2017-2018学年人教A版高中数学必修3 3.1随机事件的概率(三) 课件
新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。
本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。
二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。
2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。
3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。
三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。
作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。
教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。
四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。
五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。
3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。
你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。
【人教版】2017年数学必修三:3.1.1《随机事件的概率》ppt课件

类型 1 事件类型的判断 [典例 1] 给出下列五个事件:
①某地明年 3 月 6 日下雨; ②函数 y=ax(a>0 且 a≠1)在定义域上是增函数; ③实数的绝对值小于 0; ④a,b∈R,则 ab=ba; ⑤某人射击 8 次恰有 4 次中靶.
其中必然事件是________,不可能事件是________, 随机事件是________. 解析: ①是随机事件, 某地明年 3 月 6 日可能下雨, 也可能不下雨;②是随机事件,函数 y=ax(a>1 且 a≠0) 在 a>1 时为增函数,在 0<a<1 时为减函数,未给出 a 值 之前很难确定给的 a 值是大于 1 还是小于 1;③是不可能 事件,任意实数 a,总有|a|≥0,故|a|<0 不可能发生;
3.概率 (1)含义:概率是度量随机事件发生的可能性大小的 量. (2)与频率联系:对于给定的随机事件 A,事件 A 发 生的频率 fn(A)随着试验次数的增加稳定于概率 P(A),因 此可以用频率 fn(A)来估计概率 P(A).
(3)范围:从定义中,可以看出事件 A 的概率 P(A)满 足 0≤P(A)≤1,这是因为在 n 次试验中,事件 A 发生的 m 频数 A)=1,当 A 是不可能事件时,P(A)=0.
(3)条件为从袋中任取 2 个球;若记(a,b)表示一次试 验中取出的球是 a 和 b,则试验的全部结果为(a,b),(a, c),(a,d),(b,c),(b,d),(c,d),共 6 种可能结果.
归纳升华 不重不漏地列举试验的所有可能结果的方法: 1.结果是相对于条件而言的,要弄清试验的结果, 必须首先明确试验的条件. 2.根据日常生活经验,按照一定的顺序列举所有可 能的结果,可应用画树状图、列表等方法.
人教版数学高一A版必修3 3.1随机事件的概率(第3课时)

课堂探究1.若事件A与事件B不互斥,则P(A∪B)≠P(A)+P(B)剖析:否定一个等式不成立,只需举出一个反例即可.例如:抛掷一枚均匀的正方体骰子,向上的点数是1或2或3或4或5或6为事件A,且A=B,则A∪B表示向上的点数是1或2或3或4或5或6,则P(A)=P(B)=P(A∪B)=1,P(A)+P(B)=1+1=2,所以此时P(A∪B)≠P(A)+P(B),即P(A∪B)=P(A)+P(B)不成立.上例中P(A∪B)≠P(A)+P(B)的原因是事件A与事件B不是互斥事件.其实对于任意事件A与B,有P(A∪B)=P(A)+P(B)-P(A∩B)(不要求证明也不要求会用),那么当且仅当A∩B=∅,即事件A与事件B是互斥事件时,P(A∩B)=0,此时才有P(A∪B)=P(A)+P(B)成立.2.事件与集合之间的对应关系剖析:事件与集合之间的对应关系如下表:题型一判断互斥(对立事件)【例题1】判断下列各事件是否是互斥事件,如果是互斥事件,那么是否是对立事件,并说明理由.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是女生.解:(1)是互斥事件.理由是在所选的2名同学中,“恰有1名男生”实质是选出“1名男生和1名女生”,它与“恰有2名男生”不可能同时发生,所以是互斥事件.不是对立事件.理由是当选出的2名同学都是女生时,这两个事件都没有发生,所以不是对立事件.(2)不是互斥事件.理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”这两种结果,当选出的是1名男生、1名女生时,它们同时发生.这两个事件也不是对立事件.理由是这两个事件能同时发生,所以不是对立事件.(3)是互斥事件.