反向,合力为零.当圆盘匀速转动时,根据右手螺旋定则,圆盘产生水平向右的磁场,根据左手定则,通电直导线受到方向向下的安培力,故细线所受的弹力变大,选项A 、B 错误,C 正确;若改变圆盘转动方向,通电直导线受到的安培力方向向上,细线所受的弹力变小,选项D 错误. 拓展训练8 (多选)长方形区域内存在有正交的匀强电场和匀强磁场,其方向如图所示,一个质量为m 且带电荷量为q 的小球以初速度v 0竖直向下进入该区域.若小球恰好沿直线下降,则下列判断正确的是( )A .小球带正电B .电场强度E =mgqC .小球做匀速直线运动D .磁感应强度B =mg qv 0答案 CD解析 小球在复合场内受到自身重力、电场力和洛伦兹力,其中电场力和重力都是恒力,若速度变化则洛伦兹力变化,合力变化,小球必不能沿直线下降,所以合力等于0,小球做匀速直线运动,选项C 正确.若小球带正电,则电场力斜向下,洛伦兹力水平向左,和重力的合力不可能等于0,所以小球不可能带正电,选项A 错误.小球带负电,受到斜向上的电场力和水平向右的洛伦兹力,根据力的合成可得qE =2mg ,电场强度E =2mgq,选项B 错误.洛伦兹力qv 0B =mg ,磁感应强度B =mgqv 0,选项D 正确.专题强化练基础题组1.(2019·福建厦门市上学期期末质检)如图所示,在水平晾衣杆上晾晒床单时,为了使床单尽快晾干,可在床单间支撑轻质小木棍.小木棍的位置不同,两侧床单间夹角θ将不同,设床单重力为G,晾衣杆对床单的作用力大小为F,下列说法正确的是( )A.θ越大,F越大B.θ越大,F越小C.无论θ取何值,都有F=GD.只有当θ=120°时,才有F=G答案 C解析以床单和小木棍整体为研究对象,整体受到重力G和晾衣杆的支持力F,由平衡条件知F =G,与θ取何值无关,故A、B、D错误,C正确.2.(2019·广东珠海市质量监测)区伯伯在海边钓获一尾鱼,当鱼线拉着大头鱼在水中向左上方匀速运动时,鱼受到水的作用力方向可能是( )A.竖直向上B.竖直向下C.水平向左D.水平向右答案 D解析鱼处于平衡状态,受到竖直向下的重力、斜向左上的拉力、水的作用力,根据受力平衡的条件,结合力的合成可知,鱼受到的水的作用力的方向一定是与拉力和重力的合力的方向相反,故D正确,A、B、C错误.3.(2019·金华十校期末)体操运动员在进行自由体操比赛时,有如图所示的比赛动作:运动员两手臂对称支撑,竖直倒立保持静止状态.当运动员两手间距离缓慢增大时,每只手臂对人体的作用力T及它们的合力F的大小变化情况为( )A.T增大,F不变B.T增大,F减小C.T增大,F增大D.T减小,F不变答案 A4.(2019·超级全能生2月联考)打印机是现代办公不可或缺的设备,正常情况下,进纸系统能做到“每次只进一张纸”,进纸系统的结构如图所示.设图中刚好有10张相同的纸,每张纸的质量均为m,搓纸轮按图示方向转动时带动最上面的第1张纸向右运动,搓纸轮与纸张之间的动摩擦因数为μ1,纸张与纸张之间、纸张与底部摩擦片之间的动摩擦因数均为μ2,下列说法正确的是( )A.第1张纸受到搓纸轮的摩擦力方向向左B.第2张与第3张纸之间的摩擦力大小为2μ2mgC.第10张纸与摩擦片之间的摩擦力为0D.要做到“每次只进一张纸”,应要求μ1>μ2答案 D解析第1张纸上表面受到搓纸轮施加的静摩擦力F f0,方向向右,第1张纸下表面受到第2张纸施加的滑动摩擦力F f,方向向左,F f=μ2(mg+F),F为搓纸轮对第1张纸的压力,F f0=F f<μ1F,正常情况F≫mg,故μ1>μ2,A错误,D正确.第2张与第3张纸之间的摩擦力及第10张纸与摩擦片之间的摩擦力都是静摩擦力,根据受力平衡知,大小均为F f,B、C错误.5.(2019·广东深圳市4月第二次调研)如图所示,用缆绳将沉在海底的球形钢件先从a处竖直吊起到b,再水平移到c,最后竖直下移到d.全过程钢件受到水的阻力大小不变,方向与运动方向相反,所受浮力恒定.