基因工程及其应用

合集下载

基因工程及其应用图解

基因工程及其应用图解

生燃料生产
利用转基因微生物转化生物质, 生产可再生的生物燃料,减少化 石燃料消耗。
生物修复
利用基因工程技术改造微生物, 用于清除污染物,修复环境污染。
基因工程的伦理和风险问题
1 伦理问题
包括基因改良是否符合道德原则,个体权益和公众利益的平衡。
2 风险评估
需要对基因工程技术的长期影响、安全性和环境风险进行全面评估。
3 透明度和监管
建立透明的监管和管理体系,确保基因工程的安全与可持续发展。
基因工程未来的发展趋势和前景
精准医学
基因工程将在个性化医疗方面发挥重要作用,根据 个体基因信息提供定制化的治疗方案。
可持续农业
基因工程将继续提高农作物的适应性和产量,推动 可持续农业的发展。
基因工程及其应用图解
基因工程是一种革命性的科学技术,可以通过改变生物的遗传信息来创造新 的特性和功能。本演示将介绍基因工程的定义、原理、技术以及在农业、医 学和环境保护领域的应用。
基因工程的基本原理和技术
基本原理
通过定向改变生物的遗传物质, 如 DNA 序列,来改变其性状和 表现。
主要技术
包括基因克隆、DNA 合成、基 因编辑和基因传递等技术,可 精确操控生物的基因。
应用案例
例如,利用 CRISPR-Cas9 技术可 以精确编辑人类基因,治疗某 些遗传病。
基因工程在农业中的应用
作物改良
通过转基因技术可使作物具 有较高的产量、抗病性和耐 逆性,提升农业生产效益。
生物农药
利用基因工程技术培育具有 杀虫或杀菌功能的生物农药, 减少化学农药对环境的污染。
缺陷改良
利用基因编辑技术可修复作 物中的基因缺陷,提高其品 质和营养价值。

高中高一生物教案:基因工程及其应用

高中高一生物教案:基因工程及其应用

高中高一生物教案:基因工程及其应用一、教学目标1.理解基因工程的概念、原理及其在各个领域的应用。

2.掌握基因工程的基本操作步骤。

3.培养学生的实验操作能力和创新思维。

二、教学重点与难点1.教学重点:基因工程的概念、原理、操作步骤及其应用。

2.教学难点:基因工程的操作步骤及其实际应用。

三、教学过程第一课时一、导入新课1.利用多媒体展示基因工程在生物技术领域的应用实例,如转基因食品、基因治疗等,激发学生兴趣。

2.提问:同学们,你们知道什么是基因工程吗?它有哪些应用?二、探究新知1.讲解基因工程的概念:基因工程是指按照人们的意愿,通过分子生物学技术对生物体的基因进行重组和改造,使其具有新的性状或功能。

2.讲解基因工程的原理:基因工程利用DNA重组技术,将目的基因插入到载体中,然后将其转化到受体细胞中,使受体细胞具有新的性状或功能。

3.讲解基因工程的操作步骤:(1)目的基因的获取:从基因库中筛选或利用PCR技术扩增目的基因。

(2)载体的选择与制备:选择适合的载体,如质粒、噬菌体等,并将其制备成感受态细胞。

(3)基因重组:将目的基因与载体连接,形成重组DNA。

(4)转化:将重组DNA导入受体细胞。

(5)筛选与鉴定:检测转化后的细胞是否具有新的性状或功能。

4.讲解基因工程的应用:(1)农业:转基因作物、抗病抗虫植物等。

(2)医药:基因治疗、生产生物药物等。

(3)环境保护:生物降解污染物、生产生物农药等。

(4)其他领域:生物制药、生物能源等。

三、课堂小结2.提问:同学们,你们能用自己的语言概括一下基因工程的应用领域吗?第二课时一、复习导入1.复习上节课的学习内容,提问:什么是基因工程?它有哪些应用?二、实验操作1.分组讨论:如何进行基因工程实验?2.学生展示实验方案,教师点评并给出建议。

