高等代数与解析汇报几何第11章习题参考解答
同济高等数学第十一章习题详解2

756(2)()()⎰⎰⎰⎰+++=+∑xyD y x y x y xS y xd d 441d 222222极坐标2 0 0d d πθρ⎰()()⎰++-+=2214116 2241d 41ρρρπ()()22325325216⎥⎥⎦⎤⎢⎢⎣⎡+-+=224141ρρππ30149=. (3)()[]⎰⎰⎰⎰+++-=∑xyD y x y xy xS d d 441zd 2222233极坐标223d 2d πθ-ρρ⎰()[]()⎰+++-=202419163 2241d 41ρρρπ()().πρρπ1011141524161632252232=⎥⎥⎦⎤⎢⎢⎣⎡+-+= 5.计算()⎰⎰∑+S y xd 22,其中∑是:(1) 锥面22y x z +=及平面1=z 所围成区域的整个边界曲面; 解 ∑由1∑和2∑组成,其中()11:221≤+=∑y x z ,222:y x z +=∑()01z ≤≤.则21,∑∑在xOy 面的投影区域均为(){}1,22≤+=y x y xD xy .在1Σ上,d d d d S x y x y ==,有()⎰⎰∑+1d 22S y x()⎰⎰+=xyD yx y xd d 22极坐标2 12 0d d 2ππθρ⋅ρρ=⎰⎰;757在2Σ上,d d d S x y x y =,有()⎰⎰∑+2d 22S y x()⎰⎰++++=xyD y x y x z z y xd d 12222()π22d d 222=+=⎰⎰xyD y x y x. 从而原式()⎰⎰∑+=1d 22S y x()π221d 222+=++⎰⎰∑S y x. (2) 锥面()2223y x z +=被平面0=z 和3=z 所截得的部分. 解 由题设,曲面∑的方程为()223y x z +=,将3=z 代入()223y x z +=得322=+y x ,故∑在xOy 面的投影区域为(){}3,22≤+=y x y x D xy .又y x z z S y x d d 1d 22+++=2d d x y =.所以()⎰⎰∑+S y xd 22()⎰⎰⋅+=xy D y x y x d 2d 22极坐标2202d d 9πθ⋅ρρ=π⎰.6.计算下列对面积的曲面积分:(1)S y x z d 342⎰⎰∑⎪⎭⎫ ⎝⎛++,其中∑为平面1432=++z y x 在第一卦限中的部分;解 如图11-20,,3214:⎪⎭⎫⎝⎛--=∑y x z ∑在xOy 面上的投影区域758xy D 是由直线123x y+=、x 轴和y 轴围成的三角形闭 区域.又d d S x yd x y =y x d d 361=,因此S z y x S y x z d 4324d 342⎰⎰⎰⎰∑∑⎪⎭⎫⎝⎛++=⎪⎭⎫ ⎝⎛++614d d 3614d 4===⎰⎰⎰⎰∑xyDy x S .(2)()S z x xxy d ⎰⎰∑+--222,其中∑为平面622=++z y x 在第一卦限中的部分;解 已知,:y x z 226--=∑∑在xOy 面上的投影区域xy D 是由直线133x y+=、x 轴和y 轴围成的三角形闭区域.又 d d S x y =y x d d 3=,因此()S z x xxy d ⎰⎰∑+--222()[]⎰⎰∑⋅--+--=y x y x x xxy d d 3226222()⎰⎰-+--=-x y y xy xx x323222363d d()()()()[]⎰+---=3231323632d --x x x x x x。
同济版高等代数与解析几何第十章习题答案

同济版高等代数与解析几何第十章习题答案习题10.11、写出二次型的矩阵如下:(1)⎪⎪⎪⎭⎫⎝⎛--332321211;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----23013120012121212323;(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000120100202121; (4)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------0321301221011210n n n n n n .2、二次型可以表示为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n n n n x x x a a a a a a x x x x a x a x a a x a x a x x x x q 212121************),,,(),,,(),,,(),,,(,),,,(21n x x x q 的矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a A 2122212121112121),,,(.当,a a a n 时021==== q 的秩为0;当,a a a n 时不全为0,,,21 q 的秩为1.3、二次型的秩未必是A ;应为(),ij b B =其中,2jiij ij a a b +=.4、(1)若A 为反对称矩阵,即A A -=',则AX X AX X X A X AX X '-=''-='-'=')()(,从而 0='A X X ;反之,若对任意X 都有0='A X X ,令)(ij a A =,取())(0,,1,,0i i X ='='ε,则0=='ii i i a A εε.取j i X εε'+'=' ,则0=+++='jj ji ij ii a a a a AX X ,得0=+ji ij a a ,即ji ij a a -=,故A 为反对称矩阵.(2)因对任意n 维向量X ,都有0='A X X ,由(1)知,A A -='. 又由A A =',因而A A -=,得A=0.(3)因对任意n 维向量X ,都有BXX AX X '=',即0)(=-'X B A X ,又显然B A -是对称矩阵,故由(2)得O B A =-,即A=B .5、由A 可逆,且A A =',得A A A A ='-1,故A 与A /合同.6、因A 与B 合同,C 与D 合同,故存在可逆矩阵21,P P ,使 D CP P B AP P ='='2211,.取⎪⎪⎭⎫ ⎝⎛=21P O O P P ,则P 可逆,且有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛'D O O B P C O O A P .7、(1)当a >0,b>0时,取⎪⎪⎪⎪⎭⎫ ⎝⎛=b a P 1001,则P 为可逆实矩阵.且2I AP P =',从而A 与I 在R 上合同. (2)当0≠ab 时,0,0≠≠b a ,取⎪⎪⎪⎪⎭⎫ ⎝⎛=b a P 1001,则P 为可逆复矩阵.且2I AP P ='. 习题10.21、(1))44()2(),,(234222222121321x x x x x x x x x x x q +++++==232221)2()(x x x x +++.令⎪⎩⎪⎨⎧=+=+=,,2,33322211x y x x y x x y 即⎪⎩⎪⎨⎧=-=+-=,,2,2333223211y x y y x y y y x 代入原二次型,得2221321),,(y y x x x q +=.所作非退化线性替换是⎪⎩⎪⎨⎧=-=+-=.,2,2333223211y x y y x y y y x (2)对二次型作非退化线性替换⎪⎩⎪⎨⎧=+=-=.,,33212211y x y y x y y x 得3213212121321)()())((),,(y y y y y y y y y y x x x q ++-++-=.)(22322231322221y y y y y y y y --+=+-=再令⎪⎩⎪⎨⎧==+=,,,3322311y z y z y y z 即⎪⎩⎪⎨⎧==-=.,,3322311z y z y z z y 代入得232221321),,(z z z x x x q --=. 所作的非退化线性替换是⎪⎩⎪⎨⎧=-+=--=.,,3332123211z x z z z x z z z x(3)422241222114321)(),,,(x x x x x x x x x q +-+= =2424422212211)44()(x x x x x x x ++--+ =242424122211)2()(x x x x x +--+ 令⎪⎪⎩⎪⎪⎨⎧==-=+=,,,2,443342222111x y x y x x y x x y 即⎪⎪⎩⎪⎪⎨⎧==+=--=,,,2,4433422422111y x y x y y x y y y x 代入,得242241214321),,,(y y y x x x x q +-=. (4)2212113)1(22312432221121)()()(),,,(nn n n n n ni n n i ni i n x x x x x x x x x x q +-=-=+++++++=∑∑ .令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=+=+=--==∑∑,,,,1113312222111n n n n n n n i i n i i x y x x y x x y x x y 即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=--==∑∑.,,,11131222111n n n nn n ni i i ni i i y x y y x x y x y y x 将变换代入,得22121)1(222432121),,,(n nn n n nn y y y y x x x q +--++++= .(5)作非退化线性替换⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+=-=+=-=+=---nn n n n n y y x y y x y y x y y x yy x y y x 212221212434433212211 q 化为222122423222121),,,(n n n y y y y y y x x x q -++-+-=- .(6)∑∑∑===⎪⎭⎫ ⎝⎛==ni nj n i i i j j i i n x a x a x a x x x q 112121))((),,,( .设0≠i a ,令⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=====+++=++--,,,,,,11112222111n n i i i i i i n n x y x y x y x y x y x a x a x a y即,⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==------====+++---+-,,,,,,111121111221112n n i i n a a i a a i a a a a a i i i i y x y x y y y y y x y x y x y x i n i i i i i i二次型化为:2121),,,(y x x x q n = .2、(1)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛7230002000122110100100010001121221110 I A ,取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=2211010023P ,则 ⎪⎪⎪⎭⎫ ⎝⎛--='2700020001AP P .(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛------=100010011112121212121P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛---='232122AP P ;(3)⎪⎪⎪⎭⎫⎝⎛-='⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=3731131,1001021AP P P . 3、(1)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛-----=212132221A ,⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛100310421300010001100010001212132221 I A ,⎪⎪⎪⎭⎫⎝⎛=100310421P .经非退化线性替换X=PY ,二次型化为2322213213),,(y y y x x x q +-=.验算: ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛='311100310421212132221134012001AP P .(2)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫⎝⎛--=011102120A , ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛100111000400011000100010111021201111 I A ,⎪⎪⎪⎭⎫ ⎝⎛-=1001121212121P .经非退化线性替换X=PY ,二次型化为2322213214),,(y y y x x x q ++-=.验算: ⎪⎪⎪⎭⎫⎝⎛-='100040001AP P .4、设A 为秩等于r 的对称矩阵,则存在可逆矩阵P ,使得rr E E E AP P +++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=' 2211011,.1112211111)()()(------'++'+'=p E P P E P P E P A rr令11)(--'=P E P A ii i ,则i i A A =',且秩),,2,1(1)(r i E A ii i ===秩,同时有 r A A A A +++= 21.5、用A ,B 表示所给两个对角形矩阵,由于二次型2222121212121),,,(),,,(n i i i n n n x x x x x x A x x x x x x q nλλλ+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 可经过非退化线性替换⎪⎪⎩⎪⎪⎨⎧===ni ni i y x y x y x 2121化得2222211222212211),,,(n n i i i i n y y y y y y x x x q ni n i λλλλλλ+++=+++==()⎪⎪⎪⎪⎪⎭⎫⎝⎛n n y y y B y y y 2121,,,,故A 与B 合同.6、因A 为复数域上的对称矩阵,故存在复数域上的可逆矩阵P 1,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n d d d AP P 002111,因为在复数域内,任何数可开平方,故有112121110000)(--⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=P d d d d d d P A n n令112100-⎪⎪⎪⎪⎪⎭⎫⎝⎛=P d d d P n,则有P P A '=.习题10.31、(1)q 矩阵为⎪⎪⎪⎭⎫⎝⎛----=320222021A ,A 的特征多项式())1)(5(232222021+--=---=-x x x x x x A xA .A 的特征值为2,5,-1.对的特征值2=λ 解齐次方程组0120202021321=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-x x x 求得基础解系)2,1,2(1--=η,单位化得),,(3231321--=γ,同理求得属于特征值5,-1的单位特征向量分别为),,(3232312-=γ, ),,(3132323=γ.