则上升、平移、下降过程中的匀速运动阶段,缆绳对钢件拉力F1、F2、F3的大小关系是( )A.F1>F2>F3B.F1>F3>F2C.F2>F1>F3D.F3>F2>F1答案 A解析钢件从a匀速运动到b,对钢件受力分析得到:F1=mg+F f;从b匀速运动到c,有:F2=F f 2+(mg)2;从c匀速运动到d,有:F3=mg-F f;由于F2=F f 2+(mg)2=(F f+mg)2-2mgF f,故F 1>F 2>F 3,故A 正确,B 、C 、D 错误.6.(2019·绍兴诸暨市期末)如图所示为复印机工作原理图:正电荷根据复印图案排列在鼓表面,带负电的墨粉颗粒由于电场作用被吸附到鼓表面,随后转移到纸面上“融化”产生复印图案.假设每个墨粉颗粒质量为8.0×10-16kg,带20个多余电子,已知墨粉颗粒受到的电场力必须超过它自身重力的2倍才能被吸附,则鼓表面电场强度至少为(g 取10m/s 2)( )A .2.5×103N/C B .5.0×103N/C C .5.0×104N/C D .1.0×105N/C答案 B解析 由题意知:qE =2mg ,E =2mg q =2×8×10-16×1020×1.6×10-19N/C =5.0×103 N/C,故选项B 正确.7.(2019·金华十校高三期末)如图所示,a 、b 、c 为真空中三个带电小球,b 球带正电且带电荷量为+Q ,用绝缘支架固定,a 、c 两个小球用绝缘细线悬挂,处于平衡状态时三个小球球心等高,且a 、b 和b 、c 间距离相等,悬挂a 小球的细线向左倾斜,悬挂c 小球的细线竖直,则以下判断正确的是( )A .a 小球带负电且带电荷量为-4QB .c 小球带正电且带电荷量为+4QC .a 、b 、c 三个小球带同种电荷D .a 、c 两小球带异种电荷 答案 A解析 根据受力平衡条件可知,因b 球带正电,要使a 、c 两球平衡,所以a 、c 两球一定带负电,对c 小球进行分析,a 、c 间的距离是b 、c 间的两倍,由库仑定律,则有:k |QQ c |r 2=k |Q a Q c |(2r )2,因a 球带负电,可得:Q a =-4Q ,故A 正确.8.(2019·山东济南市模拟)如图甲所示,用电流天平测量匀强磁场的磁感应强度.若挂在天平右臂下方的为单匝矩形线圈且通入如图乙所示的电流,此时天平处于平衡状态.现保持边长MN 和电流大小、方向不变,将该矩形线圈改为三角形线圈,挂在天平的右臂下方,如图丙所示.则( )A.天平将向左倾斜B.天平将向右倾斜C.天平仍处于平衡状态D.无法判断天平是否平衡答案 B解析由左手定则分析可知,线圈受到的安培力方向向上,矩形线圈改成三角形线圈,安培力变小,故天平将向右倾斜.9.如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.整个装置处于沿竖直方向的匀强磁场中.金属杆ab垂直导轨放置,当金属杆ab中通有从a到b的恒定电流I时,金属杆ab刚好静止.则( )A.磁场方向竖直向上B.磁场方向竖直向下C.金属杆ab受安培力的方向平行导轨向上D.金属杆ab受安培力的方向平行导轨向下答案 A解析受力分析如图所示,当磁场方向竖直向上时,由左手定则可知安培力水平向右,金属杆ab受力可以平衡,若磁场方向竖直向下,由左手定则可知安培力水平向左,则金属杆ab受力无法平衡,A正确,B、C、D错误.10.(2019·陕西汉中市3月联考)如图所示,固定的木板与竖直墙面的夹角为θ,重为G的物块静止在木板与墙面之间,不计一切摩擦,则( )A .物块对墙面的压力大小为G tan θB .物块对墙面的压力大小为G sin θcos θC .物块对木板的压力大小为G cos θD .物块对木板的压力大小为Gsin θ答案 D解析 对物块受力分析,根据平行四边形定则可知:物块对墙面的压力大小为F 1′=F 1=G tan θ;物块对木板的压力大小为F 2′=F 2=Gsin θ,故选项A 、B 、C 错误,D 正确. 