高二数学试习题及答案

合集下载

高二数学试卷练习题及答案

高二数学试卷练习题及答案

高二数学试卷练习题及答案第一部分:选择题1. 设直线$l$经过点$P(3,2)$,若$l$的斜率为$-\frac{1}{2}$,则直线$l$的方程是()A. $y=2- \frac{1}{2}x$B. $y=2+ \frac{1}{2}x$C. $y=2-2x$D. $y=2+x$答案:A解析:直线的斜率$m=-\frac{1}{2}$,过点$P(3,2)$,带入点斜式方程$y-y_1=m(x-x_1)$,可得直线方程为$y=2-\frac{1}{2}x$。

2. 已知函数$f(x)=x^2+ax+b$,经过点$P(1,1)$,则$a+b$的值为()A. 1B. 2C. 3D. 4答案:A解析:带入点$P(1,1)$,可得方程$1=a+b$,因此$a+b=1$。

3. 已知集合$A=\{x|x^2\leq7\}$,则$A$的解析式为()A. $A=\{x|x\leq\sqrt{7}\}$B. $A=\{x|x\geq\sqrt{7}\}$C. $A=\{x|x\leq-\sqrt{7}\}$D. $A=\{x|x\geq-\sqrt{7}\}$答案:A解析:由不等式$x^2\leq7$,得$x\leq\sqrt{7}$,因此$A=\{x|x\leq\sqrt{7}\}$。

4. 如果对于所有实数$x$,都有$f(x)=f(-x)$,则函数$f(x)$为()A. 奇函数B. 偶函数C. 定义在偶数集上的函数D. 定义在奇数集上的函数答案:B解析:当函数$f(x)$满足$f(x)=f(-x)$时,称$f(x)$为偶函数。

第二部分:填空题1. 已知$\tan\theta=\frac{2}{3}$,则$\sin\theta$的值是()答案:$\frac{2}{\sqrt{13}}$解析:根据正弦定理得$\sin\theta=\frac{\frac{2\sqrt{13}}{3}}{\sqrt{1+(\frac{2}{3})^2}}=\frac{2 }{\sqrt{13}}$。

高二数学练习题及答案

高二数学练习题及答案

高二数学练习题及答案一、选择题1. 已知函数$f(x)= 2x^2 - 4x + 3$,则$f(-1)$的值为:A) 1 B) 3 C) 5 D) 72. 若数列$\{a_n\}$满足$a_1=3$,$a_n=2a_{n-1}+1$($n\geq 2$),则$a_4$的值为:A) 23 B) 31 C) 47 D) 633. 已知等比数列的前两项的和为10,前两项的乘积为16,则该等比数列的第1项是:A) 2 B) 4 C) 8 D) 164. 设$\triangle ABC$是边长为3的等边三角形,点M, N分别为边AB上的两个动点,则$\overrightarrow{AM} \cdot\overrightarrow{BN}$的值为:A) -3 B) -2 C) -1 D) 05. 已知函数$f(x)=\log_3(2-3^x)$定义域为R,函数值域为:A) R B) (0, 1) C) (1, 2) D) (2, +∞)二、填空题1. 解方程$\log_4(x+1) - \log_4(x-1) = 1$,得x的值为_________。

2. 已知等差数列的前三项之和为9,公差为2,求该等差数列的第10项。

3. 若$n\geq 2$,则$\log_a \left( \frac{1}{na} \right) = $_________。

4. 将$a\cos x + b\sin x = R\sin (x+\varphi)$写成$a, b, R, \varphi$的表达式:_____, _____, _____, _____。

5. 若$\tan \theta = 2$,求$\sin \theta \cdot \cos \theta$的值为:_________。

三、解答题1. 已知等差数列$\{a_n\}$满足$a_1=3$,公差为4,求$a_7$的值。

2. 求解不等式$2^x - 3\cdot 2^{x-1} > 1$。

高二数学练习题及答案 (8)

高二数学练习题及答案 (8)

