GB 2794-81胶粘剂黏度测定方法(旋转黏度计法)

GB 2794-81胶粘剂黏度测定方法(旋转黏度计法)
GB 2794-81胶粘剂黏度测定方法(旋转黏度计法)

GB 2794-81胶粘剂黏度测定方法(旋转黏度计法)

1 引言

有许多理由都需要进行胶粘剂和粘接试验,其中一些是:

(1)性能比较(拉伸、剪切、剥离、弯曲、冲击和劈裂强度;耐久性、疲劳、耐环境性和传导性等)。

(2)对每批胶粘剂进行质量检查,确定是否达到标准要求。

(3)检验表面及其处理的有效性。

(4)确定对预测性能有用的参数(固化条件、干燥条件、胶层厚度等)。

试验对于材料科学和工程的各个方面都十分重要,尢其是对胶粘剂显得更为重要。试验不仅能测定胶粘剂的本身强度,而且还能评价粘接技术、表面清洁、表面处理的有效性、表面腐蚀、胶粘剂涂布、胶层厚度和固化条件等人们非常关心的问题。

本章首先一般性地讨论粘接接头试验的各种类型,只是包括一些比较重要的试验,继而列出某些学科领域中有关的ASTM 方法和实践,以及SAE 航天局推荐的方法(ARP/s)。

2 拉伸

单纯拉伸试验是负荷作用垂直于胶层平面并通过粘接面中心的试验。ASTM D897 粘接接头拉伸强度测试方法是保留在ASTM 中有关胶粘剂最古老的方法之一。对于试验所用试件和夹具的制作必须给予重视,由于设计不妥,试验时会产生边缘应力,有很大的应力集中,所得到的应力数据进行类推求算不同粘接面积或不同构形接头的强度很可能是不真实的。因此,D897 已被D2095 (条型和圆棒试件拉伸强度测试方法)所代替。这种试件按照ASTM D2094 (粘接试验中条型和圆棒试件的制备)标准制作,很容易调整同心度。如果正确地制作试件和进行试验,便能较精确地测定拉伸粘接强度。拉伸试验是评价胶粘剂最普通的试验,尽管是有经验人员设计的接头,也不能保证加荷时完全是拉伸形式。大多数结构材料都比胶粘剂的拉伸强度高。拉伸试验的优点之一是能得到最基本的数据,如拉伸应变、弹性模量和拉伸强度。

加利福尼亚理工学院的维谦斯及其同事对拉伸试验的应力分布进行了分析,发现除非是当胶粘剂与被粘物的模量相匹配时,应力在整个试件里的分布是不均匀的。这种模量的差异造成了剪切应力沿界面传递。

3 剪切

单纯剪切应力是平行于粘接面所产生的应力。单搭接剪切试件不能代表剪切,但却很实用,制作比较简单,测得的数据有实用价值、重复性好。

剪切试验是很普通的试验(对比下列的几种试验),因其试件制备容易,且几何形状和操作条件对很多结构胶粘剂都适用。与拉伸试验一样,剪切试验的应力分布也是不均匀的,破坏应力是按常规方法将负荷除以粘接面积而得,胶层里承受的最大应力要比平均应力高得很多,胶层受到的应力与纯剪切不同。粘接的“剪切”接头的破坏形式与胶层厚度和被粘物的刚度有关,有时以剪切破坏为主,有时以拉伸破坏为主。

目前所用的剪切试验方法,除了ASTM D1002 之外,还有ASTM D3163 ,它与ASTM D1002 相比,构形几乎相同,只是厚度不同。该方法解决了胶粘剂易从边缘挤出来的问题。ASTM D3165 (层压复合的胶粘剂们拉伸剪切强度测试方法)说明了如何制备试件来测定夹层结构的拉伸剪切强度。双搭接剪切试的标准为

ASTM D3528 (双搭接粘接接头拉伸剪切强度测试方法),其优点是受力比较均衡,从而减小了单搭接试验中的劈裂应力和剥离应力。但也带来了新的问题,测试时两个或更多的胶层同时受力,比较试验就可能复杂化。

压缩剪切试通常也用,ASTM D2182 (金属对金属粘接压缩剪切强度测定方法)对试件与搭接剪切的相似性和压缩剪切试验设备进行了说明。ASTM D905 (粘接接头压缩剪切强度测试方法)是测定木材(硬木等)剪切强度的试验。ASTM E229 是测定扭转剪切强度和扭转剪切模量的试验。如果试件合适,且加荷时同心度良好,则在E229 中胶层比搭接剪切试验应力分布更均匀。

4 剥离

剥离试验用于测定柔韧性胶粘剂承受局部应力集中的能力。剥离力被认为是作用在一条线上,即是线受力。被粘物越柔软,胶粘剂模量越高,则面受力就越趋于线受力,因此应力就很大。由于受力面积取决于被粘物与胶粘剂的厚度和模量,所以很难估算,故一般认为作用应力和破坏应力是线受力,即牛顿/厘米(N/cm )。对于薄片金属被粘物较为广用的是T -剥离试验(ASTM D1876 )。在这种试验中负荷全部传给接头,因此测得的剥离强度比其他形式的剥离试验都低。

弹性体胶粘剂的剥离强度与胶层厚度有关,随着胶层厚度增加,胶粘剂因其弹性变形,而使粘接面积增大,接头在同样受力时,拉伸应力分布就宽,应力集中程度也小,所以剥离强度相对也要高一些。T -剥离试验是一种经常使用的试验方法。这种试验主要是测定两种柔韧性被粘物粘接接头对剥离的抵抗力。试件宽25.4mm ,厚度通常为0.5mm ,长304.8mm ,被粘部分长度仅为228.6mm 。“Bell ”剥离试验是试件在25.4mm 的钢辊上以固定半径剥离,试件由一薄金属片(厚度约0.635mm )与另一在测试中不产生塑性变形的金属片(厚度为1.6mm )粘接而成,它与T -剥离角度稍有不同,测得的数值比T -剥离试验的稍高,试验重复性较好。ASTM D1781 是金属对金属爬鼓剥离试验方法,以直径为100mm 的转动鼓得到固定的剥离半径。Bell 试验和爬鼓试验所采用的装置都是为了稳定剥离角,但这种固定剥离半径的方法,并不能保证剥离半径为定值,因为高模量的金属对其与钢辊或鼓的紧密配合起了抵抗作用。在这两种方法中,有很大的能量消耗于金属产生变形,因此对于一定的胶粘剂而言,它们所测得的剥离强度要高于T -剥离试验。

ASTM D3167 是测定胶粘剂浮辊剥离强度的试验。试件是由柔性被粘物与刚性的被粘物粘接而成,适用于测定半可挠曲的被粘物贴面粘接在硬质基材上的剥离强度。此法对验收和工艺控制特别有用,可作为ASTM D1781 (爬鼓试验)的另一种可供选用的方法。此法由于剥离角度大,所以操作较严格。

ASTM D903 是粘接接头的剥离或撕裂强度的测定方法,这是一个标准1800 剥离试验,被粘物之一应有足够的柔韧性,以使它能折叠。测定时从较刚硬的基材(如相当厚度的金属、塑料、玻璃、木材等)上剥离下柔韧的箔、膜或带。此法主要用于测定胶粘带以及橡胶、织物、薄膜等弹性或柔软材料贴在刚性被粘物上的剥离强度。