取正交矩阵⎪⎪⎪⎭⎫ ⎝⎛---=12222121231U .则⎪⎪⎪⎭⎫⎝⎛-='152AU U ,q 通对正交的线性替换X=UY ,化为23222132152),,(y y y x x x q -+=. (2)q 的矩阵为⎪⎪⎪⎭⎫⎝⎛=204060402A ,它的特征多项式为:)2()6(240604022+-=-----=-x x x x x A xI ,A 的特征值为6(二重),-2. 对于特征值6,解齐次方程组:⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--321404000404x x x . 求得一个基础解系为)1,0,1(1-=η,)0,1,0(2=η它们已是正交向量组,将它们单位化,得),0,(21211=γ )0,1,0(2=γ对于特征值-2,同理可求得相应的特征向量)1,0,1(3-=η,单位化得),0,(21213-=γ 取⎪⎪⎪⎪⎭⎫ ⎝⎛-=2121212100100U ,则U 为正交矩阵,且⎪⎪⎪⎭⎫ ⎝⎛-='200060006AU U .对二次型作正交线性替换X=UY ,就化成232221266y y y -+. (3)q 的矩阵为⎪⎪⎪⎭⎫⎝⎛----=242422221A .A 的特殊征多项式)7()2(2+-=-x x A xI ,A 的特征值为2,2,-7.对于特征值2,求得两个相应的线性无关的特征向量)0,1,2(1-=α,)1,0,2(2=α将它们正交化得)0,1,2(11-==αβ,)5,4,2(12=β单位化得)0,,(51521-=γ,),,(5355345322=γ对于特征值-7,求得相应的特征向量为)2,2,1(3-=α单位化得),,(3232313-=γ取⎪⎪⎪⎪⎭⎫ ⎝⎛--=32535325345131532520U ,则U 是正交矩阵,且⎪⎪⎪⎭⎫ ⎝⎛-='700020002AU U , q 可经过正交线性替换X=UY ,化为 232221321722),,(y y y x x x q -+=. (4))q 的矩阵为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=0110,000100100000010010B B B A .)1)(1(1112+-=-=--=-x x x xx B xI ,B 的特征值为1,-1.对特征值为1,求得B 的属于1特征向量为)1,1(1=α,单位化得),(21211=γ,对于-1,求得相应的特征向量为)1,1(2-=β,单位化得),(21212-=γ.取⎪⎪⎭⎫⎝⎛-=21212121Q ,则Q 为正交矩阵.且⎪⎪⎭⎫ ⎝⎛-='1001BQ Q . 令⎪⎪⎭⎫⎝⎛=Q Q U 00,则U为正交矩阵.且⎪⎪⎪⎪⎪⎭⎫⎝⎛--='100001000010001AU U .作正交线性替换X=UY ,二次型就化为24232221y y y y -+-. 2、因为A 是实对称矩阵,故它的特征值0λ是实数,从而存在不全为0的实数n x x x ,,,21 使得⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x x x x A 21021λ.于是,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n x x A x x x x x x q 212121),,,(),,,()(),,,(22221021021n n n x x x x x x x x x +++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= λλ.3、因为AX X x x x q n '=),,,(21 是实二次型,故存在正交的线性替换X=UY (U 为正交矩阵),使 AX X x x x q n '=),,,(21 =2222211nn y y y λλλ+++ (1) 其中n λλλ,,,21 为A 的全部特征值.由于n λλλ≤≤≤ 21,又由于22221ny y y +++ =Y Y y y y y y y n n '=⎪⎪⎪⎪⎪⎭⎫⎝⎛ 2121),,,(,故对n R 中的任意向量X ,由(1)得='≤'AX X Y Y 1λ2222211nn y y y λλλ+++ Y Y n '≤λ (2) 因为U 为正交矩阵,I U U ='故Y Y IY Y UY U Y UY UY X X '='=''='=')()(从而由(2)得XX AX X X X n '≤'≤'λλ1.4、因为A 为实对称矩阵,所以存在正交矩阵U 使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='n AU U λλλ0021,这里R n ∈λλλ,,,21 是A 的全部特征值.由于i λ>0,i=1,2,…,n ,故U U U U A n n '⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎪⎪⎭⎫⎝⎛=221210000λλλλλλU U U U n n '⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλλ00002121令U U S n '⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλ0021,则S 为实对称矩阵,并且有2S A =. 习题10.41、(1)2221321),,(y y x x x q +=已经是C 上和R 上的典范形; (2)在C 上,对232221321),,(z z z x x x q --=,再作非退化线性替换 ⎪⎩⎪⎨⎧===332211iwz iw z w z ,可化为典范形232221321),,(w w w x x x q ++=; 而在R 上,232221321),,(z z z x x x q --=已经是典范形.(3)在C 上,对242241214321),,,(y y y x x x x q +-=,再作非退化线性替换⎪⎪⎩⎪⎪⎨⎧====344322112z y z y iz y z y ,可化为典范形2322214321),,,(z z z x x x x q ++=;在R 上,对 24221214321),,,(y y y x x x x q +-=,再作非退化实线性替换⎪⎪⎩⎪⎪⎨⎧====244332112z y z y z y z y ,可化为典范形2322214321),,,(z z z x x x x q -+=. (4)q 在C 上和R 上的典范形都是:2212221n n z z z z ++++-(5)q 在C 上的典范形为:222122221nn n z z z z z +++++++ ;在R 上的典范形为:222122221n n n z z z z z ---++++ .(6)2121),,,(y x x x q n = 已经是典范形.2、q 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=000222222c b ca ba A .因为0≠ab 故0,0≠≠b a ,从而知A 与⎪⎪⎪⎭⎫ ⎝⎛--abc a a 000000合同. (1)ab>0时,若c=0,则q 的秩r=2,符号差011=-=s ;若c>0,则q 的秩r=3,符号差121-=-=s ; 若c<0,则q 的秩r=3,符号差112=-=s ;(2)ab<0时,若c=0,则q 的秩r=2,符号差011=-=s ;若c>0,则q 的秩r=3,符号差112=-=s ; 若c<0,则q 的秩r=3,符号差121-=-=s .3、二次型的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++++++++++=)()2(2)1()2(24432)1(3222n n n n n n n n n n n A λλλλλλλλλ可证,A 与⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+---+---0001000200011210n n 合同.因后一矩阵与λ无关,从而得A 的秩和符号差与λ无关,即二次型的秩和符号差与λ无关.4、类数=2)2)(1()1(21++=+++n n n .n=3时,各类典范形为:⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛111,111,111,111;⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛011,011,011;⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛000;001,001.5、充分性.设实二次型),,,(21n x x x q 的秩为2,且符号差为0,则它可以经非退化线性替换X=PY 化为典范形),,,(21n x x x q =))((21212221y y y y y y -+=-.由X P y '=,可知,11,y y 可由n x x x ,,,21 线性表示.代入上式得),,,(21n x x x q 是两实系数n 元一次齐次多项式的乘积.若q 的秩为1,则q 可经非退化线性替换X=PY 化为典范形2121),,,(y x x x q n = ,同理可得结论成立.必要性.设二次型可分解为),,,(21n x x x q =))((22112211n n n n x b x b x b x a x a x a ++++++ ,其中),,2,1(,n i Rb a i i =∈.若),,,(21n a a a 与),,,(21n b b b 成比例,即ii ka b =,且设1≠a ,可对q 作非退化线性替换⎪⎪⎩⎪⎪⎨⎧==+++=n n n n x y x y x a x a x a y 2222111 化为),,,(21n x x x q =21ky .此时二次型),,,(21n x x x q 的秩为1.若),,,(21n a a a 与),,,(21n b b b 不成比例,不如设),(21a a 与),(21b b 不成比例,则01221≠-b a b a ,从而⎪⎪⎪⎩⎪⎪⎪⎨⎧==+++=+++=nn n n nn x y x y x b x b x b y x a x a x a y 332211222111是非退化线性变换.对),,,(21n x x x q 作此变换后再作如下线性替换⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=+=nn z y z y z z y z z y 33212211 就得),,,(21n x x x q =222121z z y y -=. 因此,二次型),,,(21n x x x q 的秩为2,并且符号差是零.6、只需证齐次线性方程0='AX A 与AX=0同解.设X 是AX=0的解,则有0='AX A ,即X 也是0='AX A 的解;反之,设X 是0='AX A 的解,则有0='=''O X AX A X ,即0)()(='AX AX .因为A 为实矩阵,X 为实向量,故AX=0.即X 是AX=0的解,于是,A /A 与A 的秩相同.7、把q 写成),,,(21n x x x q =AX A X '',),,,(21n x x x X =',因为A A A A '='')(,得A A '是q 的矩阵,q 的秩等于AA '的秩,由上题得q 的秩等于A 的秩.习题10.51、(1)q 的矩阵为⎪⎪⎪⎭⎫⎝⎛=621221111A它的顺序主子式为11=D >0,121112==D >0,46212211113==D >0,故q 是正定的. (2)q 的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2010010310420321A 因为A 的2阶顺序主子式042212==D ,由此可知,q 不是正定的.(3)取不全为0的实数1,0,0321===x x x ,有0)1,0,0(=q ,故q 不是正定的.(4)),,,(21n x x x q 的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111121212121212121 A它的k 阶顺序主子式)1()(1111212121212121212121+==k D k k>0,(k=1,2,…,n ).故q 是正定的. (5)q 的矩阵为⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000100000000010101212121212121A它的k 阶顺序主子式100010000000001011212121212121=k D =)1()(1+k k>0(k=1,2,…,n ). 故q 是正定的. 2、(1)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫⎝⎛=3010112λλA ,),,(321x x x q 是正定的充要条件是:A 的顺序主子式221==D >0,22222λλλ-==D >0,23353010112λλλ-==D >0 由此解得:3535<<-λ.所以,当3535<<-λ时,),,(321x x x q 是正定的.(2)),,(321x x x q 的矩阵为⎪⎪⎪⎭⎫⎝⎛--=451151122λλA , 由于A 的二阶顺序主子式01111=,故不论λ取任何值,q 都不能是正定的.(3)q 的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=1000011011011λλλA , 由λ>0,1112-=λλλ>0,)2()1(1111112-+=--λλλλλ>0,)2()1(2-+=λλA >0.解得λ>2.故当λ>2时,q 是正定的.3、因A 是正定的,故存在可逆实矩阵P ,使P P A '=,由此可得,)(111'=---P P A ,从而1-A 是正定的.4、因A 是正定矩阵,故存在可逆实矩阵Q ,使IAQ Q ='.又因为BQ Q '是实对称矩阵,故存在正交矩阵U ,使U BQ Q U )(''是对角矩阵.令P=QU ,则BP P '是对角矩阵,且I IU U AQU Q U AP P ='=''='也是对角矩阵.5、因A 是实对称矩阵,故对任意实数t ,tI+A 是实对称矩阵. 对A ,存在正交矩阵U ,使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='n AU U λλλ0021,其中n λλλ,,,21 是A 的全部特征值.于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+=+'n n t t t tI U A tI U λλλλλλ0000)(2121,故tI+A 的全部特征值为n t t t λλλ+++,,,21 .当t 充分大时,i t λ+>0,i=1,2,…,n .于是,当t 充分大时,tI+A 是正定的.6、因A 是正定矩阵,故存在正交矩阵U ,使⎪⎪⎪⎪⎪⎭⎫⎝⎛='n AU U λλλ 00000021,其中n λλλ,,,21 是A 的全部特征值.由于A 是正定的,所以时,i λ>0,i=1,2,…,n .于是U U U U U U A n n n '⎪⎪⎪⎪⎪⎭⎫⎝⎛'⎪⎪⎪⎪⎪⎭⎫⎝⎛='⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλλλλλ000000212121. 令U U S n '⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλ0021,则S 是正定的,且使2S A =.7、因A 是可逆实矩阵,故A A '是正定矩阵.