第 1 页 共 1 页 高二数学练习题1.已知椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆C 上的一个动点,以F 2为圆心过椭圆左焦点F 1的圆与直线x +√3y +6=0相切,△PF 1F 2的周长为4√2+4.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点N (0,2)作两条直线分别交椭圆C 于A ,B 两点(异于N 点),当直线NA ,NB 的斜率之和为2时,直线AB 是否过定点?若是,求出定点的坐标;若不是,请说明理由.解:(Ⅰ)设椭圆的半焦距为c ,因为以F 2为圆心过椭圆左焦点F 1的圆与直线x +√3y +6=0相切,所以F 2(c ,0)到直线x +√3y +6=0的距离d =|c+6|2=2c ,解得c =2, 因为△PF 1F 2的周长为4+4√2,所以2a +2c =4+4√2,解得a =2√2,b =√a 2−c 2=2, 所以椭圆的方程为x 28+y 24=1;(Ⅱ)当直线AB 的斜率存在时,设方程为y =kx +m (k ≠0,m ≠0),A (x 1,y 1),B (x 2,y 2),根据k NA +k NB =2,可得kx 1+m−2x 1+kx 2+m−2x 2=2,整理可得2kx 1x 2+(m ﹣2)(x 1+x 2)=2x 1x 2(*),联立{y =kx +m x 2+2y 2=8消去y 可得(1+2k 2)x 2+4kmx +2m 2﹣8=0, 可得x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−81+2k 2,代入(*)可得(m ﹣2)(2k ﹣m ﹣2)=0, 因为m ≠2,所以m =2k ﹣2,所以y =kx +2k ﹣2,即y +2=k (x +2),可得直线AB 恒过定点(﹣2,﹣2),当直线AB 的斜率不存在时,可设方程为x =x 0,A (x 0,y 1),B (x 0,﹣y 1), 根据k AN +k BN =2,可得y 1−2x 0+−y 1−2x 0=−4x 0=2,解得x 0=﹣2,此时直线AB 也经过点(﹣2,﹣2),综上可得,直线AB 经过定点(﹣2,﹣2).。

数学练习题及答案高二

数学练习题及答案高二

数学练习题及答案高二第一节:选择题1. 若函数 f(x) = ax^2 + bx + c 的图象开口向上,且在点 P(-1, 3) 有极值,那么 a, b, c 的关系是()(A) a ≠ 0, b = 0, c ≠ 0;(B) a ≠ 0, b ≠ 0, c ≠ 0;(C) a ≠ 0, b ≠ 0, c = 0;(D) a ≠ 0, b = 0, c = 0;答案:(A)解析:由题可知,函数图象开口向上,所以a ≠ 0。

又因为在点 P(-1, 3) 有极值,极值对应的 x 坐标为 -1,代入函数可得 f(-1) = -a + b - c。

由于函数开口向上,所以该极值为极小值,即 f(-1) = -a + b - c > 0。

再结合a ≠ 0,可以得出 b = 0,因为如果b ≠ 0,则在 x = -1 附近 f(-1)不可能为正值。

所以,a ≠ 0,b = 0,c ≠ 0。

2. 已知函数 y = 2x^2 + 3x - 2 的图象与 x 轴交于点 A、B两个地方,那么点 A、B 的纵坐标分别是()(A) 0,-3;(B) -2,0;(C) 0,-2;(D) -3,0;答案:(C)解析:当函数与 x 轴交于点 A、B 时,函数值 y = 2x^2 + 3x - 2 = 0。

可以通过因式分解或二次方程求根公式来解。

将方程 2x^2 + 3x - 2 = 0 因式分解为 (2x + 1)(x - 2) = 0,得到两个解:x = -1/2,x = 2。

所以,点 A 的纵坐标为 y(A) = 2(-1/2)^2 + 3(-1/2) - 2 = -2,点 B 的纵坐标为 y(B) = 2(2)^2 + 3(2) - 2 = -2。