能力题组11.(2019·河南普通高中高考物理模拟)如图所示,六根原长均为l 的轻质细弹簧两两相连,在同一平面内六个大小相等、互成60°的恒定拉力F 作用下,形成一个稳定的正六边形.已知正六边形外接圆的半径为R ,每根弹簧的劲度系数均为k ,弹簧在弹性限度内,则F 的大小为( )A.k2(R -l )B .k (R -l )C .k (R -2l )D .2k (R -l )答案 B解析 正六边形外接圆的半径为R ,则弹簧的长度为R ,弹簧的伸长量为:Δx =R -l 由胡克定律可知,每根弹簧的弹力为:F 弹=k Δx =k (R -l ),两相邻弹簧夹角为120°,两相邻弹簧弹力的合力为:F 合=F 弹=k (R -l ), 弹簧静止处于平衡状态,由平衡条件可知,F 的大小为:F =F 合=k (R -l ),故B 正确,A 、C 、D 错误.12.(2019·山东烟台市下学期高考诊断)如图所示,质量为M 的斜劈静止在粗糙水平地面上,质量为m 的小物块正在斜面上匀速下滑.现在m 上施加一个水平推力F ,则在m 的速度减小为零之前,下列说法正确的是( )A .加力F 之后,m 与M 之间的摩擦力变小B .加力F 之后,m 与M 之间的作用力不变C .加力F 之后,M 与地面之间产生静摩擦力D .加力F 前后,M 与地面间都没有摩擦力 答案 D解析 加力F 前,m 匀速下滑,则垂直斜面方向:F N =mg cos θ, 滑动摩擦力为F f =μmg cos θ;在m 上加一水平向右的力F ,垂直斜面方向:F N ′=mg cos θ+F sin θ, 滑动摩擦力为F f ′=μF N ′=μ(mg cos θ+F sin θ);对物块,所受支持力增加了F sin θ,摩擦力增加了μF sin θ,即支持力与摩擦力成比例的增加,其合力方向还是竖直向上,大小增大,m 与M 之间的作用力即为其合力,也是增大的,如图所示:则斜面所受的摩擦力与压力的合力方向还是竖直向下,水平方向仍无运动趋势,则不受地面的摩擦力,故A 、B 、C 错误,D 正确.13.(2019·宁波市3月模拟)在光滑的水平面上建立如图所示的直角坐标系xOy ,现在O 点固定一个带电荷量为Q 的正电荷,在x 轴正半轴上的点N (d,0)固定有带电荷量为8Q 的负电荷,y 轴正半轴位置固定有一根光滑绝缘细杆,细杆上套有带电荷量为+q 的轻质小球,当小球置于M 点时,恰好保持静止,则M 的纵坐标为( )A.12dB.33dC.32d D .d 答案 B解析 设OM 为y ,由平衡条件及数学知识可知kQq y 2=8kQq d 2+y 2·y d 2+y 2,得d 2+y 2=2y ,即y =33d ,故B 正确.14.(2019·广东肇庆市第二次统一检测)如图所示,质量分别为m A 和m B 的物体A 、B 用细绳连接后跨过滑轮,A 静止在倾角为45°的斜面上,B 悬挂着.已知m A =2m B ,不计滑轮摩擦,现将斜面倾角由45°增大到50°,系统仍保持静止.下列说法中正确的是( )A .绳子对A 的拉力将增大B .物体A 对斜面的压力将增大C .物体A 受到的静摩擦力增大D .物体A 受到的静摩擦力减小 答案 C解析 设m A =2m B =2m ,对物体B 受力分析,受重力和拉力,由二力平衡得到:F T ′=mg ;再对物体A 受力分析,受重力、支持力、拉力F T 和静摩擦力,F T =F T ′,如图,根据平衡条件得到:F f +F T -2mg sin θ=0,F N -2mg cos θ=0,解得:F f =2mg sin θ-F T =2mg sin θ-mg ,F N =2mg cos θ,当θ由45°增大到50°时,F T 不变,F f 不断变大,F N 不断变小,故C 正确,A 、B 、D 错误.。