5 劈裂

劈裂和剥离都是线受力,破坏从端部开始。如果被粘物足够厚,刚性较大,负荷作用在试件一端,并与粘接面垂直,被粘物不出现屈服变形,接头破坏则是突然发生的,这就是劈裂。ASTM D3807说明了用于工程塑料粘接的胶粘剂劈裂剥离的测定方法。

6 蠕变

粘接结构在使用中承受持久性负荷,特别是有振动存在的情况,胶粘剂的耐蠕变性是非常重要的。ASTM 标准有两个方法是测定蠕变的。ASTM D2293 是金属对金属粘接压缩剪切蠕变性能的测定方法,而ASTM D2294 是金属对金属粘接拉伸剪切蠕变性能的测定方法。ASTM D1780 是进行蠕变试验的标准实践,这是一个通用测试方法,对于一个单搭接试件,施加一个恒定的负荷,用显微镜监测胶层边缘的细刻线,记下随时间而变化的变形量。由于蠕变受温度的影响,测定时一定要在恒温下进行。

7 疲劳

虽然静态强度试验对于许多粘接应用选择胶粘是有用的,但却没有包括应力间断性作用的恶劣条件,即是疲劳。所谓接头的疲劳是指由于受到不断循环交变的应力作用而使接头强度会随时间延长不断地下降直至发生破坏的现象。在使用时经受巨大振动的接头似乎对疲劳最为敏感。因此,在一个粘接接头用到实际构件上之前,测定模拟使用条件下的疲劳强度是非常必要的。ASTM D3166 (粘接拉伸剪切疲劳性能测定方法)虽然是用于金属对金属接头,但对于塑料被粘物也可用。所有的试件为ASTM D1002 单搭接剪切接头形式,试验是在专用的拉伸试验机上进行,这种试验机能施加周期性或正弦波式负荷。通常在高到1800周/min 或更高状态下进行疲劳试验,记录交变应力中的最大应力S ,以发生破坏的交变循环次数N 的对数作图,可得到接头的S-N 疲劳曲线,这也是最为常用的方法。

8 冲击

冲击试验主要用来测定胶粘剂韧性的,即是测定胶粘剂在瞬间缓冲或吸收外力作用的能力。从根本上说,这些试验都是测定胶粘剂对加荷速率的敏感性。ASTM D950 (粘接接头的冲击强度测试方法)说明了剪切试件受冲击力时的摆锤试验方法。试验结果是以试件受到冲击力作用而破坏时每单位粘接面积所吸收的能量(KJ/m2 )来表示的。有些试验机是采用重力加速冲击法,利用一系列重量自由下落到试件上,此时破坏负荷等于重量乘以下落高度。其他先进的仪器是利用压缩空气,使负荷作用时间缩短到10-5s。

9 耐久性

很多ASTM 试验和实践都可测定试件的耐久性,但其中最重要的是楔子试验。ASTM D3762 介绍了在平接的铝试件胶层里嵌入一个楔子,因而在引起裂纹尖端区域产生拉伸应力。之后将受力试件暴露于湿热环境,或其他所要求的环境。然后计算裂纹随时间的增长,并判断破坏类型。这个试验基本上是定量的,但对于被粘物的表面处理参数和胶粘剂的环境耐久性应区别对待。

10 标准试验方法汇集

10.1 老化

(1)ASTM D1183-70(1981) ——胶粘剂耐循环实验室老化条件的标准试验方法。

(2)ASTM D1581-60(1984) ——玻璃瓶标签用水基或溶剂、可溶液体胶粘剂粘接耐久性的标准试验方法。

(3)ASTM D1713-65(1981)——自动装置密封顶盖纤维板试件用水基或溶剂、可溶液体胶粘剂粘接耐久性的标准试验方法。

(4)ASTM D3632-77(1982)——用氧压法对粘接接头进行加速老化的试验方法。

10.2 淀粉物质

ASTM D1488-60(1981) 胶粘剂中的淀粉物质的标准试验方法。

10.3 灰分含量

美联邦试验方法标准175B,4032.1 法——胶粘剂的灰分含量。

10.4 生物降解

(1)ASTM D1382-64(1981)——胶膜对蟑螂侵袭敏感性的标准试方法。

(2)ASTM D1383-64(1981)——干胶膜对实验室小鼠侵袭敏感性标准试验方法。

(3)ASTM D1877-77——在霉菌条件下多层板胶粘剂粘接接头耐久性标准试验方法。

(4)ASTM D4299-84——细菌污染对胶粘剂制备和胶膜影响的标准试验方法。

(5)ASTM D4300-84——霉菌污染对胶粘剂制备和胶膜耐久性影响的标准试验方法。

10.5 粘连点

ASTM D1146-53(1981) ——潜性胶层粘连点的标准试验方法。

10.6 性能鉴定

ARP 1610——物理化学定性方法,环氧胶粘剂和预测树脂体系。

10.7 化学试剂

ASTM D896-84 ——粘接接头耐化学试剂的标准试验方法。

10.8 劈裂

ASTM D1062-78(1983) ——金属对金属粘接劈裂强度的标准试验方法。

10.9 劈裂/剥离强度

ASTM D3807-79 ——胶粘剂的拉伸劈裂/剥离强度的标准试验方法(工程塑料对工程塑料的粘接)。

10.10 腐蚀

ASTM D3310-74(1983) ——测定胶粘剂腐蚀性的标准推荐方法。

10.11 蠕变

(1)ASTM D1780-72(1983) ——金属对金属胶粘剂粘接进行蠕变试验的标准推荐方法。

(2)ASTM D2293-69(1980)——胶粘剂压缩剪切的蠕变性质标准试验方法(金属对金属)。

(3)ASTM D2294-69(1980)——胶粘剂拉伸剪切的蠕变性质标准试验方法(金属对金属)。

(4)GB 7750-86——胶粘剂拉伸剪切的蠕变性质试验。

10.12 密度

ASTM D1875-69(1980) ——液态胶粘剂密度的标准试验方法。

10.13 耐久性(包括大气老化)

(1)ASTM D1151-84 ——湿度和温度对粘接影响的标准试验方法。

(2)ASTM D1828-70——粘接接头与结构大气曝晒的标准方法。

(3)ASTM D2918-71(1981)——测定受剥离应力作用的粘接接头耐久性的标准方法。

(4)ASTM D2919-71(1981)——测定在拉伸剪切应力作用下粘接接头耐久性的标准方法。

10.14 电性质

ASTM D1304-69(1983)——用作电绝缘材料胶粘剂的标准试验方法。

10.15 电解腐蚀

ASTM D3482-76(1981) ——测定胶粘剂对铜的电解质腐蚀的标准方法。

10.16 疲劳

ASTM D3166-73(1979)——胶粘剂拉伸剪切疲劳性能的标准试验方法(金属对金属)。

10.17 填料含量

ASTM D1579-60(1981)——苯酚、间苯二酚和三聚氰胺类胶粘剂填料含量的标准试验方法。

10.18 弯曲强度

(1)ASTM D1184-69(1980) ——粘接复合层压板胶粘剂的弯曲强度标准试验方法。

(2)ASTM D3111-76(1982)——用圆棒弯曲试验法测定热熔胶柔性的标准方法。

10.19 流动性

ASTM D2183-69(1982)——胶粘剂流动性的标准试验方法。

10.20 劈裂断裂强度

ASTM D3433-75(1980)——粘接接头劈裂断裂强度标准试验方法。

10.21 高温影响

ASTM D2295-72(1983)——在高温下胶粘剂拉伸剪切强度的标准试验方法(金属对金属)。

10.22 氢离子浓度(PH )