由第6题知,存在正定矩阵S ,使A A '=2S .于是,SS A S A A )()(121'='=--.令S A U )(1'=-,可证U 是正交矩阵,并且A=US .8、当n=1时,结论显然成立.假设对于n-1阶正定矩阵,结论成立.现设A 是n 阶正定矩阵,把A 分块为:()⎪⎪⎭⎫⎝⎛==-nn n ij a B B A a A 1,其中,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-------1,12,11,11,222211,122111n n n n n n n a a aa a a a a a A,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n n n n a a a B ,121 .令⎪⎪⎭⎫ ⎝⎛=---10111B A I P n n ,则⎪⎪⎭⎫ ⎝⎛'-='--B A B a I AP P n nn n 1100.因为1-n A 为正定矩阵,故01≥'-B A B n ,当且仅当B=0时,等号成立.由于1='=P P ,所以,()B A B a A P A P A n nn n 11--'-='=,从而nn n a A A 1-≤,当且仅当B=0时等号成立.由归纳假设,1,122111---≤n n n a a a A ,当且仅当1-n A 为对角形时等号成立.所以,nn n n a a a a A 1,12211--≤ ,当且仅当A 为对角形时等号成立.9、当0=A 时,结论成立.当0≠A 时,A 是可逆实矩阵,从而A A '是正定矩阵,并且A A '的主对角线上的元素为222212222221221221211,,,nn n n n n a a a a a a a a a +++++++++ .利用第8题的结果,得()∏=+++≤'=nj njj j a a a A A A 1222212.10、充分性:若),,,(21n x x x q 的秩和正惯性指数都等于r ,则q 可经过非退化实线性替换X=PY ,变为),,,(21n x x x q =22221r y y y +++ ,从而对任一组实数n x x x ,,,21 由X=PY 可得X P Y 1-=,即可求得相应的实数n r y y y y ,,,,,21 ,使),,,(21n x x x q =22221r y y y +++ 0≥即q 是半正定的.必要性: 设),,,(21n x x x q 是半正定的,则q 的负惯性指数必为零.否则,q 可经非退化实线性替换X=PY ,化为),,,(21n x x x q =221221r p p y y y y ---+++ ,p<r .于是,当1=r y ,其余0=i y 时,由X=PY 可得相应的值n x x x ,,,21 代入上式得01),,,(21<-=n x x x q ,这与q 是半正定相矛盾. 11、考虑三元二次型C yz B xz A xy z y x z y x q cos 2cos 2cos 2),,(222---++=.它的矩阵为⎪⎪⎪⎭⎫ ⎝⎛------=1cos cos cos 1cos cos cos 1C B C A B A A ,容易得它的所有顺序主子式111==D >0,A A AD 22cos 11cos cos -=---=>0,0=A .所以),,(z y x q 是半正定二次型.故对任意实数x,y,z 有),,(z y x q ≥0,即不等式成立.12、),(y x q 的矩阵为⎪⎪⎭⎫⎝⎛=c b b a A它的一切顺序主子式为2,b ac A a a -==.(1)若ac b -2<0,即A >0,则显然q 是正定⇔a>0.(2)若ac b -2>0,即A <0,二次型不是正定的,且秩A=2,故A 的两个特征值21,λλ必异号.从而得到),(y x q 是不定的.(1)的几何意义是:方程),(y x q =1表示中心在原点的椭圆; (2)的几何意义是:方程),(y x q =1表示中心在原点的双曲线.13、因为A <0,故二次型),,,(21n x x x q =AX X '的秩为n .且不是正定的,故它的负惯性指数至少是1,从而),,,(21n x x x q 可经过非退化实线性替换X=PY ,化为),,,(21n x x x q ==''='APY P Y AX X 221221n p p y y y y ---+++ , (1)其中p ≤1<n ,当y n=1,其余y i=0时,由X=PY 确定的向量00≠X ,且100-='AX X <0. 14、因为有实n 维向量1X ,使11AX X q '=>0,说q 不是半负定的;又由于有实n 维向量2X ,使22AX X q '=<0,说明q 不是半正定的,从而q 是不定的.故q 的正、负惯性指数都>1,于是q 可经过非退化实线性替换X=PY ,化为),,,(21n x x x q =221221r p p y y y y ---+++其中p≤1<r .取y 1=1,y r =1,而其余y i =0,代入X=PY 解得向量0≠X ,且有q=='00AX X 221221rp p y y y y ---+++ =010012222=---++ . 习题10.61、对R k C x g x f b a ∈∈,)(),(],[,有)),(())(()()())()(())()((x g s x f s dxx g dx x f dx x g x f x g x f s b a b a b a +=⎰+⎰=+⎰=+))(()())(())((x f ks dx x f k dx x kf x kf s ba b a =⎰=⎰=.2、由已知得⎪⎩⎪⎨⎧=++-=-=+1)()()(1)()(1)()(3212121αααααααf f f f f f f ,解得:0)(1=αf ,1)(2=αf ,0)(3=αf ,从而2332211332211)()()()(x f x f x f x x x x f =++=++αααααα.3、对Vx x x n n ∈+++=αααξ 2211,定义n n x a x a x a f +++= 2211)(ξ.容易验证,f 是V 上的一个线性函数,且n i a f i i ,,2,1,)( ==α.又设g 是V 上的另一个线性函数,且满足n i a g i i ,,2,1,)( ==α,则)()()()(221111ξααξf a x a x a x g x x g g n n n i ni i i i i =+++===∑∑== .所以,fg =.4、假设)(ξf 、)(ξg 都不是零函数,则必存在V∈00,ηξ,使0)(0≠ξf ,0)(0≠ηg .若0)(0≠ξg 或0)(0≠ηf ,则)(0ξh =)(0ξf 0)(0≠ξg ,或)(0ηh =)(0ηf 0)(0≠ηg ,推出)(ξh 不是零函数;若0)(0=ξg 且0)(0=ηf ,取000ηξζ+=,则)(0ζh =)(00ηξ+f )(00ηξ+g =)(0ξf 0)(0≠ηg ,推出)(ξh 不是零函数.5、(1)是双线性函数;(2)不是双线性函数;(3)当c=0时,是双线性函数;当0≠c ,不是双线性函数.6、(1)利用矩阵迹的性质:)()();()()(S atr aS tr T tr S tr T S tr =+=+直接可验证.(2)当n=3时,设33)(⨯=ij a A ,则)()(),(kl ji kl ijkl ij AE E tr AE E tr E E f ='= ⎩⎨⎧=≠===∑∑==.,,,0)()(3131l j a l j E a tr E E E a tr ikjl ik kl st ji s t st因为),(Y X f 在基}3,2,1,|{=j i E ij 下的度量矩阵是一个23阶矩阵,用分块形式表示为:⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211A A A A A A A A A A , 其中333231332221231211100),(),(),(),(),(),(),(),(),(I a a a a E E f E E f E E f E E f E E f E E f E E f E E f E E f A ij ij ijijj i j i j i j i j i j i j i j i j i ij =⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=. 于是,),(Y X f 在基}3,2,1,|{=j i E ij 下的度量矩阵是⎪⎪⎪⎭⎫⎝⎛=333332331323322321313312311I a I a I a I a I a I a I a I a I a A . 7、(1)),(ηξf 在基4321,,,αααα下的度量矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=⎪⎪⎪⎪⎪⎭⎫⎝⎛=3124218481024066842),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(44342414433323134232221241312111ααααααααααααααααααααααααααααααααf f f f f f f f f f f f f f f f A . ),(ηξf 在基4321,,,ββββ下的度量矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------='=75717152315237925115125171AT T B . (3)设非零向量),,,(4321x x x x =ξ,使0),(=ξξf ,即022432121=--x x x x x .取0,02431≠====a x x x x ,则0),,,(4321≠=x x x x ξ,并使得0),(=ξξf .8、(1)因为对一切V ∈η,有0),0(=ηf ,所以Wo ∈,即W 非空.对任意F k k W ∈∈2121,,,ξξ,由0),(1=ηξf 0),(2=ηξf ,对一切V ∈η,得,0),(),(),(22112211=+=+ηξηξηξξf k f k k k f 对一切V ∈η, 即W k k ∈+2211ξξ,故W 是V的一个子空间.(2)若),(ηξf 是非退化的,则对任意W∈ξ,有0),(=ηξf ,对一切V ∈η,故得o =ξ.于是,W={0}.反之,设W={0}.令0),(=ηξf ,对一切V ∈η,则W∈ξ,但W={0},故o =ξ.从而),(ηξf 是非退化的.9、(1)对∑=∈=ni i i Vx 1αξ,则)()(2211n n i i x x x f f αααξ+++= )()()(2211n i n i i f x f x f x ααα+++= .因为,⎩⎨⎧≠==.,0;,1)(j i j i f j i α 代入上式,得i i x f =)(ξ.从而,∑==ni i i f 1)(αξξ.(2)∑=∈=ni i i Vx 1αξ,由(1),有∑==ni i i f 1)(αξξ,故∑∑====ni i i n i i i f f f f f 11)()())(()(αξαξξ∑∑====ni i i ni i i f f f f 11))()(()()(ξαξα,从而,∑==ni ii f f f 1)(α.(3)先证n f f f ,,,21 线性无关.设),,,(,0212211F a a a f a f a f a n n n ∈=+++ ,分别用n ααα,,,21 代入,得到021====n a a a .因此,n f f f ,,,21 线性无关.又由(2)知,L (V ,F )中的每向量f 都可以由n f f f ,,,21 线性表示,因而n f f f ,,,21 是L (V ,F )的基,于是L (V ,F )的维数也是n .习题10.71、对任意)(,F M Y X n ∈,由)()(,T tr T tr A A '==',得),()()())(()(),(X Y f AX Y tr X A Y tr AY X tr AY X tr Y X f ='=''=''='=,所以,),(Y X f 是双线性函数.2、2),(),(2),(),(),(ξηηξξηηξηξf f f f f -++=,令2),(),(1),(ξηηξηξf f f +=,2),(),(2),(ξηηξηξf f f -=,则有=),(1ηξf ),(1ξηf ,),(),(2),(),(2ηξξηηξξηf f f f -==- ,且=),(ηξf ),(1ηξf +),(2ηξf .唯一性:设),(ηξf 还可分解为=),(ηξf ),(1ηξg +),(2ηξg ,其中),(1ηξg =),(1ξηg ,),(2ηξg =),(2ξηg -.于是,),(),(11ηξηξg f -=),(),(22ηξηξf g - , (1)),(),(11ηξηξg f -=),(),(11ξηξηg f -=),(),(22ξηξηf g -=),(2ηξg -+),(2ηξf (2)由(1)、(2)得2(),(1ηξf ),(1ηξg -)=0, 从而),(1ηξf =),(1ηξg ,并且),(2ηξg =),(2ηξf .3、若),(ηξf 是反对称的,则),(ηξf =),(ξηf -,取ηξ=,有 ),(ξξf =),(ξξf -,故),(ξξf =0.反之,若对任意V ∈ξ,有),(ξξf =0,对任意V ∈ηξ,,0=),(ηξηξ++f =),(ξξf +),(ηξf +),(ξηf +),(ηηf=),(ηξf +),(ηξf .从而),(ηξf =),(ξηf -,即),(ηξf 是反对称的.4、(1)因为2≥n ,所以V 中存在两个线性无关的向量βα,,若0),(=ααf ,则取αξ=,即可.现设0),(≠ααf ,则0),(),(2),(),(2=++=++βββαααβαβαf x f x f x x f 在C 中有解,设一个解为x 0,令βαξ+=0x ,由于βα,线性无关,得0≠ξ,并使得0),(=ξξf .(2)由(1)知,存在非零的ξ,使0),(=ξξf .因为f 非退化,所以,必存在γ,使0),(≠γξf .否则,若对一切0),(,=∈γξγf V ,由f 非退化,得0=ξ,矛盾.取,),(1γγξδf =则有1),(=δξf .令ξδδδη2),(f -=,则ηξ,线性无关,且0),(),(,1),(===ηηξξηξf f f .5、取V 的一个基n ααα,,,21 .对任意Vy y y x x x n n n n ∈+++=+++=αααηαααξ 22112211,,令n n n n y b y b y b f x a x a x a f +++=+++= 2211222111)(,)(ηξ, 其中)(),(21i i i i f b f a αα==.则))(()()(),(2211221121n n n n y b y b y b x a x a x a f f f ++++++== ηξηξ()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n y y y b b b a a a x x x 21212121,,,),,,(.由此可得,),(ηξf 在基n ααα,,,21 下的度量矩阵为()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a A 2122212121112121,,,.因为),(ηξf 是对称的,故A 是对称矩阵,因而得i j j i b a b a =,即j j i i b a b a ::=,),,2,1,(n j i =.于是,有),,,(),,,(2121n n b b b a a a λ=.