(浙江专用)2020版高考物理复习专题一第4讲电学中的曲线运动课件


注:先联立求解vD,后求解R,会使计算更简单。
答案
(1)3 m/s
(2)1145 s
16 15
m
(3)1132 m
带电粒子在匀强磁场中的圆周运动
带电粒子在相邻匀强磁场中的圆周运动
【典例 1】 (2019·金丽衢十二校 3 月高三第三次联考)如图 5 所示,在 xOy 平面内,
以 O′(0,R)为圆心,R 为半径的圆内有垂直于平面向外的匀强磁场,x 轴下方有 足够大的垂直于平面向里的匀强磁场,两区域磁感应强度大小相等。在
图2
小球在重力作用下进入电场区域,并从该区域的下边界离开。
已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,
刚离开电场时的动能为N刚离开电场时的动能的1.5倍。不计空
气阻力,重力加速度大小为g。求:
(1)M与N在电场中沿水平方向的位移之比; (2)A点距电场上边界的高度; (3)该电场的电场强度大小。
进入时G点纵坐标yG=R+Rsin 30°=1.5R 如图丙,由几何关系可知,运动轨迹在 E 点与接收器相外切时,运动轨迹的圆心

恰好在

23R,12R点,根据几何关系可知,由
O
点进入时,粒子的速度方向与
x

正方向的夹角为 60°
进入时 I 点的纵坐标 yI=Rsin 30°=0.5R 在 GI 间射入的粒子能打到接收器上,百分
2mg (3) 2q
1.(2019·浙江桐乡四校联考)(多选)在竖直向上的匀强电场中,有两
个质量相等、带异种电荷的小球A、B(均可视为质点)处在同一
水平面上。现将两球以相同的水平速度v0向右抛出,最后落到
水平地面上,运动轨迹如图3所示,两球之间的静电力和空气阻

2020高考物理突破大二轮浙江专用讲义增分练:专题一 第3讲 学中的曲线运动

第3讲力学中的曲线运动网络构建备考策略1.必须领会的“四种物理思想和三种常用方法”(1)分解思想、临界极值的思想、估算的思想、模型化思想。

(2)假设法、合成法、正交分解法。

2.平抛(或类平抛)运动的推论(1)任意时刻速度的反向延长线一定通过此时水平位移的中点。

(2)设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ。

3.注意天体运动的三个区别(1)中心天体和环绕天体的区别。

(2)自转周期和公转周期的区别。

(3)星球半径和轨道半径的区别。

4.记住天体运动中的“三看”和“三想”(1)看到“近地卫星”想到“最大绕行速度”“最小周期”。

(2)看到“忽略地球自转”想到“万有引力等于重力”。

(3)看到“同步卫星”想到“周期T=24 h”。

运动的合成与分解及平抛运动运动的合成与分解【典例1】(2019·温州九校高三上学期模拟)如图1所示,半径为R的14光滑圆弧AB与水平线相切于B点,O点为圆心,竖直线OB的右侧有方向水平向右的匀强电场。