3.学生进行实验操作,教师指导。

三、课堂小结2.提问:同学们,你们在实验过程中遇到了哪些问题?是如何解决的?四、课后作业1.根据教材内容,完成课后练习题。

基因工程及其应用教学设计(优秀7篇)

基因工程及其应用教学设计(优秀7篇)

基因工程及其应用教学设计(优秀7篇)6.2基因工程及其应用教学设计案例篇一一、教学目标的确定课程标准中与本节内容相对应的具体内容标准是:关注转基因生物和转基因食品的安全性,这也是本节要达成的主要教学目标。

课程标准并未明确指出本章要讲述基因工程的内容,考虑到本章教材知识体系的完整性,以及学生达成上述目标所需要的知识基础,本节还将简述基因工程的基本原理,举例说出基因工程在农业、医药等领域的应用作为教学目标。

二、--思路第一课时--流程图如下。

第二课时--流程图如下。

三、教学实施的程序教师组织引导学生活动教学意图教师通过图片和音像资料展示基因工程产品,如种子、水果、疫苗或药物等,引入课题。

教师利用问题探讨,提出问题,组织学生讨论、交流看法。

·为什么能把一种生物的基因嫁接到另一种生物上?·推测这种嫁接怎样才能实现?·这种嫁接对品种的改良有什么意义?教师小结:从杂交育种的局限性切入,人类可以利用基因工程技术按照自己的意愿直接定向改变生物。

说明本节教学目标。

教师肯定学生合理的想法,引发思考。

你的想法很好,可是用什么样的方法才能实现你的设想呢?教师用类比的方法引导学生思考基因工程的大致步骤和所需要的工具:剪刀、针线、运载体等。

并用问题启发学生:你能想像这种‘剪刀加浆糊’式的‘嫁接’工作在分子水平的操作,其难度会有多大吗?用同一种限制性内切酶切割后的dna片断其末端可以用连接酶来缝合(参考教科书插图6?4)。

这样剪切拼接就可以形成重组的dna分子。

将学生分成4个人一组,发给所需材料,可将构建模型的文字指导(参见选修3《现代生物科技专题》p.6重组dna分子的模拟操作),复印后发给各组。

教师提出问题:1.在制作模型时用到的工具(剪刀和不干胶)各代表什么?比较剪切后的dna片断的末端切片,你发现有什么特点呢?2.回顾在模型构建过程中,每一步的操作和所用到的工具以及形成的产品,你对重组dna 的操作有什么新的理解?教师启发学生思考重组后的dna分子还需要特殊的搬运工具运载到受体细胞(如大肠杆菌、动植物细胞)中。

人教版高中生物必修二第六章第2节《基因工程及其应用》 课件 (共38张PPT)

人教版高中生物必修二第六章第2节《基因工程及其应用》 课件 (共38张PPT)

A.同种限制酶
B.两种限制酶
C.同种连接酶
D.两种连接酶
2、DNA连接酶的主要功能是
()
A.DNA复制时母链与子链之间形成的氢键
B.粘性末端碱基之间形成的氢键
C.将两条DNA末端之间的缝隙连接起来
D.将碱基、脱氧核糖、磷酸之间的键连接起来
3、下列有关质粒的叙述,正确的是( A.质粒是广泛存在于细菌细胞内的一种颗粒状
DNA聚合酶:DNA复制时分别以DNA的两 条链为模板形成磷酸二酯键合成新的脱氧 核苷酸链。
逆转录酶:以RNA为模板形成磷酸二酯键 合成新的脱氧核苷酸链
限制酶:切割DNA,断开磷酸二酯键
DNA连接酶:连接两个DNA片段,形成磷 酸二酯键。
(三)基因的运载体
常见种类:质粒、噬菌体和动植物病毒等
质粒
存在于许多细菌以及酵母菌 等生物的细胞中,是拟核或 细胞核外能够自主复制的很 小的环状DNA分子。
运载体特点: 1、能自主复制并能够转移到
受体细胞并稳定保存 2、有限制酶切位点 3、有标记基因 4、对受体细胞无害
三、基因工程的“四步曲”
提取目的基因
三、基因工程的“四步曲”
提取目的基因 目的基因与运载体结合
B.质粒是仅存于细菌细胞中能自我复制的小型 环状DNA C. D.质粒的复制过程一定是在宿主细胞外独立地 进行
4下列有关基因工程技术的叙述,正确的是() A.重组DNA技术所用的工具酶是限制酶、DNA
连接酶和运载体
B.所有的限制酶都只能识别同一种特定的核苷 酸序列
C.选用细菌作为重组质粒的受体细胞是因为细 菌繁殖快
A.① B.
C.①②③ D.②③④
再见!
C.DNA
D.RNA