ASTM D1583-61(1981)——氢离子浓度的标准试验方法。

10.23 冲击强度

(1)ASTM D950-82——胶粘剂粘接件冲击强度的标准试验方法。

(2)GB 6328-84 ——胶粘剂粘接件的冲击强度试验方法。

10.24 低温和深冷

ASTM D2557(1983) ——胶粘剂在-267.8-55°C 时拉伸剪切强度的标准试验方法。

10.25 不挥发物含量

(1)ASTM D1489-69(1981) ——水基胶粘剂不挥发物含量的标准试验方法。

(2)ASTM D1490-82 ——脲醛树脂溶液不挥发物含量的标准试验方法。

(3)ASTM D1582-60(1981) ——苯酚、间苯二酚和三聚氰胺胶粘剂不挥发物含量的标准试验方法。

(4)GB 2793-81——胶粘剂不挥发物含量的测定方法。

10.26 剥离强度

(1)ASTM D903-49(1983)——粘接接头的剥离撕裂强度的标准试验方法。

(2)ASTN D1781-76(1981)——胶粘剂爬鼓剥离试验的标准方法。

(3)ASTM D1876-72(1983)——胶粘剂T-剥离强度的标准试验方法。

(4)ASTM D2558-69(1984)——评价绱鞋底粘接胶粘剂剥离强度的标准试验方法。

(5)ASTM D2918-71(1981)——测定剥离应力作用的粘接接头耐久性的标准方法。

(6)ASTM D3167-76(1981)——浮辊剥离强度的标准试验方法。

(7)GB2791-81——胶粘剂T 剥离强度测定方法(金属对金属)。

(8)GB 2792-81——压敏胶带1800 剥离强度测定方法。

(9)GB 2790-81——胶粘剂1800 剥离强度测定方法(金属对金属)。

(10)HG 4-854-81——硫化橡胶与金属剥离强度试验方法。

10.27 气味

ASTM D4339-84——测定胶粘剂气味的标准试验方法。

10.28 渗透性

ASTM D1916-69(1980) ——胶粘剂渗透性的标准试验方法。

10.29 辐射(含光曝晒)

ASTM D904-57(1981)——粘接试件曝露于人造光源(碳-弧光型)和自然光源的标准实践。

ASTM D1879-70(1981)——胶粘剂曝露于高能辐射下的标准试验方法。

10.30 橡胶胶粘剂试验

ASTM D816-82 ——橡胶胶粘剂的标准试验方法。

10.31 盐雾试验

(1)ASTM B117-73(1979) ——盐雾试验的标准方法。

(2)ASTM G 85-84——改进的盐雾试验的标准实践。在盐雾中引入酸和SO2 ,比B 117 法的腐蚀环境更严重。

10.32 剪切强度(拉伸剪切)

(1)ASTM E229-70(1981)——结构胶粘剂的剪切强度和剪切模量的标准试验方法。

(2)ASTM D905-49(1981)——粘接接头压缩剪切强度的标准试验方法。

(3)ASTM D906-82——胶合板结构中胶粘剂拉伸剪切强度的标准试验方法。

(4)ASTM D1002-72(1983) ——胶粘剂拉伸剪切强度的标准试验方法(金属对金属)。

(5)ASTM D1144-84——测定粘接强度发展的标准实践。

(6)ASTM D2182-72(1978)——金属对金属粘接压缩剪切强度的标准试验方法(圆盘剪切)。

(7)ASTM D2295-72(1983)——胶粘剂高温拉伸剪切强度的标准试验方法(金属对金属)。

(8)ASTM D2557-72(1983)——胶粘剂在-267.8-550C 温度时拉伸剪切强度的标准试验方法。

(9)ASTM D2919-71(1981)——测定粘接接头拉伸剪切耐久性的标准试验方法。

(10)ASTM D3613-73(1979)——测定硬质塑料搭接接头拉伸剪切强度的标准试方法。

(11)ASTM D3614-73(1979)——测定塑料粘接夹层结构接头拉伸剪切强度的标准试验方法。

(12)ASTM D3165-73(1979)——层压复合的胶粘剂拉伸剪切强度的标准试验方法。

(13)ASTM D3166-73(1979)——胶粘剂拉伸剪切时疲劳性能的标准试验方法。

(14)ASTM D3528-76(1981)——胶粘剂双搭接接头拉伸剪切强度的标准试验方法。

(15)ASTM D3931-80——测定填缝胶粘剂压缩剪切强度的标准实践。

(16)ASTM D3983-81——用厚被粘物拉伸搭接试件测量非刚性胶粘剂的剪切强度和剪切模量的标准实践。

(17)ASTM D4027-81——通过改条试验测量结构胶粘剂剪切性能的标准试验方法。

(18)GB 7124——胶粘剂拉伸剪切强度试验方法。

(19)HG 8-853-81——硫化橡胶与金属剪切强度试验方法。

10.33 试件制备

ASTM D2094-69(1980) ——粘接试验用的条型和棒状试件制备的标准实践。

10.34 局部粘接试验

ASTM D3808-79——用局部粘接试验方法定性测定胶粘剂对被粘物粘接性的标准实践。

10.35 涂胶量

(1)ASTM D898-69(1980)——单位面积上涂布的干胶量的标准试验方法。

(2)ASTM D899-51(1984)——单位面积上涂布的液体胶粘剂量的标准试验方法。

10.36 贮存期

ASTM D1337-56(1984)——根据粘度和粘接强度变化测定胶粘剂贮存期的标准试验方法。

10.37 强度发展

ASTM D1144-84——测定粘接强度发展的标准试验方法。

10.38 耐应力开裂

ASTM D3929-80——使用弯曲梁方法评估胶粘剂粘接塑料的应力开裂的标准试验方法。

10.39表面处理

(1)ASTM D2093-69(1976)——粘接前塑料表面处理的标准推荐方法。

(2)ASTM D2651-79(1984)——粘接用金属表面处理的标准实践。

(3)ASTM D2674-72(1984)——用于铝表面处理的硫酸-铬酸盐浸蚀液分析的标准方法。

(4)ASTM D3933-80——用于结构粘接的铝表面处理的标准实践(磷酸阳极化)。

(5)ARP 1524——用于高耐久结构粘接的铝合金表面处理与底涂(磷酸阳极化)。

10.40 快粘力

(1)ASTM D2979-71(1982)——用下压式探头装置测定压敏胶快粘力的标准试验方法。

(2)ASTM D3121-73(1984)——用滚球法测定压敏胶快粘力的标准试验方法。

10.41 拉伸强度

(1)ASTM D897-78(1983)——胶粘剂粘接拉伸强度的标准试验方法。

(2)ASTM D1144-84——测定胶粘剂粘接强度发展的标准试验方法。

(3)ASTM D1344-78——用交叉搭接试件测定胶粘剂拉伸强度的标准试验方法。

(4)ASTM D2095-72(1983)——方条和圆棒试件测定胶粘剂拉伸强度的标准试验方法。

10.42 扭转强度

ASTM D3658-78(1984)——测定紫外线固化玻璃/金属胶粘剂粘接扭转强度的标准试验方法。

10.43 粘度

(1)ASTM D1084-63(1981)——胶粘剂粘度的标准试验方法。

(2)ASTM D2556-69(1980)——流动性与剪切速率相关的胶粘剂表观粘度的标准试验方法。

(3)ASTM D3236-73(1978)——热熔胶和涂敷材料粘度的标准试验方法。

(4)GB 2794-81——胶粘剂粘度的测定方法(旋转粘度计法)。

10.44 体积电阻率

ASTM D2739-72(1984)——导电胶的体积电阻率的标准试验方法。

10.45 吸水性

ASTM D1584-60(1984)——纸标签的吸水性标准试验方法。

10.46 楔子试验

ASTM D3762-79(1983)——金属铝粘接耐久性的标准度试验方法。

10.47 适用期

ASTM D1338-56(19820——用粘度和强度变化测定液体或糊状胶粘剂的适用期。

GB 7123-86 ——胶粘剂适用期的测定方法。

来源:[https://www.360docs.net/doc/022364734.html,]机电之家·机电行业电子商务平台!

