第六章抽样调查资料
自考-市场调查与预测-第6章-抽样方法

1 定义总体 确定调查对象全体:从抽样元素、抽样 单位、抽样范围、抽样时间角度考虑 例如…
2 确定抽样框架 抽样总体中,抽样元素的表现形式。总体中 的每一个元素都在抽样框架中出现一次,且 仅出现一次。如户籍簿。 适用性、完整性。 3 确定抽样单位 容纳总体的基本单位,大于等于样本元素。 取决于抽样框架和调查方法。 电话调查——电话号码 邮寄调查——地址或姓名
B 平均值估计 C 百分比估计样本容量
根据允许误差大小估计样本量
不同抽样方法样本容量的确定 影响因素: 调查目的;总体大小;总体构成;抽样方式 计算公式:见表6-4
其它调查方法介绍
2、自愿样本
被调查者自愿参加,成为样本中的一分子,向
调查人员提供有关信息
–
例如,参与报刊上和互联网上刊登的调查问
第6章 抽样方法
普查与抽样调查 抽样程序
常用抽样方法
样本容量的确定
6.1普查与抽样调查
抽样设计的重要性 案例6-1 普查的相关概念和案例 P159 抽样调查的概念 抽样是通过抽取总体中的部分单位,收集 这些单位的信息,从而对总体进行推断的 一种手段。 抽样调查的含义 P163 抽样调查的适用范围
第一节 抽样方法
6.3 常用抽样方法
1 简单随机抽样 2 分层随机抽样 3 分群随机抽样 4 等距随机抽样 5 任意抽样 6 判断抽样 7 配额抽样 8 滚雪球抽样
1 简单随机抽样 1、抽样方法 根据研究目的选定总体,首先对总体中所 有的观察单位编号,遵循随机原则,采用不放 回抽取方法,从总体中随机抽取一定数量观察 单位组成样本。 2、具体方法 ①抽签法
市场调查-第六章抽样技术

N = 721, n = 10, 721/10≈72
K =
用随机数表法,如果第一个确定的数字为102,则 各样本单元编号依次为:102,174,246,318, 390,462,534,606,678,29。其中最后一个编 号应为678 + 72 = 750。因大于N,故减去721,实 际编号取为750- 721 = 29。
多级随机抽样是先把总体划分为 若干一级单元,再把各个一级单 元划分为若干个二级单元,直至 不再划分的个体单元。在抽样时, 先用简单随机抽样方法抽取部分 一级单元,再在抽中的一级单元 中抽取部分二级单元,依次操作, 直到抽得个体单元为止。
多级随机抽样——demo
我国城市住户调查采用的就是多 级抽样,先从全国各城市中抽取 若干城市,再在城市中抽选街道, 然后在各街道中抽选居民会,最 后在各居委会中抽选居民户。
低收入 20%
高收入 20%
中收入 60%
高收入 中收入 低收入
分层比例抽样法
高收入层抽取的样本单元数为: 200×20%=40(户) 中收入层抽取的样本单元数为: 200×60%=120(户) 低收入层抽取的样本单元数为: 200×20%=40(户)
在各层抽样时,只需采 用简单随机抽样法即可。
2、分层最佳抽样法
二、分层随机抽样
分层随机抽样是先将总体所有单位按 某一重要标志进行分层(类),然后在 各层(类)中采用简单随机抽样方式抽 取样本单位的一种抽样技术形式。在 划分层次时应注意,各层次内部保持 确定的同质性,而各层次之间又应有 明显的异质性。
分层比例抽样法 分层最佳抽样法
1、分层比例抽样法
分层比例抽样法,指各层 抽取的样本单元数是按各 层单元数占总体单元数的 比例加以确定。
统计学原理-第六章 抽样调查(复旦大学第六版)

2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28
2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。
2
x X f
2
f
2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x
N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F
统计学第六章 抽样法