设02≠f ,则0≠λ,且)()(21ξλξf f =,取)()(2ξξf g =,则有)()()()()()(),(2221ηξληξληξηξg g f f f f f ===.6、因为),(ηξf 是反对称的,故存在V 的一个基321,,ααα,使),(ηξf 在这个基下的度量矩阵为⎪⎪⎪⎭⎫⎝⎛-=000001010A ,这样,对任意332211αααξx x x ++=,V y y y ∈++=332211αααη有),(ηξf =1221321321),,(y x y x y y y A x x x -=⎪⎪⎪⎭⎫ ⎝⎛,令)(1ξf =),(2αξf ,)(2ξf =),(1ξαf ,则21,f f 是V 上的线性函数,且满足),(ηξf =)(1ξf )(2ηf )(1ηf -)(2ξf .7、设A 是一个n 阶反对称矩阵,取定数域F 上n 维线性空间的一个基n ααα,,,21 ,对Vy y y x x x n n n n ∈+++=+++=αααηαααξ 22112211,,令),(ηξf =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y A x x x 2121),,,(,则),(ηξf 是V 上的一个对称双线性函数,且),(ηξf 在基n ααα,,,21 下的度量矩阵恰是A .由定理10.7.3知,存在V 的一个基n βββ,,,21 ,使),(ηξf 在这个基下的矩阵是⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=0001100110 B .从而,A 与B 合同. 习题10.81、(1)设A 、B 是酉矩阵,则I B B B B I A A A A ='='='=',.于是,I B B IB B B A A B AB A B AB AB ='='=''=''=')())(()()(,从而,AB 是酉矩阵.又因为酉矩阵A 的逆矩阵A A '=-1,所以,)(1A A ='-于是,I AA A A =='---111)(,同理,I A A ='--)(11,故1-A 也是酉矩阵.(2)设A 为酉矩阵,则,I A A ='两边取行列式,得,1||='A 即,1||||=A 故||A 的模的平方等于1,即|A|的模等于1.(3)设λ是酉矩阵A 的特征值,n n C x x x ∈'=),,,(21 ξ是A 的属于特征值λ的特征向量,则0,≠=ξλξξA .于是,一方面,由,I A A ='得ξξξξξξξξ'=''='=')()()()()(A A A A A A .另一方面,)()()()()(ξξλλλξλξξξ'='='A A .所以,ξξξξλλ'=')(.而0||||||222212211>+++=+++='n n n x x x x x x x x x ξξ, 得,1=λλ,故λ的模等于1.2、参考第九章关于欧氏空间标准正交基的讨论.3、若0||||==ηξ,则0==ηξ,V 的任一个酉变换σ都满足ηξσ=)(.若0||||≠=ηξ,取ηηξξηξ||11||11,==,则11,ηξ是两个单位向量.分别将它们扩充为V 的两个规范正交基n n ηηηξξξ,,,;,,,2121 .则必存在V 的一个线性变换σ,使得i i ηξσ=)(,n i ,,2,1 =.由于σ把V 的规范正交基变为规范正交基,所以σ是酉变换,且ηηηξσξξσ===i ||)(||)(1.4、把A的列n ααα,,,21 看作是n 维酉空间n C 的一个基,对其正次化、单位化变为规范正交基n γγγ,,,21 ,相当于在A 的右边乘一些上三角矩阵,对角线上元素都大于零:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n t t t t t t 000),,,(),,,(222112112121αααγγγ,n i t ii ,,2,1,0 =>. 取12221121121000),,,,(-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==nn n n n t t t t t t T U γγγ,A=UT ,且U ,T 满足要求.唯一性,设另有 11T U A =,实数的上三角形矩阵为对角线上元素全为正为酉矩阵11,T U ,可得 1111--=TT U U ,由11-TT 是对角线元素全是正实数的上三角形矩阵,得11U U -是对角线上元素全为正实数的上三角形矩阵,从而I U U =-11,于是U U =1,进而T T =1.5、对于酉矩阵A ,利用归纳法和第八章特征向量的讨论可知,存在可逆复矩阵P ,使得11A AP P =-是上三角形矩阵.由第4题知,P=UT ,其中U 是酉矩阵,T 是上三角形矩阵,代入可得,111A AUT U T =--.于是有B T TA AU U ==--111是上三角形矩阵.由于AU U B 1-=是酉矩阵,得1)(-'=B .由此根据B 是上三角形矩阵,可得1)(-'B ,即B 为下三角形矩阵,故B 为对角形矩阵.6、设A 是埃尔米特矩阵,λ是A 的特征值,n n C x x x ∈'=),,,(21 ξ是A 的属于特征值λ的特征向量,则0,≠=ξλξξA . 于是,由A A =',得ξξξξξξξλξξξλA A A ''='===)(),(),(),(),()()()(ξξλξξλλξξξξξξ='='='='=A A .又因为0),(≠ξξ,从而λλ=,即λ是实数.现设μλ,是A 的不同的特征值,ηξ,是A 的分别属于特征值μλ,的特征向量,则μλ,都是实数,并且 0,0,,≠≠==ηξμηηλξξA A .于是,ηξηξηξηλξηξλA A A ''='===)(),(),(),( ),(),()()(ηξμμηξμηξηξηξ=='='='=A A . 由于μλ≠,得0),(=ηξ,即ηξ与彼此正交.7、类似第5题中的证明,存在酉矩阵U ,使B AU U =-1是上三角形矩阵.于是,B AU U U A U U A U AU U B ==='''='='----1111)()(.由B '为下三角形矩阵,B 为上三角形矩阵知,B 为对角形矩阵.8、类似第5题中的证明,存在酉矩阵U ,使B AU U =-1是上三角形矩阵,由此 可证B 也是规范矩阵.现令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n b b b b b b B 00022211211,对比B B B B '='对应位置上的元素,可得 )(,0j i bij <=.所以B 是对角形矩阵.。
高等代数与解析几何习题答案

习题习题设A是一个"阶下三角矩阵。
证明:(1)如果A的对角线元素吗H勺(门=1,2,…/),则A必可对角化;(2)如果A的对角线元素a ll=a22=-=a ll…f且A不是对角阵,则A不可对角化。
证明:(1)因为A是一个〃阶下三角矩阵,所以A的特征多项式为I 2E - A 1= (2 - ! )(2 - «22)■ • (2 - 6/wj),又因心工勺(/, j = 1,2, •••,/?),所以人有" 个不同的特征值,即4有"个线性无关的特征向量,以这〃个线性无关的特征向量为列构成一个可逆阵P,则有厂虫卩为对角阵,故A必可对角化。
(2)假设A可对角化,即存在对角阵〃= 人. ,使得A与B相似,进而A与3有相同的特征值人,人,…人。
又因为矩阵A的特征多项式为Ixtf —A1=(几_°]])“ ,所以= ■ ■ ■ = A lt =, 从|([J / 、如B=如=如丘,于是对于任意非退化矩阵x ,都有、% >X"BX =X%EX =gE = B,而A不是对角阵,必有厂曲=3",与假设矛盾,所以A 不可对角化。
习题设“维线性空间V的线性变换”有$个不同的特征值入,易,…,入,匕是人的特征子空间(心1,2,…,s)。
证明:(1)叫+岭+…+匕是直和;(2)a可对角化的充要条件是V = %㊉匕㊉…㊉匕。
证明:(1)取岭+£+・•・ +匕的零向量0,写成分解式有a x +a 2 + -- + a x =0,其中 q e V ; J = 1,2,…,s 。
现用 6b[…,b分别作用分解式两边,可得印+色+…+ % = 0人 © + + ・・• + A s a s = 0 常匕+石么+・・・+町匕=0写成矩阵形式为‘1人( 、1(4S ,…心):J 人f 1由于人,人,…,人是互不相同的,所以矩阵3= 1零,即矩阵B 是可逆的,进而有(卬,色,aJBB" = (0,0,…,0)B" = (0,0,…,0), (a 「勺,…)=(0,0,…,0)。
高等代数与解析几何第11章习题参考解答

§11.1二次曲线的几何性质 1、解〔1〕∵025),(22=++=ΦYXY X Y X 时 )52(:51:i Y X ±-=,同时 0411152>==I∴曲线为椭圆型,有两个共轭的渐近方向:)52(:51i ±-〔2〕∵034),(22=++=ΦY XY X Y X 时1:1:-=Y X 和1:3:-=Y X同时0132212<-==I , ∴曲线为双曲型,有两个渐近方向:1:1-和1:3-〔3〕∵02),(22=+-=ΦY XY X Y X 时1:1:=Y X , 同时011112=--=I∴曲线为抛物型,有一个实渐近方向:1:12、解〔1〕∵0492252522≠-==I , ∴曲线是中心曲线. 由⎪⎩⎪⎨⎧=-+==-+=023225),(03252),(21y x y x F y x y x F 解得⎩⎨⎧=-=21y x ∴中心为)2,1(-〔2〕∵013392=--=I ,3231322121211-===a a a aa a , ∴曲线为线心曲线。
〔3〕∵042212=--=I ,且231322121211a a a a a a ≠=, ∴曲线为无心曲线。
3、解〔1〕由⎪⎩⎪⎨⎧=-+-==+-=023223),(02123),(21y x y x F y x y x F 解得中心)3,5(-- 由0252),(22=++=ΦY XY X Y X 得渐近方向为2:1:11-=Y X , 1:2:22-=Y X所以渐近线方程是 2315+=-+y x 和1325+=-+y x , 即0132=++y x 和0112=++y x 〔2〕由⎩⎨⎧=++==++=01),(012),(21y x y x F y x y x F 解得中心)1,0(-,由022),(22=++=ΦY XY X Y X 解得渐近方向为X:Y = 2:)1(i ±-, 所以渐近线方程是 211+=+-y i x 和211+=--y i x 即0)1(=++y x i 和0)1(=+-y x i4、解〔1〕∵2723),(1-+=y x y x F , 452),(2-+=y x y x F , ∴29)1,2(1=F5)1,2(2=F , ∴所求切线方程为 0)1(5)2(29=-+-y x 即 028109=-+y x〔2〕∵4)1,2(=--F ∴)1,2(--不在二次曲线上;设过点)1,2(--的切线与已知二次曲线相切于),(00y x ,那么切线方程为03)(2)(21)(21000000=++++++++y y x x yy xy y x xx ①把)1,2(--代入切线方程得 00=x ②又因),(00y x 在曲线上,把它代入曲线方程得03400200020=+++++y x y y x x ③由②③解得切点为)1,0(),3,0(--,代入①得 切线方程为03=++y x 和01=+y5、解〔1〕⎪⎪⎭⎫⎝⎛=5228A ,13581=+=I , 3652282==I , 特征方程为036132=+-λλ 解得9,421==λλ, 求得21,λλ对应的特征向量 {}2,11-=ξ ,{}1,22=ξ, 所以主方向是 )2(:1:11-=Y X , 1:2:22=Y X , 主直径是0),(),(2111=+y x F Y y x F X 与 0),(),(2212=+y x F Y y x F X , 即 0)852)(2()428(=-+-+++y x y x 与 0)852()428(2=-++++y x y x , 就是052=+-y x 与02=+y x〔2〕⎪⎪⎭⎫⎝⎛=5445A ,10551=+=I ,954452==I 特征方程为09102=+-λλ,解得9,121==λλ,求得21,λλ对应的特征向量 {}111,-=ξ, {}112-=,ξ, 所以主方向是1:1:11-=Y X )1(:1:22-=Y X 主直径为 0),(),(2111=+y x F Y y x F X 与 0),(),(2212=+y x F Y y x F X , 即 0=-y x 与 02=-+y x〔3〕⎪⎪⎭⎫ ⎝⎛--=1612129A , 251691=+=I ,016121292=--=I , 特征方程为0252=-λλ,解得251=λ,02=λ, 求得21,λλ对应的特征向量是 {}4,31-=ξ, {}3,42=ξ 所以非渐近主方向是)4(:3:11-=Y X , 渐近主方向是 3:4:22=Y X , 主直径只有一条,就是 0),(4),(321=-y x F y x F , 即0743=+-y x 6、证明:〔1〕中心曲线有椭圆型和双曲型两类,设其中心为),(00y x ,则因为),(00y x 是方程⎩⎨⎧==0),(0),(21y x F y x F 的唯一解,可设过),(00y x 的直线方程为0),(),(21=+y x F y x F μλ ① 对于椭圆型曲线,因只有两个虚的渐近方向,所以任何实方向都是它的非渐近方向, 故①又表示与非渐近方向μλ:共轭的直径的方程。
高等数学 课后习题答案第十一章

习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
高等数学课后习题及参考答案(第十一章)

高等数学课后习题与参考答案〔第十一章〕习题11-11.写出下列级数的前五项:<1>∑∞=++1211n nn;解 51514141313121211111112222212⋅⋅⋅+++++++++++++++=++∑∞=n n n . 解 3762651045311112⋅⋅⋅+++++=++∑∞=n n n .<2>∑∞=⋅⋅⋅⋅-⋅⋅⋅⋅12 42)12( 31n n n ; 解 10864297531864275316425314231212 42)12( 311⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n . 解 3840945384105481583212 42)12( 311⋅⋅⋅+++++=⋅⋅⋅⋅-⋅⋅⋅⋅∑∞=n n n .<3>∑∞=--115)1(n n n ; 解 51515151515)1(543211⋅⋅⋅-+-+-=-∑∞=-n n n . 解 3125162511251251515)1(11⋅⋅⋅-+-+-=-∑∞=-n n n . <4>∑∞=1!n n nn.解 5!54!43!32!21!1!543211⋅⋅⋅+++++=∑∞=n n n n. 解3125120256242764211!1⋅⋅⋅+++++=∑∞=n n n n . 2.写出下列级数的一般项:<1> 7151311⋅⋅⋅++++; 解 一般项为121-=n u n . <2> 5645342312⋅⋅⋅-+-+-; 解 一般项为nn u n n 1)1(1+-=-. <3> 86426424222⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+x x x x x ; 解 一般项为!22n x u n n =.<4> 97535432⋅⋅⋅+-+-a a a a . 解 一般项为12)1(11+-=+-n a u n n n . 3.根据级数收敛与发散的定义判定下列级数的收敛性:<1>∑∞=-+1)1(n n n ;解 因为)1( )34()23()12(n n s n -++⋅⋅⋅+-+-+-=)()11(∞→∞→-+=n n ,所以级数发散.<2> )12)(12(1 751531311⋅⋅⋅++-+⋅⋅⋅+⋅+⋅+⋅n n ; 解 因为)12)(12(1 751531311+-+⋅⋅⋅+⋅+⋅+⋅=n n s n)121121(21 )7151(21)5131(21)3111(21+--+⋅⋅⋅+-+-+-=n n )121121 715151313111(21+--+⋅⋅⋅+-+-+-=n n )(21)1211(21∞→→+-=n n , 所以级数收敛.