第2节 基因工程及其应用

第2节 基因工程及其应用
判断:目的基因导入受体细胞后,是否可以稳定维持 和表达其遗传特性
ቤተ መጻሕፍቲ ባይዱ
P103
将每个受体细胞单独培养形成菌落,检测菌落中 是否有目的基因的表达产物。淘汰无表达产物的菌落, 保留有表达产物的进一步培养、研究。
无表达产物
无表达产物
有表达产物
无表达产物
三、基因工程的操作步骤
4:目的基因的检测与鉴定
P103
分子水平检测 :DNA分子杂交;mRNA分子杂交 ;抗原-抗体杂交 个体水平鉴定:抗虫或抗病的接种试验
转基因食品
安全吗?
P105
转基因植物的安全性争论
P105
• 支持派认为:如果转基因农业生物技术得 不到社会支持,这一研究将被扼杀,并且 强调,迄今为止并没有发现转基因食品危 害人体健康和环境的确切证据。
反对派的观点
P105
• 一英国科学家声称,转基因马铃薯会减 弱老鼠免疫系统功能;
• 美国康乃尔大学也发现,转基因玉米会 危害蝴蝶幼虫及其相关生态环境。
标记基 因,便 于进行 检测。
作为运载体必须具备哪些条件?
(1)一个或多个限制酶的切割位点(以便目的基因的插入)
P103
(2)具备自我复制的能力,或整合到受体染色体DNA上随染色体DNA的复制而 同步复制(以便目的基因的复制保留)。 (3) 带有标记基因(鉴别受体细胞中是否含有目的基因) (4) 安全(不会对受体细胞有害,或不能进入到除受体细胞外的其他生物细胞 中去) (5)分子大小适合(以便提取和在体外进行操作,太大就不便操作) 实际上自然存在的质粒DNA分子并不完全具备上述条件,都要进行人工改造后 才能用于基因工程操作
制酶) 专一性: 一种限制酶只能
→ 并在特定的切点上切割DNA →

6.2 基因工程及其应用

6.2 基因工程及其应用
现代生物学技术 ——基因工程
能生产胰岛素的大肠杆菌
转基因超级小鼠
荧光小猪
导入人基因的小鼠(长出人的耳朵)——器官移植
荧光小鱼
个头特别大的转基因鲤鱼
日 本 生 产 的 转 基 因 方 形 西 瓜
日本转基因蓝色玫瑰
未来会不会出现这样的香蕉?
一、基因工程的概念——分子水平改变生物
标准概念——在生物体外,通过对DNA分子进行人工 “切割”和“拼接”,对生物的基因进行改造和重新 组合,然后导入受体细胞内,使重组基因在受体细胞 内表达,产生出人类所需要的产物。 基因工程又叫做基因拼接技术或DNA重组技术。 通俗概念——按照人们的意愿,把一种生物的个别基 因提取出来,加以修饰改造,然后放到另一种生物的 细胞里,定向地改造生物的遗传性状。
富含赖氨酸的转基因玉米
(二)动物基因工程——提高动物生长速度
转生长激素 基因鲤鱼
(二)动物基因工程——生产药物
转有人α-抗胰蛋白酶 基因的转基因羊
(三)基因工程药物
我国生产的部分基因工程药物
(三)基因工程药物
以候云德院士(右)为首的研究 人员,成功地研制出我国第一 个基因工程药物——干扰素
干扰素的生产车间
(四)基因治疗
我国研究人员正在制备用 于治疗的基因工程细胞
为病人注射基因工程细胞
六、转基因生物和转基因食品的安全性
目前,转基因生物和转基因食品的安全性还 没有证实,国际上对于转基因食品的管理主要有 两种态度,即欧洲国家的严格管理的态度和美国 相对宽松的态度。
三、基因操作的基本步骤
细菌 取出质粒 用相同的限制酶切出黏性末端 供体细胞 取出DNA分子 用限制酶切取目的基因
将目的基因插入质粒切口 用DNA连接酶将目的基因与质粒相连 基因工程的 将重组DNA分子导入受体细胞 遗传学原理: 基因重组 重组DNA分子增殖、表达 检测目的基因产物