因此,点 A、B 的纵坐标分别是 0、-2。

第二节:填空题1. 给定矩阵 A = [1 2 3; -1 0 1],则 A 的转置矩阵为 ______。

答案:[1 -1; 2 0; 3 1]解析:矩阵的转置就是将原矩阵的行变为列,列变为行。

高二数学试卷练习题及答案

高二数学试卷练习题及答案

高二数学试卷练习题及答案高二数学试卷练习题一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。

)1.抛物线的准线方程为( )A B C D2.下列方程中表示相同曲线的是( )A ,B ,C ,D ,3.已知椭圆的焦点为和,点在椭圆上,则椭圆的标准方程为( )A B C D4.已知双曲线的离心率为,则的渐近线方程为( )A B C D5.与圆及圆都外切的圆的圆心在( )A 一个椭圆上B 双曲线的一支上C 一条抛物线D 一个圆上6.点在双曲线上,且的焦距为4,则它的离心率为A 2B 4C D7.已知是抛物线的焦点,是该抛物线上的两点,且,则线段的中点到抛物线准线的距离为( )A 1B 2C 3D 48.过点且与抛物线只有一个公共点的直线有( )A 1条B 2条C 3条D 无数条9.设是双曲线的两个焦点,点在双曲线上,且,则点到轴的距离为( )A B 3 C D10.以下四个关于圆锥曲线的命题中正确的个数为( )①曲线与曲线有相同的焦点;②方程的两根可分别作为椭圆和双曲线的离心率;③过椭圆的右焦点作动直线与椭圆交于两点,是椭圆的左焦点,则的周长不为定值。

④过抛物线的焦点作直线与抛物线交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条。

A 1个B 2个C 3个D 4个11.若点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为( )A 18B 24C 28D 3212.抛物线的焦点为,准线为,,是抛物线上的'两个动点,且满足,过线段的中点作直线的垂线,垂足为,则的最大值,是( )A B C D二、填空题(本大题共有4个小题,每小题5分,共20分)13.已知点在抛物线的准线上,抛物线的焦点为_____,则直线的斜率为。

14.过双曲线左焦点的直线交双曲线的左支于两点,为其右焦点_____,则的值为_____15.直三棱柱中,分别是的中点,_____,则与所成角的余弦值为_____。

高二上学期数学练习题有详细答案

高二上学期数学练习题有详细答案

高二上学期数学练习题(1)(圆与方程)班级 姓名 学号一.选择填空题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=102. 若一圆的标准方程为(x -1)2+(y +5)2=3,则此圆的圆心和半径长分别为( )A .(-1,5), 3B .(1,-5), 3C .(-1,5),3D .(1,-5),3 3. 方程(x +a )2+(y +b )2=0表示的图形是( )A .以(a ,b )为圆心的圆B .点(a ,b )C .以(-a ,-b )为圆心的圆D .点(-a ,-b ) 4. 点P (a,5)与圆x 2+y 2=24的位置关系是( )A .点在圆外B .点在圆内C .点在圆上D .不确定 5. 圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A .12 B .32 C .1 D .36. 已知圆心在x 轴上的圆C 与x 轴交于两点A (1,0),B (5,0),此圆的标准方程为( )A .(x -3)2+y 2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4 7. 若点(2a ,a -1)在圆x 2+(y +1)2=5的内部,则a 的取值范围是( )A .(-∞,1]B .(-1,1)C .(2,5)D .(1,+∞)8. 方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆9. 若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0 D .2x -y -1=0 10. 点M 在圆(x -5)2+(y -3)2=9上,则点M 到直线3x +4y -2=0的最短距离为( )A .9B .8C .5D .211.直线1y kx =+与圆221x y +=的位置关系是( )A .相交B .相切C .相交或相切D .不能确定 12. 圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于2的点有( )A .1个B .2个C .3个D .4个 答案:B 13. 方程4-x 2=lg x 的根的个数是( )A .0B .1C .2D .无法确定14.圆22(4)(5)10x y -+-=上的点到原点的距离的最小值是( ).A C.二.填空题15.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是______ .16.若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的标准方程是_____17.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________18.以直线2x+y-4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为________19.设点P(x,y)是圆x2+(y+4)2=4上任意一点,则x-12+y-12的最大值为________.20.以原点O为圆心且截直线3x+4y+15=0所得弦长为8的圆的方程是__________.21.直线y=x+b与曲线x=1-y2有且只有1个公共点,则b的取值范围是__________.三.解答题22.圆过点A(1,-2),B(-1,4),求(1)圆心在直线2x-y-4=0上的圆的方程.(2)周长最小的圆的方程;23.已知圆N的标准方程为(x-5)2+(y-6)2=a2(a>0).(1)若点M(6,9)在圆上,求a的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围.24.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程.25.求圆心在直线4x+y=0上,且与直线l:x+y-1=0切于点P(3,-2)的圆的方程,并找出圆的圆心及半径.26.求平行于直线3x+3y+5=0且被圆x2+y2=20截得长为62的弦所在的直线方程.27.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.高二上学期数学练习题(1)(圆与方程)班级 姓名 学号一.选择填空题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=10[答案] A [解析] 设圆的标准方程为(x -4)2+(y +1)2=r 2,把点(5,2)代入可得r 2=10,即得选A . 2. 若一圆的标准方程为(x -1)2+(y +5)2=3,则此圆的圆心和半径长分别为( )A .(-1,5), 3B .(1,-5), 3C .(-1,5),3D .(1,-5),3 [答案] B 3. 方程(x +a )2+(y +b )2=0表示的图形是( )A .以(a ,b )为圆心的圆B .点(a ,b )C .以(-a ,-b )为圆心的圆D .点(-a ,-b ) [答案] D 4. 点P (a,5)与圆x 2+y 2=24的位置关系是( )A .点在圆外 B .点在圆内 C .点在圆上 D .不确定 [答案] A [解析] 因为a 2+52=a 2+25>24,所以点P 在圆外.5. 圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A .12 B .32 C .1 D .3 [答案] A [解析] 直线方程可化为:0x -=,先求得圆心坐标(1,0), 再依据点到直线的距离公式求得12d ==。