粘度测试注意事项及乌氏粘度计原理

粘度测试注意事项及乌氏粘度计原理 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘 粘度计 度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求*作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。 七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时

旋转粘度计NDJ-5S使用标准操作规程

旋转粘度计NDJ-5S使用标准操作规程 1.目的 制定旋转粘度计NDJ-5S使用标准操作规程,使操作达到规范化、标准化,确保数据的准确性。 2.范围 本规程适用于上海地学仪器研究所NDJ-5S旋转粘度计的操作。本仪器具有测量灵敏度高。测定结果可靠,使用操作方便,是用来测量牛顿型液体的绝对粘度和非牛顿型液体的表观粘度的仪器。 3.内容 仪器的操作的使用 开机:开机前,将黄色保护盖帽取下,显示屏亮。但电机不工作,预热20min. 准备被测液体,将被测液体置于直径不小于60mm,高度不低于120mm的烧杯或直筒形容器中。 准确地控制被测液体的温度,恒度至25℃±1℃。 仔细调整仪器的水平,检查仪器的水准器气泡是否居中,保证仪器处于水平的工作状态。 参照量程表(表1),选择适配的转子连接头(向右旋装上,向左旋卸下)。估算样品的粘度范围,根据合适的粘度范围选择相应的转子和转速,当估计不出被测液体的大致粘度时,应视为较高粘度,试用由小到大的转子(转子号由高到低)和由慢到快的转速。原则上高粘度的液体选用小转子(转子号高),则转速,低粘度的液体选用大转子(转子号低),快转速。 (表1)NDJ-5S量程表

缓慢调节升降旋钮,调整转子在被被测液体中的高度,直至转子的液体标志(凹槽中部)与液面相平。 参数设定及测定 打开仪器背面的电源开关,进入等待状态,仪器采用中英文显示。 按“▲”或“▼”键选择所需语言模式,按“1#”处, 按“?”或“?”键选择所需转子号,转子号为5种,即“1#、2#、3#、4#及0#“转子。 按“▲”或“▼”键可切换到转速位置。例台光标停在“60转/分”处,按“?”或“?”键可旋转所需的转速。NDJ-5S转速分为9档,分别为转/分、转/分、转/分、3转/分、6转/分、12转/分、30转/分、60转/分及自动档。 当选择好转子和转转速档位后,按“ok/确定“键,转子开始旋转,仪器开始测量,当右边坚条方块显示光标由下向上升至落刻度时,屏幕显示的粘度值即为测量什。测量 时按”开始/停始“键,仪器将会停止测量;如按” 转子号和转速进行测量。 每个试样应测量两次,测量结果取两次测量的算术平均什。两次测量结果之差小于或等于两次测量结果平均什的10%,否则测量第三次。 仪器具有超称报警功能,若测量值大于100%,测量值显示over。为保证测量精度,测量时量程百分比读数应控制在20%-90%之间,能控制在35%-75%之间为较理想值。 在任何状态下,按“开始/停始”键,程序将从起状态开始运行,操作界面回到用户选择工作状态。 每次使用后应旋出转子,及时清洁转子和保护架,转子擦干净后放回到转子架中。即忌用硬物刮、擦转子,以免破坏转子结构。不可把转子留在仪器上进行清洁。 当测不同样品时,应首先清洁(擦干净)转子和转子保护框架,防止由于被测液体相混淆而引起的测量误差。 注意事项 做到下列各点才能测得较精确的粘度:

NDJ-1 旋转粘度计

NDJ-1 旋转粘度计使用说明书 武汉格莱莫检测设备有限公司

目录 一、概述 (2) 二、主要技术指标及参数 (2) 三、仪器结构和安装 (2) 四、操作使用 (5) 五、注意事项 (7) 六、仪器成套和技术文件 (8) 本仪器为精密测试仪器,使用前请务必详阅本说明书。 - 1 -

一、概述 NDJ-1 旋转粘度计是根据上海市企业标准《NDJ-1型旋转式粘度计》规定的技术要求设计和制造的,它可广泛应用于对油脂、油漆、塑料、食品、药物、胶粘剂等各种流体粘度的测量。 二、主要技术指标及参数 1、测量范围(mPa.s): 10~10×104; 2、转子转速(r/min): 6、12、30、60; 3、转子规格: 1#、2#、3#、4#; 4、测量误差(F·S):±5%; 5、工作电源: AC(220±10%)V、(50±10% )Hz; 6、环境温度: 5℃~35℃; 7、相对湿度:不大于80%。 三、仪器结构和安装 (一)仪器结构 1、结构原理 结构原理图见图1所示。 图1 ⑴步进电机以稳定的转速旋转,连接刻度圆盘,再通过游丝和转轴带动转 - 2 -

- 3 - 子旋转。如果转子未受到液体的阻力,则游丝、指针与刻度盘同速旋转,指针在刻度圆盘上指出的读数为“0”。而当转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡,最后达到平衡,这时与游丝连接的指针在刻度圆盘上指示一定的读数(即游丝的扭转角)。 将读数乘上特定的系数即得到液体的粘度(mpa ·s )。 ⑵ 利用电机系统及电子器件进行变速,由专用旋转旋钮操作,分四档转速,可以根据测定需要选择。 ⑶ 按仪器不同规格附有1至4号四种转子,可根据被测液体粘度的高低随同转速配合使用。 ⑷ 为使读数精确,仪器装有指针固定控制装置(指针控制杆)。当转速较快时(60 转/分),无法在旋转时读数,这时可以按下指针控制杆,使指针固定下来,便于读取准确的读数。 ⑸ 保护架是为了稳定测量和保护转子而专门设计的。使用保护架进行测量能取得较稳定的测量结果。 ⑹ 整套仪器配有固定支架和升降机构,一般在实验室中进行小量和定温测定时应固定使用。另外,仪器也可以脱离固定支架和升降机构手提使用。 2、整体结构 ⑴ 机头的结构示意图见图2所示。 图 2