医学中的基因工程及其应用

医学中的基因工程及其应用

医学中的基因工程及其应用基因工程是指利用生物技术手段,对生物体的基因进行修改、操作和调控的过程。

近年来,随着生物技术的不断进步和发展,基因工程技术在医学领域中的应用也越来越广泛。

本文将探讨基因工程在医学中的应用,包括基因治疗、基因诊断以及生物药物的生产等方面。

一、基因治疗基因治疗是指通过将正常的基因导入病患体内,从而达到治疗疾病的目的。

比如,某些疾病是由于基因突变所导致,这时候科学家可以通过基因编辑技术来修复这些基因,从而治愈患病的人。

目前,该技术已经应用于多种疾病的治疗中。

例如,基因治疗在癌症的治疗中应用得较为广泛。

科学家们利用基因编辑技术,将治疗相关的基因导入人体,然后通过体内产生的蛋白质与癌细胞进行作用,达到治疗癌症的目的。

此外,基因治疗还可以用于治疗其他一些疾病,如先天性遗传病、免疫缺陷病等。

二、基因诊断基因诊断是指通过检测个体的基因信息,进而进行疾病的预测、诊断、鉴定和治疗的手段。

随着基因测序技术的发展,基因诊断正逐渐成为一种主流的医学诊断手段。

目前,基因诊断在肿瘤、心血管疾病、遗传病等多种疾病的诊断中得到了广泛的应用。

对于肿瘤的诊断而言,基因诊断可以通过检测病人的DNA或RNA得到其具体的肿瘤类型,然后进一步做出更为精确的治疗方案。

同时,基因诊断技术还可以预测肿瘤的发生、转移及复发的风险等。

对于遗传病而言,基因诊断可以辅助医生进行疾病的早期预测和诊断,使患者通过早期知晓疾病早期进行针对性的治疗。

这对于患者及其家族人员,尤其是在家族中具有遗传基础的人群,是非常重要和有益的。

三、生物药物的生产生物药物是指利用生物技术手段生产出来的药物,因为其具有较高的特异性和生物活性,逐渐成为临床医学的重要药物。

基因工程技术在生物药物的生产过程中发挥着至关重要的作用。

通过基因编辑技术将人体需要的蛋白质基因插入到大肠杆菌、酵母等微生物体内,实现对蛋白质的大规模生产。

这种基因工程技术被称为“蛋白质表达系统”。

基因工程及其应用

基因工程及其应用

基因工程及其应用
基因工程是一种涉及改变生物体基因组的技术,它包括对
基因进行分离、修改和重新组合,以创建具有特定性状的
生物体。

这项技术的出现已经改变了许多领域,包括医学、农业、工业等。

以下是基因工程的一些应用:
1. 医学应用:基因工程在医学领域有广泛应用。

它可以用
于生产重要的药物,例如人胰岛素、生长激素和抗体等。

此外,基因工程还用于研究和治疗基因相关的疾病,如癌症、遗传性疾病等。

2. 农业应用:基因工程在农业领域被用来改良植物和动物
品种,以提高产量、抗病性和耐逆性等。

例如,基因工程
可以将外源基因导入作物,使其具有耐虫、耐病和抗草甘
膦等特性。

3. 工业应用:基因工程可以生产大量的酶和蛋白质,用于
工业生产中的各种过程。

这些酶和蛋白质可以用于生产纤
维素、纸浆、生物燃料和工业化学品等。

4. 环境应用:基因工程还可以用于改变微生物的代谢途径,以提高污水处理、生物修复和废物处理等环境应用的效率。