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析1.设是关于t的方程的两个不等实根,则过,两点的直线与双曲线的公共点的个数为A.3B.2C.1D.0【答案】D【解析】关于t的方程的不同的两根为0,,不妨取=0,=,直线AB 过原点,斜率为==,恰是双曲线的一条渐近线,故与该双曲线的公共点的个数为0,故选D.【考点】直线的方程,双曲线的渐近线,2.已知F1、F2分别为双曲线的左、右焦点,点P为双曲线右支上的一点,满足,且,则该双曲线离心率为.【答案】.【解析】,在中,设,则,.【考点】双曲线的离心率.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.双曲线的顶点到其渐近线的距离等于()A.B.C.1D.【答案】B.【解析】由题意可知双曲线的顶点坐标为,渐近线方程为,因此顶点到渐近线的距离为.【考点】双曲线的标准方程与渐近线方程.5.已知双曲线与抛物线有一个共同的焦点F, 点M是双曲线与抛物线的一个交点, 若, 则此双曲线的离心率等于( ).A.B.C.D.【答案】A【解析】:∵抛物线的焦点F(,0),∴由题意知双曲线的一个焦点为F(c,0),>a,(1)即p>2a.∴双曲线方程为,∵点M是双曲线与抛物线的一个交点, 若,∴p点横坐标x=,代入抛物线y2=8x得P,把P代入双曲线P,得,解得或因为p>2a.所以舍去,故(2)联立(1)(2)两式得c=2a,即e=2.故选A.【考点】抛物线的简单性质;双曲线的离心率的求法.6.已知双曲线的两条渐近线的夹角为,则双曲线的离心率的值是.【答案】【解析】根据渐近线方程有,可知其渐近线的斜率的绝对值小于1,所以两条渐近线的倾斜角分别是与,则根据,得,根据双曲线中有则离心率为.【考点】双曲线渐近线,离心率.7.双曲线的离心率为()A.B.C.D.【答案】C【解析】依题意可得,所以,所以该双曲线的离心率,故选C.【考点】双曲线的标准方程及其几何性质.8.在平面直角坐标系xOy中,已知焦点在x轴上的双曲线的渐近线方程为x±2y=0,则该双曲线的离心率为.【答案】【解析】因为焦点在x轴上的双曲线的渐近线方程为,所以【考点】双曲线渐近线方程9.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程10.设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】因为,所以三角形为等腰三角形,因此到直线的距离等于底边上的高线长,从而因此又所以该双曲线的渐近线方程为.【考点】双曲线的渐近线11.双曲线的离心率大于的充分必要条件是()A.B.C.D.【答案】C【解析】由题可知,,,因为,所以,故选C.【考点】双曲线的离心率.12.若双曲线的渐近线方程为,则它的离心率为.【答案】.【解析】由双曲线的渐近线方程为及性质可知,两边平方得,即.【考点】双曲线的几何性质.13.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于 .【答案】2【解析】由题意知抛物线的焦点为,∴;双曲线的焦点到其渐近线的距离.【考点】双曲线的定义、抛物线的定义.14.已知、为双曲线C:的左、右焦点,点在曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】题中唯一的条件是,为了充分利用此条件,我们设,且不妨设,则根据双曲线定义有,对利用余弦定理有,即,因此可求得,下面最简单的方法是利用面积法求得到轴的距离,,可得。