(项目管理)检验科项目方案

湖北省人民医院 检验科信息系统 项目方案 深圳拓朴众邦软件有限公司 2002年9月

深圳市拓朴众邦软件有限公司 检验科信息系统介绍 概述 随着检验诊断技术的快速发展,检验科拥有的检验设备自动化程度越来越咼,设备数量也越来越多,所开展的检验测定项目越来越多,为临床提供了大量的诊断数据。在此情况之下,为了适应现代实验室管理需要,进一步提高工作效率,更好地为临床检验工作服务,湖北省人民医院计划通过实施检验网络信息系统,将先进的计算机技术、信息处理技术和临床实验诊断技术应用于检验的管理和服务中,实现医院医疗管理信息化和数码化。 CHIS_LAS是我公司开发成功的医院检验科通用中文报告管理软件,能自动接收来自生化、血球、血凝、蛋白、小便、血气、酶标等各种检验仪器的测试数据,并帮助检验师轻松完成报告单打印、报告单查询、工作量和收费统计、报告汇总、收费汇总、阳性项目汇总、数据分析和质控图绘制等工作。该软件在自动化、易操作性、数据安全等方面达到国内领先水平。 检验科系统的业务内容可以概括地分为五个部分:

一.主要功能 联网仪器数据采集通过一个后台服务程序来完成,工程人员做好仪器设置以后,每次电脑开启后会自动运行,不需要操作员干预。 标本登记:对收到的每个标本登记受检者和检验申请信息,门诊病人通过发票流水号,住院病人通过住院号,可以自动读取临床输入的信息,登记时只需要确认即可。也可以根据需要录入新的申请。登记的同时完成申请的确认和住院病人费用上帐。 普通报告:完成生化、免疫、临检科室的检验报告。对每个标本的检验结果进行确认,根据需要可以做出修正(不改变原始数据),打印统一格式的中文报告。经过确认的检验结果可以在临床医生工作站及时查阅。 微生物报告:完成微生物学检验报告,根据检出的每种细菌分别打印药敏试验报告,并具有细菌统计的功能。 图像报告:对标本图片的图像检验形成图像报告。 主任工作站:监视联网仪器的标本检验情况,查询各组的检验情况,处理复查标本和特批标本。 统计报表:完成各种科室管理报表。 综合查询:对标本检验结果进行综合查询,可以查询住院病人同一项目的历史检验情况, 或通过模糊查询检索标本检验结果。 质量控制:仪器开展的各个项目的质量控制。 试剂管理:记录各室试剂的领用和消耗情况,统计试剂的消耗及相关费用。 字典维护:系统使用的数据字典的维护。 系统管理:系统设置、操作员权限分配等功能。 .系统特点 自动从各种分析仪器中采集数据 完整保存仪器输出的原始结果,包括同一个样本的复检结果 检验结果可以在发布前由检验人员手工修正 同一标本来自多台仪器的检验结果自动合并 可以处理血糖类检验的标本登记、结果合并和图形报告 由电脑输出统一格式的中文报告单 实现检验信息的集中存储,发布的结果可以在医生工作站方便查阅

NDJ-1旋转粘度计说明书

NDJ-1旋转粘度计说明书 NDJ-1型旋转式粘度计用途: NDJ-1型旋转式粘度计是用于测量液体的粘性阻力与液体的绝对粘度的新型仪器。广泛适用于测定油脂、油漆、食品、药物、胶粘剂等各种流体的粘度。 NDJ-1型旋转式粘度计结构原理: 1.利用齿轮系统及离合器进行变速,由专用旋转旋钮操作,分四档转速,根据测定需要选择。 2.按仪器不同规格附有0至4号五种转子,可根据被测液体粘度的高低随同转速配合选用。 3.仪器装用指针固定控制机构,为精确读数用。当转速较快时(30转/分,60转/分)无法在旋转时进行读数,这时可按下指针控制杆,使指针固定下来,便于读数。 4.保护架是为了稳定测量和保护转子。使用保护架进行测定能取得较稳定的测量结果。黄色保护圈是为了保护仪器轴连接杆不受外力侵击而影响仪器精度稳定。 5.仪器可手提使用,配有固定支架及升降机构,一般在实验室中进行小量和定温测定时应固定使用。NDJ-1型旋转式粘度计安装: 1.从包装箱中取出存放箱、支架和调节螺钉二只。 2.将二只调节螺钉旋入支座的底脚。 3.检查升降夹头的灵活性和自锁性,发现过松或过紧现象可用十字螺丝刀调整夹头紧松螺钉,使其能上下升降,一般略偏紧为宜,以防装上粘度计后产生自动坠落。 4.打开存放箱,取出粘度计,将粘度计装入升降夹头上,用手柄固定螺钉拧紧(应尽可能水平),拿下指针控制杆上的橡皮筋,取下粘度计下端的黄色保护圈,然后取出存放箱中的保护架旋在粘度计上。 5.用调节螺钉调节水平泡,保持粘度计水平。 NDJ-1型旋转式粘度计操作使用: 1.准备被测液体,置于直径不小于70mm高度不小于130mm的烧杯或直筒形容器中,准确地控制被测液体温度。 2.将保护架装在仪器上(向右旋入装上,向左旋出卸下)。 3.将选配好的转子旋入轴连接杆(向左旋入装上,向右旋出卸下)。旋转升降旋钮,使仪器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志和液面平为止,再精调水平。接通电源,按下指针控制杆,开启电机,转动变速旋钮,使其在选配好的转速档上,放松指针控制杆,待指针稳定时可读数,一般需要约30秒钟。当转速在“6”或“12”档运转时,指针稳定后可直接读数;当转速在“30”或“60”档时,待指针稳定后按下指针控制杆,指针转至显示窗内,关闭电源进行读数。注意:按指针控制杆时,不能用力过猛。可在空转时练习掌握。 4.当指针所指的数值过高或过低时,可变换转子和转速,务使读数约在30~90格之间为佳。 5.使用0号转子和低粘度液测试附件可按下列步骤操作。 5.1将0号转子装在连接螺杆上(向左旋转装上)。 5.2将固定套筒套入仪器底部圆筒上,并用套筒固定螺钉拧紧。 5.3配用有底外试筒时,应在外试筒内注入20~25ml的被测液体后再按下列步骤操作。配用无底外试筒时,可直接按下列步骤操作。 5.4将外试筒套入固定套筒并用试筒固定螺钉予以拧紧,旋紧时必须注意试筒固定螺钉之锥端旋入外试筒上端之三角形槽内(可在侧面的圆孔中观察试筒三角槽是否位于圆孔中心)。控制好被测液体温度后即可进行测试。

旋转粘度计使用八大注意事项

旋转粘度计使用八大注意事项 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃时,有些液体粘度值偏差超过5% ,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求*作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。 七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时清洗,特别在测油漆和胶粘剂之后。要注意清洗的方法,可用合适的有机溶剂浸泡,千万不要用金属刀具等硬刮,因为转子表面有严重的刮痕时会带来测量结果的偏差。 八、其他需注意的问题。 1.大部分仪器需要调整水平,在更换转子和调节转子高度后以及在测量过程中随时注意水平问题,否则会引起读数偏差甚至无法读数。 2.有些仪器需装保护架,仔细阅读说明书按规定安装, 否则会引起读数偏差。 3.确定是否为近似牛顿流体,对于非牛顿流体应经过选择后规定转子、转速和旋转时间,以免误解为仪器不准。综上所述, 旋转粘度计虽然结构简单、使用方便,但如果不正确使用,一台检定合格的仪器却不能得到准确的测量结果,影响产品质量。