第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
06第六章 整群抽样

n
n
M
N M 1 S ( yij Y ) 2 为总体方差; NM 1 i 1 j 1 2
n M 1 s ( yij y ) 2 nM 1 i 1 j 1 2
2 b
为样本方差; 为总体群间方差;
M N 1 N 2 S (Yi Y ) N 1 (Yi Y ) 2 N 1 i 1 i 1
第一节 第二节 第三节 第四节
整群抽样概述 等概率整群抽样的情形 不等概率整群抽样的情形 设计效应和样本容量的确定
第一节 整群抽样概述
一、整群抽样的概念 整群抽样是先将总体各单元划分成若干群(组),然后以 群为单位,从中随机抽取一部分群,对中选群内的所有单 元进行全面调查。确切地说,这种抽样组织形式应称为单 级整群抽样。 如果总体中的单元可以分成多级,则可以对前几级单元采 用多阶抽样(详见下章),而在最后一阶中对该阶抽样单 元所包含的全部个体(最基本单元)进行调查,这种抽样 称作多级整群抽样。本章只讨论单级整群抽样。 设总体被划分为N群,第i群含有Mi个次级单元,全部总 体次级抽样单元数记为M 0,即 M 0 M i 。当诸Mi都相等 时,称为等群;否则,称为不等群。
M n 1 n 2 (Yi y ) (Yi y ) 2 s n 1 i 1 n 1 i 1
2 b
为样本群间方差;
N M 1 S ( yij Yi ) 2 N ( M 1) i 1 j 1 2
为总体平均群内方差; 为样本平均群内方差;
二、分群的原则 尽量扩大群内差异,而缩小群间差异。 三、整群抽样的特点 1.在大规模抽样调查中,常常没有或很难编制出包括总 体所有次级单元在内的抽样框,而整群抽样则不需要编制 庞大的抽样框。 2.在样本单元数相同的条件下,整群抽样与简单随机抽 样相比,样本单元的分布相对较集中,虽然样本的代表性 较差,但调查组织实施过程更加便利,同时还可以大大地 节省调查费用。因此,实际工作中,在权衡费用和精度之 后,有时宁可适当增加一些样本单元数,也采用整群抽样 方法。 3.整群抽样的随机性体现在群与群间不重叠,也无遗漏, 群的抽选按概率确定。
第6章 抽样调查

第二节 抽样调查的组织形式
通常有以下四种组织形式: 通常有以下四种组织形式:
抽样方式
概率抽样 非概率抽样
简单随机抽样 整群抽样 多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
简单随机抽样(纯随机抽样) 一、简单随机抽样(纯随机抽样)
即从总体单位中不加任何分组、排队, 即从总体单位中不加任何分组、排队, 完全随机地抽取调查单位。 完全随机地抽取调查单位。
统计应用
“抓阄”征兵计划
然而结果是, 73个较小的号码被分配给了 然而结果是 , 有 73 个较小的号码被分配给了 前半年的日子,同时有110 110个较小的号码被分配给 前半年的日子,同时有110个较小的号码被分配给 了后半年的日子。 换句话说, 了后半年的日子 。 换句话说 , 如果你生于后半年 的某一天, 那么, 的某一天 , 那么 , 你因为被分配给一个较小号码 而去服兵役的机会要大于生于前半年的人 在这种情况下, 在这种情况下 , 两个数字之间只应该有随机 误差, 73和110之间的差别超出了随机性所能解 误差,而73和110之间的差别超出了随机性所能解 释的范围。 释的范围 。 这种非随机性是由于乒乓球在被抽取 之前没有被充分搅拌造成的。 在第二年, 之前没有被充分搅拌造成的 。 在第二年 , 主管这 件事的部门在抓阄之前去咨询了统计学家( 件事的部门在抓阄之前去咨询了统计学家(这可能 使生于后半年的人感觉稍微舒服些) 使生于后半年的人感觉稍微舒服些)
分层抽样的好处是: 分层抽样的好处是: 样本代表性高、抽样误差小、抽样调查 本代表性高、抽样误差小、
成本较低。如果抽样误差的要求相同的话则 成本较低。 抽样数目可以减少。 抽样数目可以减少。
第六章 抽样调查

第六章抽样调查第一节抽样调查的意义及全然概念一、抽样调查的意义抽样调查(随机抽样):按照随机原那么从总体中抽取一局部单位进行瞧瞧,并运用数理统计的原理,以被抽取的那局部单位的数量特征为代表,对总体作出数量上的推断分析。
二、抽样调查的适用范围抽样调查方法是市场经济国家在调查方法上的必定选择,和普查相比,它具有正确度高、本钞票低、速度快、应用面广等优点。
一般适用于以下范围:1.实际工作不可能进行全面调查瞧瞧,而又需要了解其全面资料的事物;2.虽可进行全面调查瞧瞧,但比立困难或并不必要;3.对普查或全面调查统计资料的质量进行检查和修正;4.抽样方法适用于对大量现象的瞧瞧,即组成事物总体的单位数量较多的情况;5.利用抽样推断的方法,能够关于某种总体的假设进行检验,判定这种假设的真伪,以决定取舍。
三、抽样调查的全然概念(一)全及总体和抽样总体(总体和样本)全及总体:所要调查瞧瞧的全部事物。
总体单位数用N表示。
抽样总体:抽取出来调查瞧瞧的单位。
抽样总体的单位数用n表示。
n≥30大样本n<30小样本(二)全及指标和抽样指标(总体指标和样本指标)全及指标:全及总体的那些指标。
抽样指标:抽样总体的那些指标。
第二节抽样调查的组织形式通常有以下四种组织形式:一、简单随机抽样(纯随机抽样)即从总体单位中不加任何分组、排队,完全随机地抽取调查单位。
随机抽选可有各种不同的具体做法,如:1.直截了当抽选法;2.抽签法;3.随机数码表法;二、类型抽样(分类抽样)先对总体各单位按一定标志加以分类(层),然后再从各类(层)中按随机原那么抽取样本,组成一个总的样本。
类型的划分:一是必须有清楚的划类界限;二是必须明白各类中的单位数目和比例;三是分类型的数目不宜太多。
类型抽样的好处是:样本代表性高、抽样误差小、抽样调查本钞票较低。
要是抽样误差的要求相同的话那么抽样数目能够减少。
两种类型:1.等比例类型抽样(类型比例抽样);2.不等比例类型抽样(类型适宜抽样)。
《社会调查研究方法》 第六章 抽样