电场中有两个台阶,第一阶台阶M1N1,第二阶台阶M2N2,已知BM1之间的高度差为H,台阶宽度为l、台阶间的高度差为h。

台阶上铺有特殊材料,与之相碰的小球:①带上正电,并在此后电荷量始终保持不变,其在电场中受到的电场力大小为0.5倍重力;②水平方向的速度立即减为零,竖直方向速度变为原来的32倍。

原来小球不带电,已知H=4h,R=3h,重力加速度为g。

图1(1)从A点静止释放的小球,能落在第一台阶M1N1上,则l至少应为多少个h;(2)若小球由P点静止释放,经过B点时对轨道的压力为重力的1.8倍,令∠BOP =α,求α大小(已知sin 37°=0.6,cos 37°=0.8);(3)调整小球释放的位置,若使落在台阶M1N1中点弹起后,恰好又落到M2N2的中点,求从弹起到落回所经过的时间t及台阶宽度l与高度差h之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电学中的曲线运动网络构建备考策略1.掌握解决电学中曲线运动的一个宗旨是将电学问题力学化。

2.解题思路:画出粒子的运动草图结合几何关系找到相应的物理量。

带电粒子(或带电体)在电场中的曲线运动带电体在匀强电场中的圆周运动【典例1】(2019·浙江省选考科目考试绍兴市适应性试卷)如图1所示,在xOy平面内竖直固定一个“9字型”轨道,圆形部分的半径R=0.2 m,圆心位于C点;直线轨道AB与圆形部分相切于B点,其长度L=3R,CB连线与竖直方向的夹角为53°;在x>0区域有范围很大的匀强电场,场强大小E=5×104N/C,方向沿x 轴正方向。

现在A点处由静止释放质量m=0.1 kg、带电荷量q=+2×10-5C的小物块(可看作质点),已知sin 53°=0.8,不计物块与“9字型”轨道的摩擦,g取10 m/s2。

求:图1(1)物块滑到圆周轨道最低点O处时受到的支持力大小;(2)物块在圆周轨道上速度最大的位置P;(可用PC连线与竖直方向夹角表示)(3)物块在圆周轨道上运动一圈后,从O ′点滑出(轨道B ′O ′与BO 段错开且靠近),其后的水平面上铺设了一种特殊的材料,材料不同位置处的动摩擦因数满足μ=0.2+x (x 为所在处的横坐标值),物块在材料面上滑行过程的最大动能是多少? 解析 (1)物块从A 滑至O 过程,由机械能守恒定律得mgh =12m v 2O 其中h =L sin 53°+R (1-cos 53°)=2.8 R 圆周最低点O 处F N -mg =m v 2O R 代入得F N =6.6mg =6.6 N 。

(2)设物块在圆周轨道(右半侧)P 点处的速度最大,PC 与竖直方向的夹角为θ,此时有mg sin θ=qE cos θ,tan θ=qEmg =1,θ=45°。

(3)分析知,在水平面上a =0时,即qE -μmg =0, 解得μ=1代入μ=0.2+x ,解得x =0.8 m(速度最大) 据动能定理W 电-W f =E km -E k O 其中W 电=qE ·x =0.8 J ,W f =f -·x =0.2+12×1×0.8 J =0.48 J代入数据,得E km =0.88 J 。

答案 (1)6.6 N (2)45° (3)0.88 J带电体在匀强电场中的曲线运动【典例2】 (2019·浙江临安选考模拟)如图2所示,两水平面(虚线)之间的距离为H ,其间的区域存在方向水平向右的匀强电场。