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

旋转粘度计的使用和维护

旋转粘度计的使用和维护 旋转粘度计广泛应用于测定油脂、油漆、涂料、塑料、食品、药物、胶粘剂等各种流体的动力粘度。该仪器结构简单、价格便宜、方便实用,因而广受欢迎。在长期从事该类仪器的检定过程中我们发现许多用户,特别是中小企业的测试人员在使用过程中存在许多问题,往往我们检定的仪器性能优于国家计量检定规程的要求,但是用户在测试样品时数据偏差很大。现就如何正确使用该类仪器获得准确可靠的测量结果分析如下。 首先,简单介绍一下该类仪器的测量原理: 旋转粘度计开机后先要检测零位,这一操作一般在不安装转子的情况下进行,然后在半径R 1的外筒里同轴地安装半径R2的内筒,其间充满了粘性流体,同步电机以稳定的速度旋转,接连刻度圆盘,再通过游丝和转轴带动内筒(即转子)旋转, 内筒(即转子)即受到基于流体的粘性力矩的作用,作用越大, 则游丝与之相抗衡而产生的扭矩也越大,于是指针在刻度盘上指示的刻度也就越大。将读数乘以特定的系数即得到液体的动力粘度。 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃时,有些液体粘度值偏差超过5% ,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生

NDJ-1旋转粘度计操作规程

SOP/QC(07)016-01 旋转粘度计操作及预防性维护 操作规程 文件类别:操作规程 审批表 江西中兴汉方药业有限公司

目的:制定旋转粘度计操作规程,规范旋转粘度计操作,保证旋转粘度计正常运行。依据:厂家说明书 范围:适用于旋转粘度计操作。 责任:质量控制科QC主任及QC检验员 正文: 1 程序 1.1 仪器与用具 1.1.1 旋转式粘度计 1.1.2 恒温水浴 1.1.3 温度计,分度0.2 ℃ 1.2 操作方法 1.2.1 仪器安装及操作按仪器使用说明进行,并根据供试品的粘度范围和药典在该品种正文 项下的规定,选用是适宜转子和转速。 1.2.2 按各该药品项下的测定温度调整恒温水浴温度。 1.2.3 取供试品置仪器规定的容器中,恒温30 分钟后,依法测定偏转角(α)。关闭马达。 1.2.4 另取供试品同法操作,取二份供试品测定平均值 1.2.5 取2 次测定的平均值按公式计算,即得供试品的动力粘度。 1.2.6 测定时当指针稳定后即应读数,经一定时间旋转后粘度值会逐渐下降。 1.3 记录记录旋转式粘度剂型号,所用转子号数及转速,测定温度等。 1.4 NDJ-1 型旋转式粘度计的标准操作规程 1.4.1 准备被测液体,置于直径不小于70mm的烧杯或直筒形容器中,准确地控制被液体 的温度。 1.4.2 将保护框架装在仪器上(向右旋入装上,向左旋出卸下)。 1.4.3 将选配好的转子旋入连接螺杆(向左旋入装上,向右旋出卸下)。旋转升降钮,使仪 器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志与液面平行为止。调整仪器水平,开启电机开关,转动变速旋钮,使所需转速数向上,对准速度指示点,转子在液体中旋转。经过多次旋转,一般为(20~30)s,或按规定时间,待指针趋于稳定可进行读数。按下指针控制杆,使读数回定下来,待指针转至读数窗口时关闭电机(注意:1、不得用力

NDJ-79旋转式粘度计使用说明书

N D J-79旋转式粘度计 使用说明书 -CAL-FENGHAI.-(YICAI)-Company One1

NDJ-79旋转式粘度计 使用说明书

一、用途及特点 NDJ-79旋转式粘度计是一种测量各种牛顿型液体的绝对粘度和非牛顿型液体的表现粘度的精密仪器,具有使用方便、性能稳定、维护简单等优点。适用于测量各种油脂、油漆、油墨、涂料、塑料、浆料、橡胶、乳胶、洗涤剂、树脂、乳炼奶油、药物以及化妆品各种流体的粘度。是纺织、化工、石油、机电、医药、食品、轻工、建筑等行业以及大专院校、科研单位、军工部门的实验室必备仪器。 NDJ-79旋转式粘度计考虑到I号测定组织结构不严密,无温度控制,其测定结果只能提供近似值,而不是精确值,这与计量仪器的要求不相符。据反映,在同行使用中容易产生纠纷,使用价值不大,因而本仪器取消了I号测定组及附件。 二、主要技术规格 测量范围: 测量误差:±5% 测定转子:分成II Ⅲ二个测定转子组及容器 转速:750r/min、75r/min、min三档 电源:220V±10%,50Hz 外形尺寸:185mm×165mm×450mm 净重:12KG 三、准备 1、拆箱后,从仪器箱里取出粘度计主机,置于稳固的工作台上。 2、拆卸避震内包装,步骤(见图1): (1)松开滚花螺栓,将黄色避震器托架取下。 (2)松开测定器螺母,将测定器II从托架取下。 (3)接通电源:工作电压为~220V±10%,50Hz (4)准备好恒温循环水浴,并控制到所需温度。 (5)联轴器安装:联轴器是一左旋滚花带勾的螺母,固定于电极同轴的端部。拆装时用

插杆插入项目圆盘上的小孔卡住电机轴。使用减速器时测定组侧配有短小勾用于转子悬挂。 (6)零点调整:开启电机,使其空转,反复调节调零螺钉,使指示零点。 图1 1 温度计支架 6 避震器托架 2 温度计 7 第II 组测量容器 3 第III 组测量容器 8 托架 4 调节螺钉 9 转子:II 组转子:1、10、100 III 组转子:01、02、04、0 5 5 主机 10变速器:1:10 1:100 四、操作使用 1、本仪器共有二组测定器,每组包括一个测定器和几个测定转子配合使用,其有关数据见表(1)。用户可根据被测液体的大致粘度范围选择适当的测定组及转子;为取得较高的测试精度,读数最好大于30分度而不得小于20分度,否则,应变换转子或测试组。 2、指针指示之读数乘以转子系数即为测得粘度,即 η=ka 式中:η-粘度() K-系数 5 4 3 2 1 6 7 8 9 10

安东帕旋转粘度计 ViscoQC 300

ViscoQC 300 开箱即用,可使用智能的功能准确快速测量粘度,以简化实验室和生产线的日常质量控制。从化学品和食品到制药或任何其他行业,ViscoQC 可确保值得信赖、充分记录的结果和可追溯性。全能 ViscoQC 300 非常适合进行多点测量,并具有许多其他功能–亲自来体验吧! 作为开拓者:面向未来的粘度测试 ?Toolmaster?:通过自动转子识别避免选择错误 ?内置磁耦合器便于连接和拆卸测量转子 ?TruGuard?:通过自动检测转子防护罩获得完美的追溯性 ?TruMode? 为未知样品找到优佳速度 ?数字水准仪检查每次测量是否正确对准 ?传感器可现场更换,减少维修停机时间

专为您的应用而定制:实验室和生产线的质量控制 ?可随时使用软件包升级: ?V-Curve:在线图形、数学模型、可编程性、屈服方法 ?V-Comply:符合 21 CFR Part 11 要求的软件和文档 通过 QC 临界值功能和方法用户说明自定义方法 好事成三– ViscoQC 300 型号 ?L:用于低粘度样品(溶剂、油、果汁、乳制品等) ?R: 用于中粘度样品(涂料、粘合剂、沐浴露等) ?H:用于高粘度样品(糊剂、蛋黄酱、软膏等) 打破障碍:确保合规性和可靠性 ?信任结果:借助Toolmaster?、TruGuard? 和数字水准仪确保结果的可追溯性?使用包括制药认证智能方案的 V-Comply 升级 ViscoQC 300: ?审计追踪、电子签名 ?密码访问和复杂性 ?自定义用户/用户组 ?通过Toolmaster? 限制对转子的使用