《社会调查研究方法》第六章抽样在社会研究中,最常见的总体是由社会中的某些个人组成的,这些个人便是构成总体的元素,比如,当我们对某省大学生的择业倾向进行研究和探讨时,该省所有在校大学生的集合就是我们研究的总体,而每一个在校大学生便是构成总体的元素。
又比如,我们打算研究某城市居民的家庭生活质量,那么,该市所有的居民家庭就构成我们研究的总体,而其中的每一户家庭都是这个总体中的一个元素。
样本(sample)就是从总体中按一定方式抽取出的一部分元素的集合。
或者说,一个样本就是总体的一个子集。
比如,从某省总数为12.8万人的大学生总体中,按一定方式抽取出1 000名大学生进行调查,这1 000名大学生就构成该总体的一个样本(当然,从一个总体中可以抽取出若干个不同的样本)。
在社会研究中,资料的收集工作往往是在样本中完成的。
明白了总体和样本的概念,再来理解抽样的概念就十分容易了。
比如,从3 000名工人所构成的总体中,按一定方式抽取200名工人的过程;或者从1 000户家庭构成的总体中,按一定方式抽取一个由100户家庭构成的样本的过程,都叫做抽样。
比如,上面所举的例子中,单个的大学生既是构成某省12.8万名大学生这一总体的元素,又是我们从总体中一次直接抽取出1000名大学生的样本时所用的抽样单位;但是,当我们从这一总体中一次直接抽取出40个班级,而以这40个班级中的全部学生(假定正好1000名)作为我们的样本时,抽样单位(班级)与构成总体的元素(学生)就不是一样的了。
比如,从一所中学的全体学生中,直接抽取200名学生作为样本,那么,这所中学全体学生的名单就是这次抽样的抽样框;如果是从这所中学的所有班级中抽取部分班级的学生作为调查的样本,那么,此时的抽样框就不再是全校学生的名单,而是全校所有班级的名单了。
因为此时的抽样单位已不再是单个的学生,而是单个的班级了。
在统计中最常见的总体值是某一变量的平均值,比如,某市待业青年的平均年龄、某厂工人的平均收入等等,它们分别是关于某市待业青年这一总体在年龄这一变量上的综合描述,以及某厂工人这一总体在收入这一变量上的综合描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 抽样指标:根据样本分布计算的指标。 是随机变量。
全及指标和抽样指标
总体
☺
☺ ☺
☺ ☺
☺☺☺
样本
☺☺ ☺
全及指标
X
、2
P
抽样指标
平均数
x
标准差、方差 S、 S2
成数
p
变量总体和属性总体
• 变量总体各单位标志值可用数量表示
X X N
代表性误差
偏差
随机误差
实际误差 抽样平均误差
抽样误差即指随机误差,这种误差是 抽样调查固有的误差,是无法避免的。
实际误差指样本指标和总体指标之间数 量上的差别,即 x X 、p P 。
二、抽样平均误差
抽样平均误差实际上是样本指标的标准 差。通常用μ表示。在N中抽出n样本,从 排列组合中可以有各种各样的样本组。
• 总体成数P是指具有某种特征的单位在总体中 的比重。成数是一种结构相对数,设总体单 位总数目是N,总体中有该特征的单位数是N1。 设x是0、1变量,则有:
P N1 N
样本成数
• 现从总体中抽出n个单位,如果其中有相应特 征的单位数是n1,则样本成数是:
p n1 n
• P也是一个随机变量,利用样本平均数的分布
第六章 抽样调查
第一节 抽样调查的意义 第二节 抽样调查的基本概念 第三节 抽样平均误差 第四节 全及指标的推断 第五节 抽样方案设计 第六节 必要抽样单位数的确定 第七节 假设检验
第一节 抽样调查的意义
一、抽样调查的概念
抽样调查是按随机原则,从全部研究 对象中抽取一部分单位进行观察,并根 据样本的实际数据,对总体的数量特征 做出具有一定可靠程度的估计和判断其 中心问题是如何根据已知的部分资料来 推断未知的总体情况。
二、抽样调查的特点
1.抽样调查是非全面调查。 2.抽样调查是用样本的指标数值去推算总 体的指标数值。 3.抽样调查是按随机原则抽选调查单位。 4.抽样调查中产生的抽样误差,可以事先 计算并加以控制。
第二节 抽样调查的基本概念
一、全及总体和抽样总体 二、抽样方法
1.重复抽样分布 2.不重复抽样分布
样本