自该区域上方的A 点将质量均为m ,电荷量分别为q 和-q (q >0)的带电小球M 、N 先后以向右的相同初速度沿平行于电场的方向射出。

小球在重力作用下进入电场区域,并从该区域的下边界离开。

已知N 离开电场时的速度方向竖直向下;M 在电场中做直线运动,刚离开电场时的动能为N 刚离开电场时的动能的1.5倍。

不计空气阻力,重力加速度大小为g 。

求:图2(1)M 与N 在电场中沿水平方向的位移之比; (2)A 点距电场上边界的高度; (3)该电场的电场强度大小。

解析 (1)设小球M 、N 在A 点水平射出时的初速度大小为v 0,则它们进入电场时的水平速度仍然为v 0。

M 、N 在电场中运动的时间t 相等,电场力作用下产生的加速度沿水平方向,大小均为a ,在电场中沿水平方向的位移分别为s 1和s 2。

由题给条件和运动学公式得v 0-at =0① s 1=v 0t +12at 2② s 2=v 0t -12at 2③联立①②③式得s 1s 2=3。

④(2)设A 点距电场上边界的高度为h ,小球下落h 时在竖直方向的分速度为v y ,由运动学公式v 2y =2gh ⑤H =v y t +12gt 2⑥M 进入电场后做直线运动,由几何关系知v 0v y =s 1H ⑦联立①②⑤⑥⑦式可得h =13H 。

⑧(3)设电场强度的大小为E ,小球M 进入电场后做直线运动, 则v 0v y=qE mg ⑨设M 、N 离开电场时的动能分别为E k1、E k2,由动能定理得 E k1=12m (v 20+v 2y )+mgH +qEs 1⑩ E k2=12m (v 20+v 2y )+mgH -qEs 2○11 由已知条件E k1=1.5E k2○12联立④⑤⑦⑧⑨⑩○11○12式得E =2mg2q 。

○13 答案 (1)3∶1 (2)13H (3)2mg2q1.(2019·浙江桐乡四校联考)(多选)在竖直向上的匀强电场中,有两个质量相等、带异种电荷的小球A 、B (均可视为质点)处在同一水平面上。

现将两球以相同的水平速度v 0向右抛出,最后落到水平地面上,运动轨迹如图3所示,两球之间的静电力和空气阻力均不考虑,则( )图3A.A 球带正电,B 球带负电B.A 球比B 球先落地C.在下落过程中,A 球的电势能减少,B 球的电势能增加D.两球从抛出到各自落地的过程中,A 球的速率变化量比B 球的小解析 两球均做类平抛运动,水平方向上有x =v 0t ,竖直方向上有h =12at 2,得加速度大小a =2h v 20x 2,可见水平距离x 越大,加速度a 越小,相应所用时间t 越长,即B 球先落地,A 球的加速度a 1小于B 球的加速度a 2,说明A 球带正电而受到竖直向上的电场力,B 球带负电而受到竖直向下的电场力,在下落过程中,电场力对A 球做负功,A 球电势能增加,电场力对B 球做正功,B 球电势能减少,选项A 正确,B 、C 均错误;根据动能定理有mah =12m v 2-12m v 20,而Δv =v -v 0,可见加速度a 越大,落地速率v 越大,速率变化量Δv 越大,即A 球的速率变化量较小,选项D 正确。

答案 AD2.(2019·浙江舟山选考模拟)如图4所示,在竖直平面内,有一长L =0.6 m 的固定竖直杆AB 和光滑固定圆弧轨道CD ,半径OD 竖直,半径OC 与竖直方向的夹角θ=37 °,D 点的高度h =53962 m ,BM 垂直水平地面于M 点。

B 点所在的水平面上方存在着场强大小E 1=2.5×106 N/C 、方向水平向右的匀强电场,下方与C 点所在的水平面之间存在着场强大小为E 2=E 1、方向与竖直方向的夹角α=37°、斜向右上的匀强电场。

现将一质量m =0.4 kg 、电荷量q =2×10-6 C 的小球(可视为质点)套在杆上从A 端由静止释放后下滑,穿过电场后恰好从C 点无碰撞地沿圆弧轨道CD 运动,从D 点水平飞出落到M 点。