<3> 6sin 63sin 62sin 6sin ⋅⋅⋅+⋅⋅⋅+++ππππn . 解 6sin 63sin 62sin 6sin ππππn s n ⋅⋅⋅+++= )6sin 12sin 2 62sin 12sin 26sin 12sin 2(12sin 21πππππππn +⋅⋅⋅++= )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin 21πππππππ+--+⋅⋅⋅+-+-=n n )1212cos 12(cos 12sin 21πππ+-=n . 因为π1212cos lim +∞→n n 不存在,所以n n s ∞→lim 不存在,因而该级数发散. 4.判定下列级数的收敛性: <1> 98)1( 9898983322⋅⋅⋅+-+⋅⋅⋅+-+-n n n ; 解 这是一个等比级数,公比为98-=q ,于是198||<=q ,所以此级数收敛. <2> 31 916131⋅⋅⋅++⋅⋅⋅+++n; 解 此级数是发散的,这是因为如此级数收敛,则级数) 31 916131(311⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n 也收敛,矛盾.<3> 31 3131313⋅⋅⋅++⋅⋅⋅+++n ; 解 因为级数的一般项)(013311∞→≠→==-n u n n n ,所以由级数收敛的必要条件可知,此级数发散.<4> 232323233322⋅⋅⋅++⋅⋅⋅+++n n ; 解 这是一个等比级数,公比123>=q ,所以此级数发散. <5> )3121( )3121()3121()3121(3322⋅⋅⋅+++⋅⋅⋅++++++nn . 解 因为∑∞=121n n 和∑∞=131n n 都是收敛的等比级数,所以级数 )3121( )3121()3121()3121()3121(33221⋅⋅⋅+++⋅⋅⋅++++++=+∑∞=n n n n n 是收敛的.习题11-21.用比较审敛法或极限形式的比较审敛法判定下列级数的收 敛性:<1> )12(1 51311⋅⋅⋅+-+⋅⋅⋅+++n ; 解因为211121lim =-∞→nn n ,而级数∑∞=11n n发散,故所给级数发散. <2> 11 313121211222⋅⋅⋅++++⋅⋅⋅+++++++n n ; 解因为n n n n n n u n 111122=++>++=,而级数∑∞=11n n发散, 故所给级数发散.<3> )4)(1(1 631521⋅⋅⋅++++⋅⋅⋅+⋅+⋅n n ; 解因为145lim 1)4)(1(1lim 222=++=++∞→∞→n n n nn n n n ,而级数∑∞=121n n 收敛, 故所给级数收敛.<4> 2sin 2sin 2sin 2sin 32⋅⋅⋅++⋅⋅⋅+++n ππππ;解因为πππππ==∞→∞→nn n n n n 22sin lim 212sin lim ,而级数∑∞=121n n 收敛, 故所给级数收敛.<5>∑∞=>+1)0(11n n a a . 解因为 ⎪⎩⎪⎨⎧>=<<==+=+∞→∞→11 1 2110 0 1lim 111lim a a a l a a a a n n n n n n ,而当a >1时级数∑∞=11n n a 收敛,当0<a ≤1时级数∑∞=11n n a 发散, 所以级数∑∞=+111n n a 当a >1时收敛,当0<a ≤1时发散. 2.用比值审敛法判定下列级数的收敛性:<1>23 2332232133322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅nn n ; 解级数的一般项为n n n n u 23⋅=.因为 123123lim 322)1(3lim lim 111>=+⋅=⋅⋅⋅+=∞→++∞→+∞→n n n n u u n n n n n n n n n , 所以级数发散.<2>∑∞=123n n n ; 解因为131)1(31lim 33)1(lim lim 22121<=+⋅=⋅+=∞→+∞→+∞→nn n n u u n n n n n n n , 所以级数收敛.<3>∑∞=⋅1!2n n n n n ;解因为12)1(lim 2!2)1()!1(2lim lim 111<=+=⋅⋅++⋅=∞→++∞→+∞→e n n n n n n u u n n n n n n n n n n , 所以级数收敛.<3>∑∞=+112tann n n π. 解因为121221lim 2tan 2tan )1(lim lim 12121<=⋅+=+=++∞→++∞→+∞→n n n n n n n n n n n n n u u ππππ, 所以级数收敛.3.用根值审敛法判定下列级数的收敛性:<1>∑∞=+1)12(n n n n ; 解因为12112lim lim<=+=∞→∞→n n u n n n n ,所以级数收敛. <2>∑∞=+1)]1[ln(1n n n ; 解因为10)1ln(1lim lim<=+=∞→∞→n u n n n n ,所以级数收敛. <3>∑∞=--112)13(n n n n ; 解因为n n n n n n n n n n n u 1212)13(1lim)13(lim lim -∞→-∞→∞→-=-= 131)311(31lim 321212<⋅=-⋅=--∞→en n n n , 所以级数收敛.<4>∑∞=1)(n n na b ,其中a n →a <n →∞>,a n ,b ,a 均为正数.解因为a b a b u nn nn n ==∞→∞→lim lim , 所以当b <a 时级数收敛,当b >a 时级数发散.4.判定下列级数的收敛性:<1> )43( )43(3)43(24332⋅⋅⋅++⋅⋅⋅+++n n ; 解这里n n n u )43(=,因为 143431lim )43()43)(1(lim lim 11<=⋅+=+=∞→+∞→+∞→n n n n u u n nn n n n n , 所以级数收敛.<2>!!33!22!114444⋅⋅⋅++⋅⋅⋅+++n n ; 解这里!4n n u n =,因为 10)1(1lim !)!1()1(lim lim 3441<=+⋅=⋅++=∞→∞→+∞→n n nn n n n u u n n n n n , 所以级数收敛.<3>∑∞=++1)2(1n n n n ; 解因为121lim 1)2(1lim =++=++∞→∞→n n nn n n n n ,而级数∑∞=11n n发散, 故所给级数发散.<4>∑∞=13sin2n nn π; 解因为1323232lim 3sin 23sin 2lim 1111<=⋅⋅=++∞→++∞→n n n n n n n n n n ππππ, 所以级数收敛.<5> 1 232⋅⋅⋅+++⋅⋅⋅++nn ; 解因为011lim lim ≠=+=∞→∞→n n u n n n , 所以级数发散.<6>)0 ,0( 1 211>>⋅⋅⋅+++⋅⋅⋅++++b a bna b a b a . 解因为n a b na u n 111⋅>+=,而级数∑∞=11n n发散, 故所给级数发散.5.判定下列级数是否收敛?如果是收敛的,是绝对收敛还是 条件收敛?<1> 4131211⋅⋅⋅+-+-; 解这是一个交错级数∑∑∞=-∞=--=-11111)1()1(n n n n n n u ,其中n u n 1=. 因为显然u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为∑∑∞=∞=-=-1111|)1(|n n n n nu 是p <1的p 级数,是发散的,所以原级数是条件收敛的.<2>∑∞=---1113)1(n n n n ; 解∑∑∞=-∞=--=-111113|3)1(|n n n n n n n . 因为131331lim 1<=+-∞→n n n n n ,所以级数∑∞=-113n n n 是收敛的, 从而原级数收敛,并且绝对收敛.<3> 2131213121312131432⋅⋅⋅+⋅-⋅+⋅-⋅;解这是交错级数∑∞=-⋅-112131)1(n n n ,并且∑∑∞=∞=-⋅=⋅-1112131|2131)1(|n n n n n . 因为级数∑∞=⋅12131n n 是收敛的,所以原级数也收敛,并且绝对收敛. <4> 5ln 14ln 13ln 12ln 1⋅⋅⋅+-+-; 解这是交错级数∑∑∞=-∞=-+-=-1111)1ln()1()1(n n n n n n u ,其中)1ln(1+=n u n . 因为u n ≥u n +1,并且0lim =∞→n n u ,所以此级数是收敛的. 又因为11)1ln(1+≥+n n ,而级数∑∞=+111n n 发散, 故级数∑∑∞=∞=-+=-111)1ln(1|)1(|n n n n n u 发散,从而原级数是条件收敛的. <5>∑∞=+-11!2)1(2n n n n . 解级数的一般项为!2)1(21n u n n n +-=. 因为∞=⋅⋅⋅⋅⋅-⋅-⋅===∞→∞→∞→∞→122232 22122lim !)2(lim !2lim ||lim 2n n n n n n n n n n n n n n n n n n u , 所以级数发散.习题11-31. 求下列幂级数的收敛域:<1>x +2x 2+3x 3+⋅⋅⋅+nx n +⋅⋅⋅;解 11lim ||lim 1=+=∞→+∞→nn a a n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=1n n , 是发散的;当x =-1时, 幂级数成为∑∞=-1)1(n n n , 也是发散的,所以收敛域为<-1,1>.<2> )1( 21222⋅⋅⋅+-+⋅⋅⋅++-nx x x n n ; 解 1)1(lim 1)1(1lim ||lim 22221=+=+=∞→∞→+∞→n n n n a a n n n n n , 故收敛半径为R =1. 因为当x =1时, 幂级数成为∑∞=-221)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+1211n n , 也是收敛的, 所以收敛域为[-1,1].<3> )2( 42 64242232⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+n x x x x n ; 解 0)1(21lim )!1(2!2lim ||lim 11=+=⋅+⋅⋅=∞→+∞→+∞→n n n a a n n n n n n n , 故收敛半径为R =+∞, 收敛域为<-∞,+∞>. <4> 33332313322⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅+⋅n n n x x x x ; 解 31131lim 3)1(3lim ||lim 11=+⋅=⋅+⋅=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为R =3. 因为当x =3时, 幂级数成为∑∞=11n n , 是发散的; 当x =-3时, 幂级数成为∑∞=-11)1(n n n , 也是收敛的, 所以收敛域为[-3,3>. <5> 12 102522223322⋅⋅⋅+++⋅⋅⋅+++n n x n x x x ;解 21)1(1lim 2211)1(2lim ||lim 222211=+++=+⋅++=∞→+∞→+∞→n n n n a a n n n n n n n , 故收敛半径为21=R . 因为当21=x 时, 幂级数成为∑∞=+1211n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=+-1211)1(n n n , 也是收敛的, 所以收敛域为]21 ,21[-. <6>∑∞=++-11212)1(n n n n x ; 解 这里级数的一般项为12)1(12+-=+n x u n nn . 因为212321|1232|lim ||lim x x n n x u u n n n n n n =+⋅+=++∞→+∞→, 由比值审敛法, 当x 2<1, 即|x |<1时, 幂级数绝对收敛; 当x 2>1, 即|x |>1时, 幂级数发散, 故收敛半径为R =1.因为当x =1时, 幂级数成为∑∞=+-1121)1(n n n , 是收敛的; 当x =-1时, 幂级数成为∑∞=++-11121)1(n n n , 也是收敛的, 所以收敛域为[-1, 1].<7>∑∞=--122212n n n x n ; 解 这里级数的一般项为22212--=n nn x n u . 因为22212121|)12(22)12(|lim ||lim x x n x n u u n n n n n n n n =-⋅+=-+∞→+∞→, 由比值审敛法, 当1212<x , 即2||<x 时, 幂级数绝对收敛; 当1212>x , 即2||>x 时, 幂级数发散, 故收敛半径为2=R . 因为当2±=x 时, 幂级数成为∑∞=-1212n n , 是发散的, 所以收敛域为)2 ,2(-.<8>∑∞=-1)5(n nn x . 解 11lim ||lim 1=+=∞→+∞→n n a a n n n n , 故收敛半径为R =1, 即当-1<x -5<1时级数收敛, 当|x -5|>1时级数发散.因为当x -5=-1, 即x =4时, 幂级数成为∑∞=-1)1(n nn , 是收敛的; 当x -5=1, 即x =6时, 幂级数成为∑∞=11n n, 是发散的, 所以收敛域为[4, 6>. 2. 利用逐项求导或逐项积分, 求下列级数的和函数:<1>∑∞=-11n n nx ;解 设和函数为S <x >, 即∑∞=-=11)(n n nx x S , 则][][])([)(1010110'='='=∑⎰⎰∑⎰∞=-∞=-n xn x n n x dx nx dx nxdx x S x S)11( )1(1]111[][21<<--='--='=∑∞=x x x x n n . <2>∑∞=++11414n n n x ; 解 设和函数为S <x >, 即∑∞=++=11414)(n n n x x S , 则dx x dx n x dx x S S x S x n n x n n x ⎰∑⎰∑⎰∞=∞=+='+='+=01401140]14[)()0()( ⎰⎰-⋅++⋅+-=--=x x dx x x dx x02204)112111211()111( )11( arctan 2111ln 41<<--+-+=x x x x x .提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(. <3>⋅⋅⋅+-+⋅⋅⋅+++- 12 531253n x x x x n . 解 设和函数为S <x >, 即⋅⋅⋅+-+⋅⋅⋅+++=-=-∞=-∑ 12 5312)(1253112n x x x x n x x S n n n , 则 ⎰∑⎰∑⎰∞=-∞=-='-='+=x n n x n n x dx x dx n x dx x S S x S 012201120]12[)()0()( )11( 11ln 211102<<--+=-=⎰x x x dx xx . 提示: 由)0()()(0S x S dx x S x -='⎰得⎰'+=xdx x S S x S 0)()0()(.习题11-41. 求函数f <x >=cos x 的泰勒级数, 并验证它在整个数轴上收敛于这函数.解 )2cos()()(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, )2cos()(00)(π⋅+=n x x f n <n =1,2,⋅⋅⋅>, 从而得f <x >在x 0处的泰勒公式)(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ )( )(!)2cos(00x R x x n n x n n +-++π. 