理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,它与“全是女生”不可能同时发生.是对立事件.理由是这两个事件不能同时发生,且必有一个发生,所以是对立事件.反思判断互斥事件和对立事件时,主要用定义来判断.当两个事件不能同时发生时,这两个事件是互斥事件;当两个事件不能同时发生且必有一个发生时,这两个事件是对立事件.题型二概率加法公式的应用【例题2】某射箭运动员在一次训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射箭运动员在一次射击中:(1)射中10环或7环的概率;(2)射中7环以下的概率.分析:(1)利用互斥事件的概率加法公式解决;(2)转化为求对立事件的概率.解:(1)设“射中10环”为事件A ,“射中7环”为事件B ,则“射中10环或7环”的事件为A ∪B ,事件A 和事件B 是互斥事件,故P (A ∪B )=P (A )+P (B )=0.21+0.28=0.49,所以射中10环或7环的概率为0.49.(2)设“射中7环以下”为事件C ,“射中7环或8环或9环或10环”为事件D , 则P (D )=0.21+0.23+0.25+0.28=0.97.又事件C 和事件D 是对立事件,则P (C )=1-P (D )=1-0.97=0.03.所以射中7环以下的概率是0.03.反思 求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的并;二是先求对立事件的概率,进而再求所求事件的概率.题型三 易错辨析【例题3】抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是16,记事件A 为“出现奇数”,事件B 为“向上的点数不超过3”,求P (A ∪B ). 错解:设向上的一面出现1点、2点、3点、4点、5点、6点分别记为事件C 1,C 2,C 3,C 4,C 5,C 6,则它们两两是互斥事件,且A =C 1∪C 3∪C 5,B =C 1∪C 2∪C 3.P (C 1)=P (C 2)=P (C 3)=P (C 4)=P (C 5)=P (C 6)=16. 则P (A )=P (C 1∪C 3∪C 5)=P (C 1)+P (C 3)+P (C 5)=16+16+16=12. P (B )=P (C 1∪C 2∪C 3)=P (C 1)+P (C 2)+P (C 3)=16+16+16=12. 故P (A ∪B )=P (A )+P (B )=12+12=1. 错因分析:错解的原因在于忽视了“和事件”概率公式应用的前提条件,由于“朝上一面的数是奇数”与“朝上一面的数不超过3”这二者不是互斥事件,即出现1或3时,事件A ,B 同时发生,所以不能应用公式P (A ∪B )=P (A )+P (B )求解.正解:记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为A 1,A 2,A 3,A 4,由题意知这四个事件彼此互斥.则A ∪B =A 1∪A 2∪A 3∪A 4.故P (A ∪B )=P (A 1∪A 2∪A 3∪A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=16+16+16+16=23.。
2017-2018学年高中数学人教A版必修3课件:3.1.1 随机事件的概率

方法归纳 在写试验结果时,一般采用列举法写出,必须首先明确事件发 生的条件,根据日常生活经验,按一定次序列举,才能保证所列结 果没有重复,也没有遗漏.
2.下列事件:①明天下雨;②3>2;③某国发射航天飞机成功; ④x∈R,x2+2<0;⑤某商船航行中遭遇海盗;⑥任给 x∈R,x+2 =0. 其中随机事件的个数为( ) A .1 B.2 C.3 D.4
解析: ①③⑤⑥是随机事件, ②是必然事件, ④是不可能事件. 答案:D
3.从 6 名男生、2 名女生中任选 3 人,则下列事件中,必然事 件是( ) A.3 人都是男生 B.至少有 1 名男生 C.3 人都是女生 D.至少有 1 名女生
【课标要求】 在具体情境中,了解随机事件发生的不确定性和频率的稳定 性,了解概率的意义以及频率与概率的区别.
自主学习 |新知预习|
基础认识
1.事件的概念及分类 在条件 S 下,一定不会发生的事件, 不可能事件 确定 叫做相对于条件 S 的不可能事 S 的必然事件 随机 在条件 S 下,可能发生也可能不发生的事件,叫做 事件 相对于条件 S 的随机事件
类型二 列举试验结果 [例 2] 某人做试验,从一个装有标号为 1,2,3,4 的小球的盒子 中,无放回地取两个小球,每次取一个,先取的小球的标号为 x, 后取的小球的标号为 y,这样构成有序实数对(x,y). (1)写出这个试验的所有结果; (2)写出“第一次取出的小球上的标号为 2”这一事件. 【解析】 (1)当 x=1 时,y=2,3,4;当 x=2 时,y=1,3,4;当 x=3 时,y=1,2,4;当 x=4 时,y=1,2,3.因此,这个试验的所有结 果是(1,2),(1,3),(1,4), (2,1),(2,3),(2,4),(3,1),(3,2), (3,4),(4,1), (4,2),(4,3). (2)记“第一次取出的小球上的标号为 2”为事件 A,则 A= {(2,1),(2,3),(2,4)}.