34,34 34,38 34,42 34,46 34,50 38,34 38,38 38,42 38,46 38,50 42,34 42,38 42,42 42,46 42,50
样本平 均数 x
34 36 38 40 42 36 38 40 42 44 38 40 42 44 46
样本
46,34 46,38 46,42 46,46 46,50 50,34 50,38 50,42 50,46 50,50
E
A B EC D
B
AC BC
C
D
E
D
D
D
E
E
E
• 不考虑顺序时:样本个数
CNn
N! (N - n)!n!
E
三、大数定理
1
lim
n
p
n
n
xi X
i 1
1
当样本容量n 充分大时,可以用 样本平均估计总体平均。
lim
n
p
m n
Байду номын сангаас
p
1
当试验次数n充分大时,可以用 频率代替概率。
大数定理的意义:个别现象受偶然因素影响,但是,对总体 的大量观察后进行平均,就能使偶然因素的影响相互抵消, 从而使总体平均数稳定下来,反映出事物变化的一般规律。
样本平 均数 x
40 42 44 46 48 42 44 46 48 50
重置抽样分布--样本平均数的分布
样本平均数 x
34 36 38 40 42 44 46 48 50 合计
频数
1 2 3 4 5 4 3 2 1
25
E(x)
xf f
42(元)
2(
x)
(
x
X f
)2
f
16(元2)
• 验证了以下两个结论:
– 考虑顺序时:样本个数=Nn=52=25
– 不考虑顺序时:样本个数=
CNn
n
-
1
(N n-1)! (N -1)!n!
不重复抽样
• 例如从A、B、C、D、E五个字母中随机抽取两个作为样本。N=5,n=2
A
A
B
B
AC D
BC D
C D
•
E
考虑顺序时:样本个数
E
PNn
N! E
(N - n)!
A B DC
E(x) X 2(x) 2
n
• 抽样平均数的标准差 反映所有的样本平均 数与总体平均数的平 均误差,称为抽样平 均误差,用 表示。
x
x
n
取得σ的途径有:
1. 用过去全面调查或抽样调查的资料,若同时 有n个σ的资料,应选用数值较大的那个;
2. 用样本标准差S代替全及标准差σ; 3. 在大规模调查前,先搞个小规模的试验性的
例
1 ,1 ,1 ,
5000 5000 5000
不重复抽样:又称不放回抽样。
例
1 ,1 ,1 ,
5000 4999 4998
重复抽样
• 例如从A、B、C、D、E五个字母中随机
抽取两个作为样本。N=5,n=2
A B AC D E
A B BC D E
A B CC D E
A B DC D E
A B EC D E
中心极限定理
中心极限定理:
1.独立同分布中心极限定理:
2
x~ NX,
n
2.德莫福-拉普拉斯中心极限定理:
X ~ N np,npq
大样本的平均数近似服从正态分布。
第三节 抽样平均误差
一、抽样误差的概念及其影响程度
在统计调查中,调查资料与实际情况不 一致,两者的偏离称为统计误差。
登记误差
统计误差
三、大数定理与中心极限定理
一、全及总体和抽样总体
全及总体:即总体,所要调查观察的全 部事物。总体单位数用N表示。
抽样总体:即样本,抽取出来调查观察的 单位。抽样总体的单位数用n表示。
n ≥ 30 大样本 n < 30 小样本
注 总体是唯一的、确定的,而样本是不确定的、 可变的、随机的
全及指标和抽样指标
性质结论,即有:
E( p) p
p
np 1 p
n-1
样本容量与样本个数
• 样本容量:一个样本中所包含的单位数, 用n表示。
• 样本个数:又称样本可能数目,指从一 个总体中所可能抽取的样本的个数。对 于有限总体,样本个数可以计算出来。 样本个数的多少与抽样方法有关。
二、抽样方法
重复抽样:又称有放回抽样。
注 抽样误差是由于抽样的随机性而产生的样本指
标与总体指标之间的平均离差。
按照定义:
x
( x X )2 K
重复抽样分布--样本平均数的分布
• 某班组5个工人的日工 资为34、38、42、46、 50元。
• = 42
• 2 = 32
• 现用重复抽样的方法 从5人中随机抽2个构 成样本。共有52=25个 样本。如右图。