高二数学练习题及答案电子版

高二数学练习题及答案电子版

高二数学练习题及答案电子版下面是一份高二数学练习题及答案的电子版,供同学们参考和复习使用。

1. 线性方程组1.1 解线性方程组 2x + 3y = 7,3x - 4y = 6。

解答:先用第一个方程解出 x:2x = 7 - 3yx = (7 - 3y)/2将 x 的值代入第二个方程中:3(7 - 3y)/2 - 4y = 6化简得:21 - 9y - 8y = 12-17y = -9y = 9/17将 y 的值代入第一个方程中,求得 x:2x + 3(9/17) = 72x + 27/17 = 72x = 7 - 27/17 = 119/17 - 27/17 = 92/17x = 92/17 * 1/2 = 46/17所以,该线性方程组的解为 x = 46/17,y = 9/17。

2. 数列与数列求和2.1 求等差数列 2,5,8,11,... 的第 n 项公式和前 n 项和公式。

解答:等差数列的通项公式可以表示为 an = a1 + (n - 1)d,其中 a1 是首项,d 是公差。

首项 a1 = 2公差 d = 5 - 2 = 3第 n 项公式 an = 2 + (n - 1)3 = 3n - 1前 n 项和公式 Sn = (n/2)(a1 + an) = (n/2)(2 + 3n - 1) = (n/2)(3n + 1)所以,该等差数列的第 n 项公式为 3n - 1,前 n 项和公式为 (n/2)(3n + 1)。