2017学年数学必修三:3.1.1 随机事件的概率

【解题探究】典例中的事件怎样才算完成一次试验? 提示:(1)中的一次试验指的是抛掷两枚质地均匀的硬币一次; (2)中 一次试验指的是从集合A={a,b,c,d}中任取3个元素组成一个子集.
【解析】(1)一次试验是指“抛掷两枚质地均匀的硬币一次”,试验 的可能结果有4个:(正,反),(正,正),(反,反),(反,正). (2)一次试验是指“从集合A中一次选取3个元素组成一个子集”,试 验的结果共有4个:{a,b,c},{a,b,d},{a,c,d},{b,c,d}.
【补偿训练】先后抛掷两枚骰子,至少有一个点数1出现的结果有 ( A.4种 B.6种 C.8种 D.11种 )
定义解题.
频数 ”,抓住频率的 试验次数
【解析】(1)步行的频数是15,频率是 15 =0.375;
骑车的频数是10,则频率是 10 =0.25;
40 40
乘车的频率是0.375,则频数是40×0.375=15.
如表所示:
上学方式 步行 骑车 乘车
“正”字法记录
频数 频率
正正正
15 0.375
正正
【补偿训练】(2014·济宁高一检测)已知40个同学,他们有的步行上 学,有的骑车上学,还有的乘车上学. (1)根据已知信息完成下表. 上学方式 “正”字法记录 频数 频率 (2)试估计40个同学中任意一名同学不步行上学的概率. 步行 正正正 10 0.375 骑车 乘车
【解题指南】解题时要注意公式“频率=
频率
0.048
0.121 [1 700,1 900) 165
0.165
0.208 [1 900,+∞) 42
0.042
[1 300,1 500) 223
0.223
2017-2018学年人教A版必修三 3.1.1随机事件的概率 课件(83张)

(4)确定事件:必然事件与不可能事件统称为相对于条件 S 的 确定事件,简称确定事件. (5)随机事件:在条件 S 下,可能发生也可能不发生的事件,叫 作相对于条件 S 的随机事件,简称随机事件. 想一想:在标准大气压下,温度超过 0℃时,冰就会融化,那 么这个事件是 事件.
【答案】必然
预学 2:随机事件的频率和概率 (1)随机事件的频率:在相同的条件 S 下重复 n 次试验,观察 某一事件 A 是否出现,称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的频数,称事件 A 出现的比例 fn(A)= ������������ 为事件 A 出现的频率. (2)随机事件的概率:一般来说,随机事件 A 在每次试验中是 否发生是不能预知的,但是在大量重复试验后,随着试验次数的 增加,事件 A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上, 这个常数可以用来度量事件 A 发生的可能性的大小,称为事件 A 的概率,记作 P(A).
本章教学的重点:频率与概率的意义、 古典概型、 几何概型、 事件的关系和运算. 在教学时要注意以下几点: 1.鼓励学生动手操作和主动参与,让他们在试验、观察、交 流等活动中体会和理解随机事件发生的不确定性及其频率的稳 定性等相关内容.鼓励学生动手操作、主动参与统计试验,不但能 激发学生学习概率统计的兴趣,而且在反复的统计试验中可以更 好地体会和理解统计思想.在引出概率的统计定义时,尽管学生 在初中已经做过掷硬币的试验,但对试验数据的整理和分析是比 较浅显的,如果学生能动手画出条形图和折线图等,
预学 1:必然事件、不可能事件、随机事件的概念 (1)在上面的问题中,分别对应着随机事件、不可能事件、必 然事件. (2)必然事件:在条件 S 下(条件 S 可以是一个条件也可以是 一组条件),一定会发生的事件,叫作相对于条件 S 的必然事件,简 称必然事件. (3)不可能事件:在条件 S 下,一定不会发生的事件,叫作相对 于条件 S 的不可能事件,简称不可能事件.