5. 法医学应用:基因工程可以用于DNA分析,例如在刑事犯罪的调查中用于鉴定嫌疑人和受害者的身份。

尽管基因工程的应用广泛且有潜力,但其发展也面临伦理
和安全的挑战和争议。

因此,在使用基因工程技术时,需
要进行严格的监管,并谨慎权衡其风险和利益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因工程及其应用Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】第2节基因工程及其应用(第1课时)知识链接及考试地位本知识与“DNA分子的结构与复制”、“基因突变和基因重组”、“DNA重组技术的基本工具”、“基因工程的基本操作程序”等内容相联系,考试过程中常设计基因工程的原理、基本工具等基础知识,多以个别填空或选择题的形式呈现。

知识回顾1、DNA分子的结构特点是什么2、什么是基因重组学习目标1、简述基因工程的诞生。

2、简述基因工程的原理及技术。

要明确基因工程操作的基本步骤和最基本的工具。

重难点1.教学重点基因工程的基本原理。

2.教学难点基因工程的基本原理新知探究传统育种的方法一般只能在生物中进行,很难将一种生物的优良性状移植到生物身上。

基因工程的出现使人类有可能按照自己的意愿地改变生物,培育出。

一、基因工程的原理基因工程又叫做或。

通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以,然后放到另一种生物细胞里,地改造生物的遗传性状。

基因工程是在DNA上进行的水平的设计施工,基因的剪刀是指,简称限制酶。

其作用特点是一种限制酶只能识别一种序列。

基因的针线是指。

目前常用的运载体有、和等。

质粒存在于许多以及等生物中,是细胞染色体外能够自主复制的小型分子。

基因工程的操作步骤是:、目的基因与运载体结合,目的基因导入受体细胞、目的基因的和。

二、基因工程的原理、操作对象各是什么三、限制性内切酶的分布、特点、作用部位和作用结果如何四、作为基因的运载体,需具备哪些条件五、DNA连接酶的作用对象、位置和结果如何六、基因工程的优点是什么七、基因重组与基因工程比较拓展延申基因工程技术一、基因工程诞生的理论依据(1) DNA是遗传物质不同基因具有相同的物质基础。

地球上的一切生物,从细菌到高等动物和植物,直至人类,它们的基因都是一个具有遗传功能的特定核苷酸序列的DNA片段。

而所有生物的DNA的基本结构都是一样的。

因此,不同生物的基因(DNA片段)原则上是可以重组互换的。

虽然某些病毒的基因定位在RNA上,但是这些病毒的RNA仍可以通过产生。

DNA并不影响不同基因的重组或互换。

A:肺炎双球菌转化实验1944年美国微生物学家Avery,通过细菌(肺炎链球菌)转化(有毒与无毒)研究确定了基因的分子载体是DNA,而不是蛋白质。

B:噬菌体转染实验1952年Alfred Hershy和Marsha Chase用标记物的噬菌体(P32和S35)感染大肠杆菌,发现只有P32标记的DNA注入寄主细胞才能繁殖下一代进一步证明遗传物质是DNA。