软件和文档符合 GMP、GAMP 5 和 21 CFR Part 11 的要求 超越:实现旋转粘度计的至高性能 ?LIMS 功能和二维条形码选项 ?7” 触摸屏具有直观用户界面和预定义方法 ?用户校准:转子修正因子可存储在Toolmaster? 中 ?标准转子采用的 AISI 316L 材料具有卓越的耐化学腐蚀性 ?一次性铝质测量杯 (D18) 提高样品处理量 ?可执行速度或剪切速率控制的测量 ?准确度:±1.0 % 的范围,可重现性:±0.2 % 享受灵活性:用于接触式粘度计的附件 ?条形码选项,键盘 ?符合 ISO 2555、ISO 3219 等标准的转子 ?转子支架有 7 个位置,可保持工作场所整洁 ?灵活的样品杯支架,可提高结果的重复性 ?样品温度由 Pt100 温度传感器监控(-100 °C 至 +300 °C) ?通过恒温浴槽控制进行温度控制(环境温度到 +100 °C) ?DYMO? LabelWriter? 用于在测量后直接打印结果

食品检测仪器汇总

食品检测仪器汇总 检测项目:包括农残、兽药/抗生素、添加剂、重金属及有害物质、毒素微生物、常规理化、接触材料 可根据客户需要增加删减。 序号名称主要用途 1 电子天平食品检验用试剂、样品和标准品的称量 2 酸度计食品检验过程中pH值的测定 3 冷冻离心机食品检验过程中营养成分或者污染物等的提取分离 4 离心机食品检验过程中营养成分或者污染物等的提取分离 5 超净工作台食品检验过程中提供局部超净工作环境 6 生物安全柜食品检验过程中提供洁净安全的操作环境 7 索氏提取器食品检验过程中营养成分或者污染物的提取 8 超临界萃取仪食品检验过程中营养成分或者污染物的提取 9 磁力搅拌器食品检验过程中目的物质提取或反应过程中的搅拌混匀

10 微波消解仪(高压)食品检验过程中样品的消解 11 冷冻干燥机食品检验过程中样品的冷冻干燥 12 碎花制冰机食品检验用冰的制备 13 高压灭菌器食品检验中灭菌试剂的制备 14 冰箱食品样品和试剂的存放 15 冷藏柜食品样品和试剂的存放 16 立式超低温冰箱食品样品和试剂的超低温保存 17 超声波清洗器食品检验过程中样品的提取、脱气、混匀、细胞粉碎、实验器皿的清洗等 18 超声波提取器提取食品营养成分或者污染物 19 超声波细胞破碎仪食品检验过程中细胞的破碎 20 马弗炉食品检验过程中食品的灰分测定及干法消解 21 电热恒温干燥箱食品检验过程中样品的干燥 22 电热恒温培养箱食品检验过程中微生物的培养 23 真空干燥箱食品检验中对照品及样品干燥 24 恒温恒湿箱为食品检验提供稳定的恒温恒湿环境 25 可控温振荡箱食品检验中微生物的培养 26 恒温恒湿培养箱食品检验中微生物的培养 27 霉菌培养箱食品检验中霉菌的培养 28 厌氧培养箱食品检验中微生物的厌氧培养

旋转粘度计标准操作规程

旋转粘度计 使用说明书 一、概述 NDJ-1型旋转粘度计是根据上海市企业标准Q/YXYY 20-2000《NDJ-1型

旋转式粘度计》规定的技术要求设计和制造的,它可广泛应用于对油脂、油漆、塑料、食品、药物、胶粘剂等各种流体粘度的测量。 二、主要技术指标及参数 1、测量范围:(10~100000)mPa·s; 2、测量误差:±5%(F·S); 3、测量转子:1号、2号、3号、4号转子; 4、转子转速:6转/分、12转/分、30转/分、60转/分 5、供电电源:AC220V±10% 50Hz±10%; 6、外形尺寸:300㎜×300㎜×450mm; 7、净重: 1.5kg(不包括支架)。 三、仪器结构和安装 (一)仪器结构 1、结构原理 结构原理图见图1所示。 图1 ⑴同步电机以稳定的转速旋转,连接刻度圆盘,再通过游丝和转轴带动转

子旋转。如果转子未受到液体的阻力,则游丝、指针与刻度盘同速旋转,指针在刻度圆盘上指出的读数为“0”。而当转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡,最后达到平衡,这时与游丝连接的指针在刻度圆盘上指示一定的读数(即游丝的扭转角)。 将读数乘上特定的系数即得到液体的粘度(mpa·s)。 ⑵利用齿轮系统及离合器进行变速,由专用旋转旋钮操作,分四档转速,可以根据测定需要选择。 ⑶按仪器不同规格附有1至4号四种转子,可根据被测液体粘度的高低随同转速配合使用。 ⑷为使读数精确,仪器装有指针固定控制装置(指针控制杆)。当转速较快时(30转/分,60 转/分),无法在旋转时读数,这时可以按下指针控制杆,使指针固定下来,便于读取准确的读数。 ⑸保护架是为了稳定测量和保护转子而专门设计的。使用保护架进行测量能取得较稳定的测量结果。 ⑹整套仪器配有固定支架和升降机构,一般在实验室中进行小量和定温测定时应固定使用。另外,仪器也可以脱离固定支架和升降机构手提使用。 2、整体结构 ⑴机头的结构示意图见图2所示。

旋转式粘度计使用说明书

NDJ-1 旋转式粘度计使用说明书 仪器: NDJ-1 旋转式粘度计 1. 按说明书安装好粘度计,准备被测液体,置于直径不小于70mmB勺烧杯或直筒形容器 中,准确地控制被测体液温度。 2. 将保护架装在仪器上(向右旋入装上,向左旋出卸下)。 3. 将选配好勺转子旋入连接螺杆(向左旋入装上,向右旋出卸下)。旋转升降旋纽,使仪器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志和液面相平为止,调正仪器水平。开启电机开关,转动变速旋纽,使所需转速向上,对准速度指示点,使转子在液体中旋转,经过对次旋转(一般20~30 秒)待指针趋于稳定(或按规定时间进行读数)。按下指针控制杆(注意: 1 .不得用力过猛。 2.转速慢时可不利用控制杆,直接读数)使读数固定下来,再关闭电机,使指针停在读数窗内,读取读数。当电机关停后如指针不处于读数窗内时,可继续按住指针控制杆,反复开启和关闭电机,经几次练习即能熟练掌握,使指针停于读数窗内,读取读数。 4. 当指针所指勺数值过高或过低时,可转变转子和转速,务必使读数约在 30~90 格之间为佳。 5. 量程、系数及转子勺选择: a. 先大约估计被测液体勺粘度范围,然后根据量程表选择适当勺转子和转速。 如测定约3000豪帕?秒左右的液体可选用下列配合: 2 号转子-------- 6 转 / 分 或 3 号转子----- 30 转/ 分 b. 当估计不出被测液体的大致粘度时,应假定为较高的粘度,试用由小到大的转子和由慢到快的转速。原则是高粘度的液体选用小的转子和慢的速度;低粘度的液体选用大的转子和快的速度。 c. 系数:测定时指针在刻度盘指示的读数必须乘上系数表上的特定系数才为测得的绝对粘度(mPa?s) 绝对粘度的计算: a n――绝对粘度 K ——系数 a ——指针所指读数(偏转角度) d. 频率误差的修正铃铛使用电源频率不准时,可按下列公式修正。 实际粘度=指示粘度?名义频率/实际频率 绝对粘度(CP)=动力粘度(CST)焰度(g/ml)。根据此公式可计算出液体动力粘度(mPa ? S)即动力粘度(mPa?S)=绝对粘度十密度(密度单位为g/ml )