因为)!1(|||)()!1(]21)(cos[||)(|101000+-≤-+++-+=++n x x x x n n x x x x R n n n πθ<0≤θ≤1>, 而级数∑∞∞→++-n n n x x )!1(||10总是收敛的, 故0)!1(||lim 10=+-+∞→n x x n n , 从而0|)(|lim =∞→x R n n . 因此 )(!2)cos())(2cos(cos )(200000⋅⋅⋅+-++-++=x x x x x x x x f ππ⋅⋅⋅+-++ )(!)2cos(00n x x n n x π,x ∈<-∞,+∞>.2. 将下列函数展开成x 的幂级数, 并求展开式成立的区间: <1>2sh x x e e x --=; 解 因为∑∞==0!n n xn x e ,x ∈<-∞,+∞>,所以 ∑∞=--=0!)1(n n nx n x e ,x ∈<-∞,+∞>, 故 ∑∑∑∑∞=-∞=∞=∞=-=--=--=012000)!12(!])1(1[21]!)1(![21sh n n n n n n n n n n n x n x n x n x x ,x ∈<-∞,+∞>. <2>ln<a +x ><a >0>;解 因为)1ln(ln )1(ln )ln(a x a a x a x a ++=+=+,∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∑∞=++∞=++-+=+-+=+01101)1()1(ln )(11)1(ln )ln(n n n n n n n a n x a a x n a x a <-a <x ≤a >. <3>a x ;解 因为∑∞==0!n n x n x e ,x ∈<-∞,+∞>, 所以 ∑∑∞=∞=====00ln !)(ln !)ln (n n n n n x a x x x n a n a x e ea ,x ∈<-∞,+∞>, <4>sin 2x ; 解 因为x x 2cos 2121sin 2-=,∑∞=-=02)!2()1(cos n n nn x x ,x ∈<-∞,+∞>, 所以 ∑∑∞=-∞=⋅-=--=1212022)!2(2)1()!2()2()1(2121sin n n n n n n n n x n x x x ∈<-∞,+∞>. <5><1+x >ln<1+x >;解 因为∑∞=++-=+011)1()1ln(n n nn x x <-1<x ≤1>, 所以 ∑∞=++-+=++011)1()1()1ln()1(n n nn x x x x ∑∑∞=+∞=++-++-=02011)1(1)1(n n n n n nn x n x ∑∑∞=++∞=+-++-+=11111)1(1)1(n n n n n n n x n x x 111])1(1)1([+∞=+∑-++-+=n n n n x n n x 111)1()1(+∞=-∑+-+=n n n x n n x <-1<x ≤1>. <6>21x x +. 解 因为∑∞=--+=+122/12!)!2(!)!12()1(1)1(1n n n x n n x <-1≤x ≤1>, 所以 ∑∑∞=+∞=+⋅-+=--+=+11221122)2()!()!2(2)1(!)!2(!)!12()1(1n n n n n n x n n x x n n x xx <-1≤x ≤1>. 3. 将下列函数展开成<x -1>的幂级数, 并求展开式成立的区间: <1>3x ;解 因为)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m . 所以 233)]1(1[-+=x x )1(!)123( )123(23 )1(!2)123(23)1(2312⋅⋅⋅+-+-⋅⋅⋅-+⋅⋅⋅+--+-+=n x n n x x)111(<-<-x ,即 )1(!2)25( )3()1(13 )1(!2213)1(231223⋅⋅⋅+-⋅-⋅⋅⋅-⋅-⋅⋅+⋅⋅⋅+-⋅⋅+-+=n n x n n x x x )20(<<x .上术级数当x =0和x =2时都是收敛的, 所以展开式成立的区间是[0,2].<2>lg x .解 ∑∞=-≤-<---=-+==11)111( )1()1(10ln 1)]1(1ln[10ln 110ln ln lg n n n x nx x x x , 即 ∑∞=-≤<--=11)20( )1()1(10ln 1lg n n n x nx x . 4. 将函数f <x >=cos x 展开成)3(π+x 的幂级数. 解 3sin )3sin(3cos )3cos(]3)3cos[(cos ππππππ+++=-+=x x x x )3sin(23)3cos(21ππ+++=x x ∑∑∞=+∞=++-++-=01202)3()!12()1(23)3()!2()1(21n n n n n n x n x n ππ )( ])3()!12(3)3()!2(1[)1(211202+∞<<-∞++++-=+∞=∑x x n x n n n n n ππ. 5.将函数xx f 1)(=展开成<x -3>的幂级数. 解 ∑=<-<---=-+=-+=n n n n x x x x x 0)1331( )33()1(313311313311, 即 ∑=<<--=n n n n x x x 0)60( )33()1(311. 6.将函数231)(2++=x x x f 展开成<x +4>的幂级数. 解 2111231)(2+-+=++=x x x x x f ,而 ∑∞=<++-=+--=++-=+0)1|34(| )34(31341131)4(3111n n x x x x x , 即 )17( 3)4(1101-<<-+-=+∑∞=+x x x n n n ; ∑∞=<++-=+--=++-=+0)1|24(| )24(21241121)4(2121n n x x x x x , 即 )26( 2)4(2101-<<-+-=+∑∞=+x x x n n n . 因此 ∑∑∞=∞=+++++-=++=001122)4(3)4(231)(n n n n n n x x x x x f )26( )4)(3121(011-<<-+-=∑∞=++x x n n n n . 习题11-51. 利用函数的幂级数展开式求下列各数的近似值:<1>ln3<误差不超过0.0001>; 解)11( ) 121 5131(211ln 1253<<-⋅⋅⋅+-+⋅⋅⋅+++=-+-x x n x x x x x n , ) 21121 2151213121(2211211ln 3ln 1253⋅⋅⋅+⋅-+⋅⋅⋅+⋅+⋅+=-+=-n n . 又 ] 2)32(12)12(1[2||3212⋅⋅⋅+⋅++⋅-=+-n n n n n r ] 2)52(2)12(2)32(2)12(1[2)12(25212321212⋅⋅⋅+⋅+⋅++⋅+⋅+++=+++++n n n n n n n n n n 2242122)12(31) 21211(2)12(2-+-=⋅⋅⋅++++<n n n n , 故 00012.021131||85≈⋅⋅<r ,00003.021331||105≈⋅⋅<r . 因而取n =6, 此时1.0986 )21111219121712151213121(23ln 119753≈⋅+⋅+⋅+⋅+⋅+=. <2>e <误差不超过0.001>;解 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x , 21!1 21!212112⋅⋅⋅+⋅⋅⋅⋅+⋅++=nn e . 由于 21)!2(121)!1(121⋅⋅⋅+⋅++⋅+=++n n n n n r 21)1()2(121111[2!12⋅⋅⋅+⋅+⋅++⋅++⋅=n n n n n 22!3141112!1-⋅⋅=-⋅⋅<n n n n , 故 0003.02!53134≈⋅⋅=r . 因此取n =4得648.121!4121!3121!21211432≈⋅+⋅+⋅++≈e . <3>9522<误差不超过0.00001>; 解)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m , 9/199)2101(2522+= ] )210(!33178)210(!298210911[23922929⋅⋅⋅-⋅⋅⋅+⋅⋅-⋅+=. 由于002170.0210919≈⋅,000019.0)210(!298292≈⋅⋅, 故00430.2)000019.0002170.01(25229≈-+=.<4>cos 2︒<误差不超过0.0001>.解 )( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n , )90(!61 )90(!41)90(!21190cos 2cos 642⋅⋅⋅+⋅-⋅+⋅-==︒ππππ.由于42106)90(!21-⨯≈⋅π,8410)90(!41-≈⋅π, 故 9994.00006.01 )90(!2112cos 2=-≈⋅⋅-≈︒π.2.利用被积函数的幂级数展开式求下列定积分的近似值:<1>⎰+5.00411dx x <误差不超过0.0001>; 解⎰⎰⋅⋅⋅+-+⋅⋅⋅+-+-=+5.00412845.004] )1( 1[11dx x x x x dx x n n 5.001395|) 1319151(⋅⋅⋅+-+-=x x x x 2113121912151211395⋅⋅⋅+⋅-⋅+⋅-. 因为00625.021515≈⋅,00028.021919≈⋅,000009.02113113≈⋅, 所以4940.0219121512111955.004≈⋅+⋅-≈+⎰dx x . <2>⎰5.00arctan dx xx <误差不超过0.0001>. 解)11( 121)1( 5131arctan 1253<<-⋅⋅⋅++-+⋅⋅⋅-+-=+x x n x x x x n n, dx x n x x dx x x n n ] 121)1( 51311[arctan 5.002425.00⎰⎰⋅⋅⋅++-+⋅⋅⋅-+-= 5.00753|) 49125191(⋅⋅⋅+-+-=x x x x 2149121251219121753⋅⋅⋅+⋅-⋅+⋅-=. 因为0139.021913≈⋅,0013.0212515≈⋅,0002.0214917≈⋅, 所以487.021*********arctan 535.00≈⋅+⋅-=⎰dx x x . 3.将函数e x cos x 展开成x 的幂级数. 解)(21cos ix ix e e x -+=, ][21)(21cos )1()1(i x i x ix ix x x e e e e e x e -+-+=+⋅=∑∑∑∞=∞=∞=-++=-++=000!)1()1(21!)1(!)1([21n n n n n n n n n n x n i i x n i x n i . 因为421πi e i =+,421πi e i -=-, 所以4cos 2)4cos 2(2][2)1()1(122442ππππn n e e i i n n n i n i n n n +-==+=-++. 因此)( !4cos 2cos 02+∞<<-∞=∑∞=x x n n x e n n n x π.习题11-7 1.下列周期函数f <x >的周期为2π,试将f <x >展开成傅里叶级数,如果f <x >在[-π,π>上的表达式为:<1>f <x >=3x 2+1<-π≤x <π>;解 因为)1(2)13(1)(1220+=+==⎰⎰--πππππππdx x dx x f a , ⎰-=ππππdx n x f a n cos )(1 2212)1(cos )13(1n dx n x n -=+=⎰-ππππ <n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1 0sin )13(12=+=⎰-ππππdx n x <n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为)( cos )1(121)(122+∞<<-∞-++=∑∞=x nx n x f n n π.<2>f <x >=e 2x <-π≤x <π>;解 因为πππππππππ21)(12220----===⎰⎰e e dx e dx x f a x ,⎰-=ππππdx n x f a ncos )(1πππππππ)4()()1(2cos 12222+--==--⎰n e e dx n e n x<n =1,2,⋅⋅⋅>, ⎰-=ππππdx n x f b n sin )(1πππππππ)4()()1(sin 12222+---==--⎰n e e n dx n e n x<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=--+-+-=1222)sin cos 2(4)1(41[)(n n nx n nx n e e x f πππ<x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-=ππx ax x bx x f 0 0)(<a ,b 为常数,且a >b >0>.解 因为)(211000b a axdx bxdx a -=+=⎰⎰-πππππ, ]cos 1cos 100⎰⎰+=-ππππnxdx ax nxdx bx a nn n a b )1(1[2---=π<n =1,2,⋅⋅⋅>,⎰⎰+=-ππππ00sin 1sin 1nxdx ax nxdx bx b nnb a n +-=+1)1(<n =1,2,⋅⋅⋅>, 所以f <x >的傅里叶级数展开式为∑∞=-+-+---+-=112}sin )()1(cos )]()1(1[{)(4)(n n n nx n b a nx n a b b a x f ππ <x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.2.将下列函数f <x >展开成傅里叶级数:<1>3sin2)(x x f =<-π≤x ≤π>; 解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-, 故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下: 因为3sin2x <-π<x <π>是奇函数, 所以a n=0<n =0,1,2,⋅⋅⋅>,⎰⎰+--==ππππ00])31cos()31[cos(2sin 3sin 22dx x n x n nxdx x b n19318)1(21-⋅-=+n nn π<n =1,2,⋅⋅⋅>, 所以∑∞=+--=12119sin )1(318)(n n n nx n x f π<-π<x <π>.<2>⎩⎨⎧≤≤<≤-=ππx x e x f x 0 10)(.解 将f <x >拓广为周期函数F <x >, 则F <x >在<-π,π>中连续, 在x =±π间断, 且)()]()([21πππ-≠-+-+-f F F ,)()]()([21πππf F F ≠++-,故F <x >的傅里叶级数在<-π,π>中收敛于f <x >, 而在x =±π处F <x >的傅里叶级数不收敛于f <x >. 计算傅氏系数如下:ππππππ---+=+=⎰⎰e dx dx e a x 1][1000, )1()1(1]cos cos [1200n e nxdx nxdx e a n xn +--=+=--⎰⎰πππππ<n =1,2,⋅⋅⋅>,]sin sin [100⎰⎰+=-πππnxdx nxdx e b xn})1(11])1(1[{12n n e n n n --++---=-ππ<n =1,2,⋅⋅⋅>, 所以πππ21)(--+=e x f∑∞=----++-+-++--+122}]sin )1(11)1([cos 1)1(1{1n n n n nx n n ne n nx n e πππ <-π<x <π>.3.