3. 函数与方程3.1 求函数 f(x) = 2x^2 + 3x - 4 的极值点和拐点。

解答:首先,求函数的导数 f'(x):f'(x) = 4x + 3令 f'(x) = 0,解得极值点 x = -3/4。

然后,求函数的二阶导数 f''(x):f''(x) = 4由于二阶导数恒为正数,所以没有拐点。

所以,函数 f(x) = 2x^2 + 3x - 4 的极值点为 (-3/4, f(-3/4)),没有拐点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学试习题及答案
一、选择题
1.已知an+1=an-3,则数列{an}是()
A.递增数列
B.递减数列
C.常数列
D.摆动数列
解析:∵an+1-an=-30,由递减数列的定义知B选项正确.故选B.
答案:B
2.设an=1n+1+1n+2+1n+3++12n+1(nN*),则()
A.an+1an
B.an+1=an
C.an+1
解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12 n+3-12n+1=-12n+32n+2.
∵nN*,an+1-an0.故选C.
答案:C
3.1,0,1,0,的通项公式为()
A.2n-1
B.1+-1n2
C.1--1n2
D.n+-1n2
解析:解法1:代入验证法.
解法2:各项可变形为1+12,1-12,1+12,1-12,,偶数项为1-12,奇数项为1+12.故选C.
答案:C
4.已知数列{an}满足a1=0,an+1=an-33an+1(nN*),则a20等于()
A.0
B.-3
C.3
D.32
解析:由a2=-3,a3=3,a4=0,a5=-3,可知此数列的最小正周期为3,a20=a36+2=a2=-3,故选B.
答案:B
5.已知数列{an}的通项an=n2n2+1,则0.98()
A.是这个数列的项,且n=6
B.不是这个数列的项
C.是这个数列的项,且n=7
D.是这个数列的项,且n=7
解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故选C.
答案:C
6.若数列{an}的通项公式为an=7(34)2n-2-3(34)n-1,则数列{an}的()
A.最大项为a5,最小项为a6
B.最大项为a6,最小项为a7
C.最大项为a1,最小项为a6
D.最大项为a7,最小项为a6
解析:令t=(34)n-1,nN+,则t(0,1],且(34)2n-2=[(34)n-1]2=t2.
从而an=7t2-3t=7(t-314)2-928.
函数f(t)=7t2-3t在(0,314]上是减函数,在[314,1]上是增函数,所以a1是最大项,故选C.
答案:C
7.若数列{an}的前n项和Sn=32an-3,那么这个数列的通项公式为()
A.an=23n-1
B.an=32n
C.an=3n+3
D.an=23n
解析:
①-②得anan-1=3.
∵a1=S1=32a1-3,
a1=6,an=23n.故选D.
答案:D
8.数列{an}中,an=(-1)n+1(4n-3),其前n项和为Sn,则S22-S11等于()
A.-85
B.85
C.-65
D.65
解析:S22=1-5+9-13+17-21+-85=-44,
S11=1-5+9-13++33-37+41=21,
S22-S11=-65.
或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故
选C.
答案:C
9.在数列{an}中,已知a1=1,a2=5,an+2=an+1-an,则a2007等于()
A.-4
B.-5
C.4
D.5
解析:依次算出前几项为1,5,4,-1,-5,-4,1,5,4,,发现周期为6,则a2007=a3=4.故选C.
答案:C
10.数列{an}中,an=(23)n-1[(23)n-1-1],则下列叙述正确的是()
A.最大项为a1,最小项为a3
B.最大项为a1,最小项不存在
C.最大项不存在,最小项为a3
D.最大项为a1,最小项为a4
解析:令t=(23)n-1,则t=1,23,(23)2,且t(0,1]时,an=t(t-1),an=t(t-1)=(t-12)2-14.
故最大项为a1=0.
当n=3时,t=(23)n-1=49,a3=-2081;
当n=4时,t=(23)n-1=827,a4=-152729;
又a3
答案:A
二、填空题
11.已知数列{an}的通项公式an=
则它的前8项依次为________.
解析:将n=1,2,3,,8依次代入通项公式求出即可.
答案:1,3,13,7,15,11,17,15
12.已知数列{an}的通项公式为an=-2n2+29n+3,则{an}中的最大项是第________项.
解析:an=-2(n-294)2+8658.当n=7时,an最大.
答案:7
13.若数列{an}的前n项和公式为Sn=log3(n+1),则a5等于________.
解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.
答案:log365
14.给出下列公式:
①an=sinn
②an=0,n为偶数,-1n,n为奇数;
③an=(-1)n+1.1+-1n+12;
④an=12(-1)n+1[1-(-1)n].
其中是数列1,0,-1,0,1,0,-1,0,的通项公式的有________.(将所有正确公式的序号全填上)
解析:用列举法可得.
答案:①
三、解答题
15.求出数列1,1,2,2,3,3,的一个通项公式.
解析:此数列化为1+12,2+02,3+12,4+02,5+12,6+02,,由分子的规律知,前项组成正自然数数列,后项组成数列1,0,1,0,1,0,.
an=n+1--1n22,
即an=14[2n+1-(-1)n](nN*).
也可用分段式表示为
16.已知数列{an}的通项公式an=(-1)n12n+1,求a3,a10,a2n-1.
解析:分别用3、10、2n-1去替换通项公式中的n,得
a3=(-1)3123+1=-17,
a10=(-1)101210+1=121,
a2n-1=(-1)2n-1122n-1+1=-14n-1.
17.在数列{an}中,已知a1=3,a7=15,且{an}的通项公式是关于项数n的一次函数.
(1)求此数列的通项公式;
(2)将此数列中的偶数项全部取出并按原来的先后顺序组成一个新的数列{bn},求数列{bn}的通项公式.
解析:(1)依题意可设通项公式为an=pn+q,
得p+q=3,7p+q=15.解得p=2,q=1.
{an}的通项公式为an=2n+1.
(2)依题意bn=a2n=2(2n)+1=4n+1,
{bn}的通项公式为bn=4n+1.
18.已知an=9nn+110n(nN*),试问数列中有没有最大项?如果有,
求出最大项,如果没有,说明理由.
解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,当n7时,an+1-an
当n=8时,an+1-an=0;
当n9时,an+1-an0.
a1
故数列{an}存在最大项,最大项为a8=a9=99108.
搜集整理,仅供参考学习,请按需要编辑修改。

相关文档
最新文档