(2) DNA双螺旋结构1953年James D. Watson和Francis H. C. Crick揭示了DNA分子的双螺旋结构和半保留复制机制。

(3)中心法则和遗传密码遗传密码是通用的。

一系列三联密码子(除极少数的几个以外)同氨基酸之间的对应关系,在所有生物中都是相同的。

也就是说遗传密码是通用的,重组的 DNA分子不管导人什么样的生物细胞中,只要具备转录翻译的条件,均能转译出原样的氨基酸。

即使人工合成的DNA分子(基因)同样可以转录翻译出相应的氨基酸。

现在,基因是可以人工会成的。

(4)基因是可切割的基因直线排列在DNA分子上。

除少数基因重叠排列外,大多数基因彼此之间存在着间隔序列。

因此,作为DNA分子上一个特定核苷酸序列的基因,允许从DNA分子上一个一个完整地切割下来。

即使是重叠排列的基因,也可以把指定的基因切割下来,尽管破坏了其他基因。

(5)基因是可以转移的基因不仅是可以切割下来的,而且发现生物体内有的基因可以在染色体DNA上移动,甚至可以在不同染色体间进行跳跃,插入到靶DNA分子之中。

由此表明基因不仅是可转移的。

(6)多肽与基因之间存在对应关系现在普遍认为,一种多肽就有一种相对应的基因。

因此,基因的转移或重组可以根据其表达产物多肽的性质来检查。

(7)基因可以通过复制把遗传信息传递给下一代经重组的基因一般来说是能传代的,可以获得相对稳定的转基因生物。

二、基因工程的研究内容-----基础研究基因工程问世以来,科技工作者始终十分重视基础研究,包括构建一系列克隆载体和相应的表达系统,建立不同物种的基因组文库和cDNA文库,开发新的工具酶,探索新的操作方法等,各方面取得了丰硕的研究成果,使基因工程技术不断趋向成熟。

1、基因工程克隆载体的研究基因工程的发展是与克隆载体构建密切相关的,由于最早构建和发展了用于原核生物的克隆载体,所以以原核生物为对象的基因工程研究首先得以迅速发展。

Ti质粒的发现以及成功地构建了Ti质粒衍生的克隆载体后,植物基因工程研究随之就迅速发展起来。

动物病毒克隆载体的构建成功,使动物基因工程研究也有一定的进展。

可以认为构建克隆载体是基因工程技术路线中的核心环节。

至今已构建了数以千计的克隆载体。

但是构建新的克隆载体仍是今后研究的重要内容之一。

尤其是适合用于高等动植物转基因的表达载体和定位整合载体还须大力发展。

2、基因工程受体系统的研究基因工程的受体与载体是一个系统的两个方面。

前者是克隆载体的宿主,是外源目的基因表达的场所。

受体可以是单个细胞,也可以是组织、器官、甚至是个体。

用作基因工程的受体可分为两类,即原核生物和真核生物。

原核生物大肠杆菌是早期被采用的最好受体系统,应用技术成熟,几乎是现有一切克隆载体的宿主;以大肠杆菌为受体建立了一系列基因组文库和cDNA文库,以及大量菌株,开发了一批已投入市场的基因工程产品。