设周期函数f <x >的周期为2π,证明f <x >的傅里叶系数为⎰=ππ20cos )(1nxdx x f a n <n =0, 1, 2,⋅⋅⋅>,⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.证明 我们知道, 若f <x >是以l 为周期的连续函数, 则⎰+la adx x f )(的值与a 无关, 且⎰⎰=+lla adx x f dx x f 0)()(,因为f <x >,cos nx ,sin nx 均为以2π为周期的函数, 所以f <x >cos nx ,f <x >sin nx 均为以2π为周期的函数, 从而⎰⎰+---==πππππππ2cos )(1cos )(1nxdx x f nxdx x f a n⎰=ππ20cos )(1nxdx x f <n =1, 2,⋅⋅⋅>.同理 ⎰=ππ20sin )(1nxdx x f b n <n =1, 2,⋅⋅⋅>.4.将函数2cos )(xx f =<-π≤x ≤π>展开成傅里叶级数: 解 因为2cos )(x x f =为偶函数, 故b n =0<n =1, 2,⋅⋅⋅>, 而⎰⎰==-πππππ0cos 2cos 2cos 2cos 1nxdx x nxdx x a n⎰+--=ππ0])21cos()21[cos(1dx x n x n 1414)1(21-⋅-=+n n π<n =1, 2,⋅⋅⋅>. 由于2cos )(x x f =在[-π,π]上连续, 所以 ∑∞=+--+=121cos 141)1(422cos n n nx n x ππ<-π≤x ≤π>. 5.设f <x >的周期为2π的周期函数, 它在[-π,π>上的表达式这⎪⎪⎩⎪⎪⎨⎧<≤<≤--<≤--=ππππππππx x x x x f 2 222 2 2)(,将f <x >展开成傅里叶级数.解 因为f <x >为奇函数, 故a n =0<n =0,1,2,⋅⋅⋅>, 而]sin 2sin [2sin )(22200⎰⎰⎰+==πππππππnxdx nxdx x nxdx x f b n2sin 2)1(2ππn n n n +--=<n =1,2,⋅⋅⋅>,又f <x >的间断点为x =<2n +1>π,n =0,±1,±2,⋅⋅⋅, 所以nx n n n x f n n sin ]2sin 2)1([)(121∑∞=++-=ππ< x ≠<2n +1>π,n =0,±1,±2,⋅⋅⋅>.6. 将函数2)(x x f -=π<0≤x ≤π>展开成正弦级数.解 作奇延拓得F <x >:⎪⎩⎪⎨⎧<<---=≤<=0)(0 00 )()(x x f x x x f x F ππ,再周期延拓F <x >到<-∞,+∞>, 则当x ∈<0,π]时F <x >=f <x >,)0(20)0(f F =≠=π.因为a n =0<n =0,1,2,⋅⋅⋅>, 而nnxdx x b n 1sin 220=-=⎰πππ <n =1,2,⋅⋅⋅>, 故 nx nx f n sin 1)(1∑∞==<0<x ≤π>,级数在x =0处收敛于0.7.将函数f <x >=2x 2<0≤x ≤π>分另别展开成正弦级数和余弦级数. 解对f <x >作奇延拓,则a n =0<n =0, 1, 2,⋅⋅⋅>,而]2)2()1[(4sin 2232302n n n nxdx x b n n ---==⎰ππππ<n =1, 2,⋅⋅⋅>,故正弦级数为nx n n n x f n n sin ]2)2()1[(4)(1323∑∞=---=ππ<0≤x <π>, 级数在x =0处收敛于0.对f <x >作偶延拓,则b n =0<n =1, 2,⋅⋅⋅>,而20203422πππ==⎰dx x a , 2028)1(cos 22nnxdx x a n n -==⎰ππ <n =1, 2,⋅⋅⋅>, 故余弦级数为nx nx f n n cos )1(832)(122∑∞=-+=π<0≤x ≤π>.8.设周期函数f <x >的周期为2π, 证明<1>如果f <x -π>=-f <x >, 则f <x >的傅里叶系数a 0=0,a 2k =0,b 2k =0<k =1,2,⋅⋅⋅>; 解 因为020200)(1)(1)(1a dt t f dx t f dx x f a xt -=-=-=⎰⎰⎰+=-πππππππππ令,所以a 0=0. 因为dx t k t f kxdx x f a xt k )(2cos )(12cos )(1202ππππππππ--=⎰⎰+=-令k a ktdt t f 2202cos )(1-=-=⎰ππ,所以a 2k =0.同理b 2k =0<k =1,2,⋅⋅⋅>.<2>如果f <x -π>=f <x >, 则f <x >的傅里叶系数a 2k +1=0,b 2k +1=0<k =1,2,⋅⋅⋅>. 解因为)12cos()(112⎰-++=πππxdx k x f a kdx t k t f xt ))(12cos()(1 20πππππ-+-⎰+=令1220)12cos()(1+-=+-=⎰k a tdt k t f ππ,所以a 2k +1=0<k =1,2,⋅⋅⋅>. 同理b 2k +1=0<k =1,2,⋅⋅⋅>.习题11-81. 将下列各周期函数展开成傅里叶级数<下面给出函数在一个周期内的表达式>: <1>)2121(1)(2<≤--=x x x f ;解 因为f <x >=1-x 2为偶函数, 所以b n =0<n =1,2,⋅⋅⋅>, 而611)1(4)1(2/12210221020=-=-=⎰⎰dx x dx x a ,⎰-=21022/1cos )1(2/12dx x n x a n π2212102)1(2cos )1(4ππn xdx n x n +-=-=⎰<n =1,2,⋅⋅⋅>,由于f <x >在<-∞,+∞>内连续, 所以∑∞=+-+=12122cos )1(11211)(n n x n n x f ππ,x ∈<-∞,+∞>.<2>⎪⎪⎩⎪⎪⎨⎧<≤-<≤<≤-=121 1210 101 )(x x x x x f ;解 21)(1212100111-=-+==⎰⎰⎰⎰--dx dx xdx dx x f a n ,⎰⎰⎰⎰-+==--1212100111cos cos cos cos )(xdx n xdx n xdx n x xdx n x f a n ππππ2sin 2])1(1[122πππn n n n +--= <n =1,2,⋅⋅⋅>,dx x n xdx n xdx n x xdx n x f b n ⎰⎰⎰⎰-+==--121210111sin sin sin sin )(πππππππn n n 12cos 2+-= <n =1,2,⋅⋅⋅>.而在<-∞,+∞>上f <x >的间断点为x =2k ,212+k ,k =0,±1,±2,⋅⋅⋅,故 }sin 2cos 21cos ]2sin 2)1(1{[41)(122x n n n x n n n n x f n nπππππππ-++--+-=∑∞= <x ≠2k ,212+≠k x ,k =0,±1,±2,⋅⋅⋅>.<3>⎩⎨⎧<≤<≤-+=30 1 03 12)(x x x x f .解 1])12([31)(313003330-=++==⎰⎰⎰--dx dx x dx x f a ,]3cos 3cos )12([313cos )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f a n πππ])1(1[622n n --=π<n =1,2,⋅⋅⋅ >, ]3sin 3sin )12([313sin )(31300333⎰⎰⎰--++==dx x n dx x n x dx x n x f b n πππn n )1(6-=π<n =1,2,⋅⋅⋅ >, 而在<-∞,+∞>上,f <x >的间断点为 x =3<2k +1>,k =0,±1,±2,⋅⋅⋅,故 }3sin 6)1(3cos])1(1[6{21)(1122∑∞=+-+--+-=n n n x n n x n n x f ππππ,<x ≠3<2k +1>,k =0,±1,±2,⋅⋅⋅>.2. 将下列函数分别展开成正弦级数和余弦级数:<1>⎪⎩⎪⎨⎧≤≤-<≤=lx x l l x x x f 2l20 )(; 解 正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0,1,2,⋅⋅⋅>,2sin 4]sin )(sin [22221210ππππn n l dx l x n x l dx l x n x l b l n =-+=⎰⎰<n =1,2,⋅⋅⋅ >故 ∑∞==122sin 2sin14)(n l x n n nl x f πππ,x ∈[0,l ].余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为2])([2212100l dx x l xdx l a l=-+=⎰⎰,⎰⎰-+=l n dx l x n x l dx l x n x l a 21210]cos )(cos [2ππ ])1(12cos 2[222n n n l ---=ππ <n =1, 2,⋅⋅⋅ > b n =0<n =1, 2,⋅⋅⋅ >,故lx n n n l l x f n n πππcos ])1(12cos2[124)(122∑∞=---+=,x ∈[0,l ].<2>f <x >=x 2<0≤x ≤2>.解正弦级数:对f <x >进行奇延拓, 则函数的傅氏系数为 a 0=0<n =0, 1, 2,⋅⋅⋅>,]1)1[()(168)1(2sin 2231202--+-==+⎰n n n n n dx x n x b πππ,故 2sin }]1)1[()(168)1{()(131x n n n x f n n n πππ∑∞=+--+-=2sin }]1)1[(2)1({81231x n n n n n n πππ∑∞=+--+-=,x ∈[0,2>. 余弦级数:对f <x >进行偶延拓, 则函数的傅氏系数为38222020==⎰dx x a2202)(16)1(2cos 22ππn dx x n x a n n -==⎰<n =1, 2,⋅⋅⋅>, b n =0<n =1, 2,⋅⋅⋅>,故 2cos )(16)1(34)(12x n n x f n n ππ∑∞=-+=2cos )1(1634122x n n n n ππ∑∞=-+=,x ∈[0,2].总习题十一 1.填空: <1>对级数∑∞=1n n u ,0lim =∞→n n u 是它收敛的________条件,不是它收敛的________条件; 解 必要; 充分.<2>部分和数列{s n }有界是正项级数∑∞=1n n u 收敛的________条件; 解 充分必要. <3>若级数∑∞=1n n u 绝对收敛,则级数∑∞=1n n u 必定________;若级数∑∞=1n n u 条件收敛,则级数∑∞=1||n n u 必定________. 解 收敛; 发散.2.判定下列级数的收敛性: <1>∑∞=11n n nn ; 解因为11lim 11lim ==∞→∞→n n nn nnn n ,而调和级数∑∞=11n n发散,故由比较审敛法知,级数发散. <2>∑∞=1222)!(n nn ;解因为∞==⋅++=∞→∞→+∞→222221lim )!(2)1(2])!1[(lim lim n n n n n u u n n n n n , 故由比值审敛法知,级数发散.<3> ∑∞=1223cos n n n n π; 解因为n n n n n 223cos 2<π,12121lim 2lim <==∞→∞→n n n n n n n所以由根值审敛法,级数∑∞=12n n n 收敛;由比较审敛法,级数∑∞=1223cos n nn n π收敛. <4>∑∞=110ln 1n n;解 因为∞==∞→∞→nn n u n n n 10ln lim 1lim, 而调和级数∑∞=11n n发散, 故由比较审敛法知, 原级数发散. 提示:∞===⋅⋅⋅==⋅=∞→∞→∞→∞→∞→xx x x x x x x x x x x x x 11lim !101ln lim !101 ln lim 1011ln 101limln lim9910<5>∑∞=1n s nna <a >0,s >0>. 解 因为a n a n a s n n ns n n ==∞→∞→)(lim lim , 故由根值审敛法知, 当a <1时级数收敛, 当a >1时级数发散.当a =1时, 原级数成为∑∞=11n s n, 这是p =s 的p -级数, 当s >1时级数收敛, 当s ≤1时级数发散. 3.设正项级数∑∞=1n n u 和∑∞=1n n v 都收敛,证明级数∑∞=+12)(n n n v u 与收敛. 证明 因为∑∞=1n n u 和∑∞=1n n v 都收敛, 所以0lim =∞→n n u ,0lim =∞→n n v . 又因为0)2(lim 2lim 2=+=+∞→∞→n n n nn n n n v u u v u u ,0lim lim 2==∞→∞→n n n n n v v v , 所以级数∑∞=+12)2(n n n n v u u 和级数∑∞=12n n v 都收敛, 从而级数 ∑∑∞=∞=+=++12122)(])2[(n n n n n n n n v u v v u u也是收敛的.4.设级数∑∞=1n n u 收敛,且1lim =∞→n n n u v ,问级数∑∞=1n n v 是否也收敛?试说明理由. 解 级数∑∞=1n n v 不一定收敛. 当∑∞=1n n u 和∑∞=1n n v 均为正项级数时, 级数∑∞=1n n v 收敛, 否则未必. 例如级数∑∞=-11)1(n n 收敛, 但级数∑∞=+-1]11)1[(n n n 发散, 并且有 11)1(11)1(lim =-+-∞→nn n n .5.讨论下列级数的绝对收敛性与条件收敛性:<1>∑∞=-11)1(n p n n ; 解∑∑∞=∞==-111|1)1(|n p n p n n n 是p 级数.故当p >1时级数∑∞=11n p n 是收敛的,当p ≤1时级数∑∞=11n p n 发散.因此当p >1时级数∑∞=-11)1(n p n n 绝对收敛. 当0<p ≤1时,级数∑∞=-11)1(n p n n 是交错级数,且满足莱布尼茨定理的条件,因而收敛,这时是条件收敛的. 当p ≤0时,由于01)1(lim ≠-∞→p nn n ,所以级数∑∞=-11)1(n p n n 发散. 综上所述,级数∑∞=-11)1(n p n n 当p >1时绝对收敛,当0<p ≤1时条件收敛,当p ≤0时发散. <2>∑∞=+++-1111sin )1(n n n n ππ; 解因为1111|1sin )1(|+++≤+-n n n n πππ,而级数∑∞=+111n n π收敛,故由比较审敛法知级数|1sin )1(|111∑∞=+++-n n n n ππ收敛,从而原级数绝对收敛. <3> ∑∞=+-11ln )1(n n n n ; 解因为1ln )11ln(lim 1ln lim 1|1ln )1(|lim ==+=+=+-∞→∞→∞→e n n n n nn n n n n n n ,而级数∑∞=11n n发散,故由比较审敛法知级数|1ln )1(|1∑∞=+-n n n n 发散,即原级数不是绝对收敛的. 另一方面,级数∑∞=+-11ln )1(n n n n 是交错级数,且满足莱布尼茨定理的条件,所以该级数收敛,从而原级数条件收敛.<4>∑∞=++-11)!1()1(n n nn n . 解令1)!1()1(++-=n n n n n u .因为 11)11(112lim )1(12lim )!1()1()!2(lim ||||lim 121<=+⋅++=+⋅++=+⋅++∞→∞→++∞→+∞→enn n n n n n n n n n u u n n n n n n n n n n , 故由比值审敛法知级数|)!1()1(|11∑∞=++-n n n n n 收敛,从而原级数绝对收敛. 