已知小球与杆间的动摩擦因数μ=0.2,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8。

求:图4(1)小球到达B 点时的速度大小v B ;(2)小球从A 点运动到C 点所用的时间t 和B 、C 两点间的水平距离x ; (3)圆弧轨道的半径R 。

解析 (1)小球沿杆下滑过程中受到的滑动摩擦力大小 f =μqE 1则小球沿杆下滑的加速度大小 a =mg -f m 由v 2B =2aL联立解得v B =3 m/s 。

(2)小球沿杆下滑的时间t 1=v B a小球离开B 点后在匀强电场E 2中的受力分析如图所示,则qE 2cos 37°=4 N ,恰好与重力mg =4 N 平衡 小球在匀强电场E 2中做类平抛运动,则有 加速度大小g ′=qE 2sin 37°m小球过C 点时有v Bg ′t 2=tan θ小球从A 点运动到C 点所用的时间t =t 1+t 2 B 、C 两点间的水平距离x =12g ′t 22 联立解得t =1415 s ,x =1615 m 。

(3)小球到达C 点的速度大小v C =v Bsin θ小球从C 点运动到D 点的过程中,根据机械能守恒定律有 mg (R +R cos θ)+12m v 2C=12m v 2D小球从D 点水平飞出做平抛运动,则h =12gt 23 x -R sin 37°=v D t 3联立解得R =1312 m(R =2 017768 m >169 m 舍去) 注:先联立求解v D ,后求解R ,会使计算更简单。

答案 (1)3 m/s (2)1415 s 1615 m (3)1312 m带电粒子在匀强磁场中的圆周运动带电粒子在相邻匀强磁场中的圆周运动【典例1】 (2019·金丽衢十二校3月高三第三次联考)如图5所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直于平面向外的匀强磁场,x 轴下方有足够大的垂直于平面向里的匀强磁场,两区域磁感应强度大小相等。

在O ″⎝ ⎛⎭⎪⎫32R ,-R 处,放置一半径R ′=R 2的半圆弧形接收器EHF ,EO ″F 与y 轴平行,在圆形磁场的左侧0<y <2R 的区间内均匀分布着质量为m 、电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正方向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,不计粒子重力、不考虑粒子间相互作用力,粒子离开磁场后不再回到磁场。

求:图5(1)磁场的磁感应强度B 的大小;(2)⎣⎢⎡⎦⎥⎤-R ,⎝ ⎛⎭⎪⎫22+1R 处的粒子经磁场偏转后能否被接收器接收; (3)打到接收器上的粒子占粒子总数的百分比。

解析 (1)当轨道半径r =R 时,粒子偏转后都从O 点进入下方磁场,由q v B =m v 2r ,解得B =m vqR 。

(2)如图甲,⎣⎢⎡⎦⎥⎤-R ,⎝ ⎛⎭⎪⎫22+1R 处的粒子经上方磁场偏转后与x 轴负方向成45°角,在下方磁场运动时圆心在⎝ ⎛⎭⎪⎫22R ,-22R轨迹与接收器不相交。

(3)如图乙,由几何关系可知,运动轨迹在F 点与接收器相内切时,运动轨迹的圆心恰好在E 点,根据几何关系可知,由O 点进入时,粒子的速度方向与x 轴负方向的夹角为60°。

进入时G 点纵坐标y G =R +R sin 30°=1.5R如图丙,由几何关系可知,运动轨迹在E 点与接收器相外切时,运动轨迹的圆心恰好在⎝ ⎛⎭⎪⎫32R ,12R 点,根据几何关系可知,由O 点进入时,粒子的速度方向与x轴正方向的夹角为60°进入时I 点的纵坐标y I =R sin 30°=0.5R 在GI 间射入的粒子能打到接收器上,百分比 η=L GI2R ×100%=50%。

答案 (1)m vqR (2)不能 (3)50%带电粒子在有界匀强磁场中运动的临界、极值问题【典例2】 (2019·浙江省浙南名校联盟高三上学期期末联考物理试题)如图6所示为一种研究高能粒子在不同位置对撞的装置。

相关文档
最新文档