蓝细菌(蓝藻)是进行植物型光合作用的原核生物,兼具植物自养生长和原核生物遗传背景简单的特性,便于基因操作和利用光能进行无机培养。

因此,近年来蓝细菌开始被用作廉价高效表达外源目的基因的受体系统。

酵母菌是十分简单的单细胞真核生物,具有与原核生物很多相似的性状。

酵母菌营异养生长,便于工业化发酵;基因组相对较小,有的株系还含有质粒,便于基因操作。

因此酵母菌是较早被用作基因工程受体的真核生物。

有人把酵母菌同大肠杆菌一起看作是第一代基因工程受体系统。

酵母菌不仅是外源基因(尤其是真核基因)表达的受体,建立了一系列工程菌株,而且成为当前建立人和高等动物、植物复杂基因组文库的受体系统。

真核生物单细胞小球藻和衣藻也被用于研究外源基因表达的受体系统。

随着克隆载体的发展,至今高等植物也已用作基因工程的受体,一般用其愈伤组织、细胞和原生质体,也用部分组织和器官。

目前用作基因工程受体的植物有双子叶植物拟南芥、烟草、番茄、棉花等,单子叶植物、玉米、小麦等,获得了相应的转基因植物。

动物鉴于体细胞再分化能力差,目前主要以生殖细胞或胚细胞作为基因工程受体,获得了转基因鼠、鱼、鸡等动物。

动物体细胞也用作基因工程受体,获得了系列转基因细胞系,用作基础研究材料,或用来生产。

随着克隆羊的问世,对动物体细胞作为基因工程受体的研究越来越被重视,将成为21世纪初重要研究课题之一。

人的体细胞同样可作为基因工程的受体,转基因细胞系用于病理研究。

近年来还以异常生长的细胞作为受体,通过转基因使其回复正常生长状态()。

3、目的基因研究基因是一种资源,而且是一种有限的战略性资源。

因此开发基因资源已成为发达国家之间激烈竞争的焦点之一,谁拥有基因专利多,谁就在基因工程领域占主导地位。

基因工程研究的基本任务是开发人们特殊需要的基因产物,这样的基因统称为目的基因。

具有优良性状的基因理所当然是目的基因。

而致病基因在特定情况下同样可作为目的基因,具有很大的开发价值。

即使是那些今天尚不清楚功能的基因,随着研究的深入,也许以后成为具有很大开发价值的目的基因。

获得目的基因的途径很多,主要是通过构建基因组文库或cDNA文库,从中筛选出特殊需要的基因。

近年来也广泛使用PCR技术直接从某生物基因组中扩增出需要的基因。

对于较小的目的基因也可用人工化学合成。

现在已获得的目的基因大致可分为三大类:第一类是与医药相关的基因;第二类是抗病、虫害和恶劣生境的基因;第三类是编码具特殊营养价值的蛋白或多肽的基因。

近年来越来越重视基因组的研究工作,试图搞清楚某种生物基因组的全部基因,为全面开发各种基因奠定基础。

据统计,至1998年完成基因组测序的生物有11种,如嗜血流感杆菌(1830 137bp,1743个基因)、产甲烷球菌(1664 976 bp,1682个基因)、大肠杆菌 K-12(4 639 221bp,4288个基因)、啤酒酵母(~12 x 10 bp,5882个基因)、枯草杆菌( Bacillussubrilis)(4.21 X10bp,4100个基因)。

早在20世纪80年代就有人对人类基因组产生了兴趣,提出人类基因组研究计划。

从1990年开始,先后由美国、英国、日本、德国、法国等国实施“人类基因组计划”,我国于1999年9月也获准参加这一国际性计划,在北京和上海分别成立了人类基因组研究中心,承担人类基因组1%的测序任务。

这些国家聚集了一批科技人员,经过十年的辛勤工作,于2000年6月宣告人类基因组“工作框架图”已经绘制完毕。

同时已破译了近万个基因。

至1999年,美国对6500个人类基因提出了专利申请。

一般认为人类基因组含有数万个基因,各司其职,控制着人的生长、发育、繁殖。

一旦人类基因组全部被破译,就可了解人类几千种遗传性疾病的病因,为基因治疗提供可靠的依据,并且将保证人类的优生优育,提高人类的生活质量。

除“人类基因组计划”以外,目前正在实施“水稻基因组计划”。

以稻米为主食的我国早在1992年8月正式宣布实施“水稻基因组计划”,并且是目前国际“水稻基因组计划”的主要参加者,并于2001年10月12日,中国科学院、国家计委、科技部联合召开新闻发布会,宣布具有国际领先水平的中国水稻(税稻)基因组“工作框架图”和数据库在我国已经完成。

这一成果标志着我国已成为继美国之后,世界上第二个能够独立完成大规模全基因组测序和组装分析能力的国家,表明我国在基因组学和生物信息学领域不仅掌握了世界一流的技术,而且具备了组织和实施大规模科研项目开发的能力。

籼稻全基因组“工作框架图”的完成,将带动小麦、玉米等所有粮食作物的基础与应用研究。

此外,中国、美国合作的“家猪基因组计划”也已经启动。

4、基因工程工具酶的研究基因工程工具酶指体外进行DNA合成、切割、修饰和连接等系列过程中所需要的酶,包括DNA聚合酶、限制性核酸内切酶、修饰酶和连接酶等。

限制性核酸内切酶用于有规律地切割DNA把提供的DNA原材料切割成具特定末端的DNA片段。

现已从不同生物中发现和分离出上千种限制性核酸内切酶,基本上可满足按不同目的切割各种DNA分子的需要。

耐热性限制性核酸内切酶和长识别序列稀切酶仍是当前研究的热门课题。

相关文档
最新文档