6.求下列级限: <1>∑=∞→+n k k k n k n 12)11(311lim ; 解 显然∑=+=nk k k n k s 12)11(31是级数∑∞=+12)11(31n n n n 的前n 项部分和. 因为13)11(31lim )11(31lim 2<=+=+∞→∞→e n n n n n n n n , 所以由根值审敛法, 级数∑∞=+12)11(31n nn n 收敛, 从而部分和数列{s n }收敛.因此01lim )11(311lim 12=⋅=+∞→=∞→∑n n n k k k n s n k n . <2>])2( 842[lim 312719131n n n ⋅⋅⋅⋅⋅∞→. 解n n nn 3 27392313127191312)2( 842+⋅⋅⋅+++=⋅⋅⋅⋅⋅.显然n n n s 3 2739231+⋅⋅⋅+++=是级数∑∞=13n n n 的前n 项部分和. 设∑∞=-=11)(n n nx x S ,则210)1(1]111[][])([)(x x x dx x S x S n n x -='--='='=∑⎰∞=. 因为43)311(131)31(31)31(3132111=-⋅===∑∑∞=-∞=S n n n n n n , 所以43lim =∞→n n s , 从而 4331271913122lim ])2( 842[lim ==⋅⋅⋅⋅⋅∞→∞→nn s n n n .7.求下列幂级数的收敛域:<1>∑∞=+153n n n n x n ; 解 51)53(5)53(31lim 53153lim ||lim 111=++⋅+=+⋅++=∞→++∞→+∞→n n n n n n n n n n n n n n n a a , 所以收敛半径为51=R . 因为当51=x 时, 幂级数成为]1)53[(11+∑∞=n n n , 是发散的; 当51-=x 时, 幂级数成为]1)53[()1(1+-∑∞=n n n n , 是收敛的, 所以幂级数的收敛域为)51,51[-. <2>∑∞=+12)11(n n n x n ; 解 n n n x n u 2)11(+=, 因为||||)11(lim ||lim x e x nu n n n n n =+=∞→∞→, 由根值审敛法, 当e |x |<1, 即ex e 11<<-时, 幂级数收敛; 当e |x |>1,时幂级数发散. 当e x 1-=时, 幂级数成为∑∞=+1)1()11(2n n n e n ;。
新教材高中数学第十一章立体几何初步11.2平面的基本事实与推论优质作业含解析新人教B版必修第四册

学习资料第十一章立体几何初步11.2平面的基本事实与推论课后篇巩固提升基础达标练1。
空间中,可以确定一个平面的条件是()A。
两条直线B。
一点和一条直线D.三个点2.(2020黑龙江牡丹江一中高一月考)下列命题正确的是()A。
三点确定一个平面B。
圆心和圆上两个点确定一个平面C。
如果两个平面相交有一个交点,则必有无数个公共点,则这两条直线平行,故A错误;当圆上的两个点恰为直径的端点时,不能确定一个平面,故B错误;如果两个平面相交有一个交点,则这两个平面相交于过该点的一条直线,故C正确;如果两条直线没有交点,则这两条直线平行或异面,故D错误。
3.若平面α和平面β有三个公共点A,B,C,则平面α和平面β的位置关系为()A。
平面α和平面β只能重合B。
平面α和平面β只能交于过A,B,C三点的一条直线C。
若点A,B,C不共线,则平面α和平面β重合;若点A,B,C共线,则平面α和平面β重合或相交于过A,B,C的一条直线A,B,C共线与不共线两种情况讨论.4(多选题)(2020江苏响水中学高一月考)已知A,B,C表示不同的点,l表示直线,α,β表示不同的平面,则下列推理正确的是()A。
如果A∈l,A∈α,B∈l,B∈α,则l⊂αB。
如果l⊄α,A∈l,则A∉αC。
如果A∈α,A∈l,l⊄α,则l∩α=AA∈α,A∈β,B∈α,B∈β,则α∩β=ABA,由A∈l,A∈α,B∈l,B∈α,根据平面的基本事实2,可得l⊂α,所以A正确;对于B,由l⊄α,A∈l,根据直线与平面的位置关系,则A∉α或A∈α,所以B不正确;对于C,由A ∈α,A∈l,l⊄α,根据直线与平面位置关系,则l∩α=A,所以C正确;对于D,由A∈α,A∈β,B∈α,B∈β,根据平面的基本事实3,可得α∩β=AB,所以D正确.5。
如图所示,在正方体ABCD—A1B1C1D1中,O为DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是()A。
高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。
()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。
24 D 。
223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。
⎰++104221dt t t tC 。
⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11.1二次曲线的几何性质 1、解(1)∵025),(22=++=ΦYXY X Y X 时 )52(:51:i Y X ±-=,同时 0411152>==I∴曲线为椭圆型,有两个共轭的渐近方向:)52(:51i ±-(2)∵034),(22=++=ΦY XY X Y X 时1:1:-=Y X 和1:3:-=Y X同时0132212<-==I , ∴曲线为双曲型,有两个渐近方向:1:1-和1:3-(3)∵02),(22=+-=ΦY XY X Y X 时1:1:=Y X , 同时011112=--=I∴曲线为抛物型,有一个实渐近方向:1:12、解(1)∵0492252522≠-==I , ∴曲线是中心曲线. 由⎪⎩⎪⎨⎧=-+==-+=023225),(03252),(21y x y x F y x y x F 解得⎩⎨⎧=-=21y x ∴中心为)2,1(-(2)∵013392=--=I ,3231322121211-===a a a aa a , ∴曲线为线心曲线。
(3)∵042212=--=I ,且231322121211a a a a a a ≠=, ∴曲线为无心曲线。
3、解(1)由⎪⎩⎪⎨⎧=-+-==+-=023223),(02123),(21y x y x F y x y x F 解得中心)3,5(-- 由0252),(22=++=ΦY XY X Y X 得渐近方向为2:1:11-=Y X , 1:2:22-=Y X所以渐近线方程是 2315+=-+y x 和1325+=-+y x , 即0132=++y x 和0112=++y x (2)由⎩⎨⎧=++==++=01),(012),(21y x y x F y x y x F 解得中心)1,0(-,由022),(22=++=ΦY XY X Y X 解得渐近方向为X:Y = 2:)1(i ±-, 所以渐近线方程是 211+=+-y i x 和211+=--y i x 即0)1(=++y x i 和0)1(=+-y x i4、解(1)∵2723),(1-+=y x y x F , 452),(2-+=y x y x F , ∴29)1,2(1=F5)1,2(2=F , ∴所求切线方程为 0)1(5)2(29=-+-y x 即 028109=-+y x(2)∵4)1,2(=--F ∴)1,2(--不在二次曲线上;设过点)1,2(--的切线与已知二次曲线相切于),(00y x ,那么切线方程为03)(2)(21)(21000000=++++++++y y x x yy xy y x xx ①把)1,2(--代入切线方程得 00=x ②又因),(00y x 在曲线上,把它代入曲线方程得03400200020=+++++y x y y x x ③由②③解得切点为)1,0(),3,0(--,代入①得 切线方程为03=++y x 和01=+y5、解(1)⎪⎪⎭⎫⎝⎛=5228A ,13581=+=I , 3652282==I , 特征方程为036132=+-λλ 解得9,421==λλ, 求得21,λλ对应的特征向量 {}2,11-=ξ ,{}1,22=ξ, 所以主方向是 )2(:1:11-=Y X , 1:2:22=Y X , 主直径是0),(),(2111=+y x F Y y x F X 与 0),(),(2212=+y x F Y y x F X , 即 0)852)(2()428(=-+-+++y x y x 与 0)852()428(2=-++++y x y x , 就是052=+-y x 与02=+y x(2)⎪⎪⎭⎫⎝⎛=5445A ,10551=+=I ,954452==I 特征方程为09102=+-λλ,解得9,121==λλ,求得21,λλ对应的特征向量 {}111,-=ξ, {}112-=,ξ, 所以主方向是1:1:11-=Y X )1(:1:22-=Y X 主直径为 0),(),(2111=+y x F Y y x F X 与 0),(),(2212=+y x F Y y x F X , 即 0=-y x 与 02=-+y x(3)⎪⎪⎭⎫ ⎝⎛--=1612129A , 251691=+=I ,016121292=--=I , 特征方程为0252=-λλ,解得251=λ,02=λ, 求得21,λλ对应的特征向量是 {}4,31-=ξ, {}3,42=ξ 所以非渐近主方向是)4(:3:11-=Y X , 渐近主方向是 3:4:22=Y X , 主直径只有一条,就是 0),(4),(321=-y x F y x F , 即0743=+-y x 6、证明:(1)中心曲线有椭圆型和双曲型两类,设其中心为),(00y x ,则因为),(00y x 是方程⎩⎨⎧==0),(0),(21y x F y x F 的唯一解,可设过),(00y x 的直线方程为0),(),(21=+y x F y x F μλ ① 对于椭圆型曲线,因只有两个虚的渐近方向,所以任何实方向都是它的非渐近方向, 故①又表示与非渐近方向μλ:共轭的直径的方程。
对于双曲型曲线,当①中的μλ:为非渐近方向时,①就是与μλ:共轭的直径方程;当μλ:为渐近方向时,方程①即为渐近线,可把它看成与自己方向共轭的直径。
综上,第一结论得证。
(2)对无心二次曲线,它只有唯一的渐近方向: 12221112::':'a a a a Y X -=-=, 设任意平行于':'Y X 的直线方程为 01211=++λy a x a ②要证明②是直径,要求②有如下形式: 0),(),(21=+y x YF y x XF (':':Y X Y X ≠) 即0)()(231322121211=+++++Y a X a y Y a X a x Y a X a ③比较②,③得:122212111211a Y a X a a Y a X a +=+ λYa X a a Y a X a 2313122212+=+ ④又由④求得)(:)(:131212221223a a a a a a Y X --=λλ为使②与③相容,只须证明上面求得的':':Y X Y X ≠:假设1112131212221222:':')(:)(:a a Y X a a a a a a Y X -==--=λλ则有111123121311121111231213121222a a a a a a aa a a a a a a a λλλ-+-=-+=-从而有011231213=-a a a a 即23131211a a a a =与无心曲线的充要条件23131211a a a a≠矛盾。
所以':':Y X Y X ≠ 综上所述,对任意平行于渐近方向的直线②,当取非渐近方向)(:)(:131212221223a a a a a a Y X --=λλ时②成为直径,具有形式③。
§11.2 直角坐标变换1、 解:⎪⎪⎪⎪⎭⎫ ⎝⎛-=5525555552M ⎪⎪⎪⎪⎭⎫⎝⎛-=-55255555521M (1)=⎪⎪⎪⎭⎫ ⎝⎛y x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-''5525555552y x (2)=⎪⎪⎪⎭⎫ ⎝⎛''y x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 5525555552 2、解(1)已知⎭⎬⎫⎩⎨⎧=→54,53'i ⎭⎬⎫⎩⎨⎧-=→53,54'j 所以⎪⎪⎪⎪⎭⎫⎝⎛-=53545453M ⎪⎪⎪⎪⎭⎫ ⎝⎛-=-535454531M 因而⎭⎬⎫⎩⎨⎧-=-=→→→5453'54'53j i i ⎭⎬⎫⎩⎨⎧=+=→→→53,54'53'54j i j(2)⎪⎩⎪⎨⎧-+=+-=2'53'541'54'53y x y y x x 即 ⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛21''53545453y x y x (3)由公式)('01X X M X -=-得 ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛2153545453''y x y x3、解(1)解⎩⎨⎧=-+=+-07340143y x y x 得⎩⎨⎧==11y x 所以新坐标系的原点'O 的坐标为(1,1)又1l 的斜率43tan =θ,得54cos =θ,53sin =θ 所以坐标变换式为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛11''54535354y x y x (2)把坐标变换式代入直线方程032=+-y x 得03)1'54'53()1'53'54(2=+++-+-y x y x 即04'2'=+-y x(3)'''y x o -到xy o -的变换式为:⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛515754535354''y x y x 代入直线03''2=+-y x 得 013211=-+y x§11.3 二次曲线的化简与分类1、利用转轴与移轴,化简下列二次曲线方程,并画出它们的图形。
()()()()22222221585181890;22410;35122212190;42220.x xy y x y x xy y x y x xy x y x xy y x y ++--+=++-+-=+---=++++=解(1)矩阵⎪⎪⎭⎫ ⎝⎛=5445A ,10551=+=I ,92==A I ,特征方程为09102=+-λλ 解之得 91=λ,12=λ.求得21,λλ相应的单位特征向量为⎭⎬⎫⎩⎨⎧=21,211ξ ⎭⎬⎫⎩⎨⎧-=21,212ξ建立旋转坐标变换式:'MX X = 其中⎪⎪⎪⎪⎭⎫⎝⎛-=21212121M 代入原方程化简得: 09'218''922=+-+x y x 配方得 09')2'(922=-+-y x作平移坐标变换 '0'X X X +='' ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛''''=''02''''0X y x X y x X得 09922=-''+''y x 所以,曲线的标准方程是1922=''+''y x (椭圆) 总的坐标变换式⎪⎪⎪⎪⎭⎫ ⎝⎛+''+''+''-''=⎪⎪⎪⎪⎭⎫ ⎝⎛''+''⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1212112121221212121y x y x y x y x 新坐标原点就是曲线的中心(1,1)新坐标轴(两条主直径)在原坐标系的方程是2121-=-y x 和2121-=--y x即0=-y x 和02=-+y x (2)标准方程是y x ''-=''4252(3)标准方程是19422=''-''y x (4)标准方程是 22±=''y2、利用不变量与半不变量,判断下列二次曲线的类型,并求化简后的标准方程。