旋转粘度计使用需注意的几个问题

旋转粘度计广泛应用于测定油脂、油漆、涂料、塑料、食品、药物、胶粘剂等各种流体的动力粘度。该仪器结构简单、价格便宜、方便实用,因而广受欢迎。在长期从事该类仪器的检定过程中我们发现许多用户,特别是中小企业的测试人员在使用过程中存在许多问题,往往我们检定的仪器性能优于国家计量检定规程的要求,但是用户在测试样品时数据偏差很大。现就如何正确使用该类仪器获得准确可靠的测量结果分析如下。 首先,简单介绍一下该类仪器的测量原理: 旋转粘度计开机后首先要检测零位,这一操作一般在不安装转子的情况下进行,然后在半径R1的外筒里同轴地安装半径R2的内筒,其间充满了粘性流体,同步电机以稳定的速度旋转,接连刻度圆盘,再通过游丝和转轴带动内筒(即转子)旋转, 内筒(即转子)即受到基于流体的粘性力矩的作用,作用越大, 则游丝与之相抗衡而产生的扭矩也越大,于是指针在刻度盘上指示的刻度也就越大。将读数乘以特定的系数即得到液体的动力粘度。 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃时,有些液体粘度值偏差超过5%,温度偏差对粘度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。 该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。 旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求操作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气

旋转式粘度计使用说明书

NDJ-1旋转式粘度计使用说明书 仪器:NDJ-1旋转式粘度计 1.按说明书安装好粘度计,准备被测液体,置于直径不小于70mm的烧杯或直筒形容器中,准确地控制被测体液温度。 2.将保护架装在仪器上(向右旋入装上,向左旋出卸下)。 3.将选配好的转子旋入连接螺杆(向左旋入装上,向右旋出卸下)。旋转升降旋纽,使仪器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志和液面相平为止,调正仪器水平。开启电机开关,转动变速旋纽,使所需转速向上,对准速度指示点,使转子在液体中旋转,经过对次旋转(一般20~30秒)待指针趋于稳定(或按规定时间进行读数)。按下指针控制杆(注意:1.不得用力过猛。2.转速慢时可不利用控制杆,直接读数)使读数固定下来,再关闭电机,使指针停在读数窗内,读取读数。当电机关停后如指针不处于读数窗内时,可继续按住指针控制杆,反复开启和关闭电机,经几次练习即能熟练掌握,使指针停于读数窗内,读取读数。 4.当指针所指的数值过高或过低时,可转变转子和转速,务必使读数约在30~90格之间为佳。 5.量程、系数及转子的选择: a.先大约估计被测液体的粘度范围,然后根据量程表选择适当的转子和转速。 如测定约3000豪帕·秒左右的液体可选用下列配合: 2号转子--------------6转/分 或3号转子----------30转/分 b.当估计不出被测液体的大致粘度时,应假定为较高的粘度,试用由小到大的转子和由慢到快的转速。原则是高粘度的液体选用小的转子和慢的速度;低粘度的液体选用大的转子和快的速度。 c.系数:测定时指针在刻度盘指示的读数必须乘上系数表上的特定系数才为测得的绝对粘度(mPa·s) 绝对粘度的计算: η=K·a η——绝对粘度 K——系数 a——指针所指读数(偏转角度) d.频率误差的修正铃铛使用电源频率不准时,可按下列公式修正。 实际粘度=指示粘度·名义频率/实际频率 绝对粘度(CP)=动力粘度( CST) ×密度(g/ml)。根据此公式可计算出液体动力粘度(mPa·S) 即动力粘度(mPa·S)= 绝对粘度÷密度(密度单位为g/ml)

涂料检测步骤,每一步都很重要

涂料检测步骤,每一步都很重要 涂料检测时,在选取涂料样品时,对照该产品说明书,将自己测定的指标与说明书上的相对照,用以确定该产品是否合格,是否为假冒伪劣产品。常用的标准检测方法有:(1)GB3186-89(82)涂料产品的取样; (2)GB1721-79清漆、清油及稀释剂外观和透明度测定法; (3)GB/T1722-92清漆、清油及稀释剂颜色测定法; (4)GB/T1723-93涂料粘度测定法; (5)GB1724-89(79)涂料细度测定法; (6)GB1725-89(79)涂料固体含量测定法; (7)GB6750-86色漆和清漆密度的测定; (8)GB6753.3-86涂料贮存稳定性试验方法; (9)GB1746-89(79)涂料水分测定法; (10)GB1746-89(79)涂料灰分测定法; 涂料检测步骤如下: 一、涂料产品的取样 涂料产品的检验取样极为重要,试验结果要具有代表性,其结果的可靠程度与取样的正确与否有一定的关系。国家标准GB3186-82规定了具体的抽样方法,取样后由检验部门进行实验。一般有如下要求: (1)使用部门有权按产品标准,对产品质量进行检验,如发现产品质量不符标准规定时,双方共同复检或向上一级检测中心申请仲裁,如仍不符合有关规定,使用部门有权退货。 (2)从每批产品中随机取样,取样数为同一生产厂家的总包装桶数的3%(批量不足100桶者,不得少于3桶;批量不足4桶者,不得少于30%)。 (3)取样时,将桶盖打开,对桶内液体状涂料产品进行目测观察,记录表面状态,如是否有结皮、沉淀、胶凝、分层等现象。 (4)将桶内涂料充分搅拌均匀,每桶取样不得少于0.5kg。将所取的试样分成两份,一份(约0.4kg)密封贮存备查,另一份(其数量应是以能进行规定的全部试验项目的检验量)立即进行检验。若检验结果不符合该标准的规定时,整批产品认为不合格。 (5)取样时所用的工具、器皿等,均应洁净,有条件时选用专用的QYG系列取样管,用后清洗干净。样品不要装满容器,要留有5%的空隙,盖严。样品一般可放置在清洁干燥、密封性好的金属小罐或磨口玻璃瓶内,贴上标签,注明取样日期等有关细节,并存放在阴凉干燥的场所。 (6)对生产线取样,应以适当的时间间隔,从放料口取相同量的样品再混合。搅拌均匀后,取两分各为0.2~0.4kg的样品放入样品容器内,盖严并做好标志。 二、目测检测涂料状态 观察涂料是否有结皮、胶凝、分层、沉淀等情况,有条件的使用者,可按照GB6753.3-86测定涂料的贮存稳定性。 (1)结皮醇酸、酚醛、氯化橡胶、天然油脂涂料经常会在涂料最上层有一层结皮,这是由于醇酸等类型涂料氧化固化形成的。观察结皮的程度,如有结皮,则沿容器内壁分离除

相关文档
最新文档