新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章 数列2.1 数列的概念与简单表示法阅读与思考 斐波那契数列阅读与思考 估计根号下2的值2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列前n 项和阅读与思考 九连环探究与发现 购房中的数学小结复习参考题第三章 不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿信息技术应用 用Excel 解线性规划问题举例3.4 基本不等式2ab b a +≤小结复习参考题选修1-1第一章 常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章 圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换3.伸缩变换4.投影变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用nα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识探究(一) :事件的关系与运算
一般地,对于事件 A 与事件 B,如果当事 件 A 发生时,事件 B 一定发生,称事件 B 包 含事件 A(或事件 A 包含于事件 B) ,记为:
知识探究(一) :事件的关系与运算
一般地,对于事件 A 与事件 B,如果当事 件 A 发生时,事件 B 一定发生,称事件 B 包 含事件 A(或事件 A 包含于事件 B) ,记为:
知识探究(一) :事件的关系与运算
在掷骰子试验中, 我们用集合形式定义如下事件: C1={出现 1 点} ,C2={出现 2 点} , C3={出现 3 点} ,C4={出现 4 点} , C5={出现 5 点} ,C6={出现 6 点} , D1={出现的点数不大于 1} , D2={出现的点数大于 4} , D3={出现的点数小于 6} , E={出现的点数小于 7} , F={出现的点数大于 6} , G={出现的点数为偶数} , H={出现的点数为奇数} ,等等.
事件 A 与事件 B 有且只有一个发生.
知识探究(一) :事件的关系与运算
思考 8:事件 A 与事件 B 的和事件、积事件, 分别对应两个集合的并、交,那么事件 A 与 事件 B 互为对立事件, 对应的集合 A、 B 是什 么关系?
知识探究(一) :事件的关系与运算
思考 8:事件 A 与事件 B 的和事件、积事件, 分别对应两个集合的并、交,那么事件 A 与 事件 B 互为对立事件, 对应的集合 A、 B 是什 么关系?
知识探究(一) :事件的关系与运算
思考 6:两个集合的交可能为空集,两个事件 的交事件也可能为不可能事件, 即 A ∩ B= , 此时,称事件 A 与事件 B 互斥,那么在一次 试验中,事件 A 与事件 B 互斥的含义怎样理 解?在上述事件中能找出这样的例子吗?
事件 A 与事件 B 不会同时发生.
知识探究(一) :事件的关系与运算
思考 7:若 A∩B 为不可能事件,A∪B 为必 然事件, 则称事件 A 与事件 B 互为对立事件, 那么在一次试验中,事件 A 与事件 B 互为对 立事件的含义怎样理解?在上述事件中能找 出这样的例子吗?
知识探究(一) :事件的关系与运算
思考 7:若 A∩B 为不可能事件,A∪B 为必 然事件, 则称事件 A 与事件 B 互为对立事件, 那么在一次试验中,事件 A 与事件 B 互为对 立事件的含义怎样理解?在上述事件中能找 出这样的例子吗?
事件 D2 一定发生, 反之也成立. 事件 D2 为事件 C5 与事件 C6 的并事件(或和 事件).
一般地,当且仅当事件 A 发生或事件 B 发生 时,事件 C 发生,则称事件 C 为事件 A 与 事件 B 的并事件(或和事件),记作 C=A∪B(或 A+B).
知识探究(一) :事件的关系与运算
BA(或AB)
知识探究(一) :事件的关系与运算
一般地,对于事件 A 与事件 B,如果当事 件 A 发生时,事件 B 一定发生,称事件 B 包 含事件 A(或事件 A 包含于事件 B) ,记为:
BA(或AB)
特别地,不可能事件用表示,它与任 何事件的关系约定为: 任何事件都包含不可能事件.
一般地,当两个事件 A、B 满足:
若B A,且A B, 则称事件A与事件B相等,记作A=B.
知识探究(一) :事件的关系与运算
思考 4:如果事件 C5 发生或 C6 发生,就意 味着哪个事件发生?反之成立吗?
知识探究(一) :事件的关系与运算
思考 4:如果事件 C5 发生或 C6 发生,就意 味着哪个事件发生?反之成立吗?
问题提出
1. 两个集合之间存在着包含与相等的关系,集合 可以进行交、并、补运算,你还记得子集、等集、 交集、并集和补集的含义及其符号表示吗?
问题提出
1. 两个集合之间存在着包含与相等的关系,集合 可以进行交、并、补运算,你还记得子集、等集、 交集、并集和补集的含义及其符号表示吗?
2. 我们可以把一次试验可能出现的结果看成一 个集合 (如连续抛掷两枚硬币) ,那么必然事件对 应全集,随机事件对应子集,不可能事件对应空 集,从而可以类比集合的关系与运算,分析事件 之间的关系与运算,使我们对概率有进一步的理 解和认识.
事件 D2 一定发生, 反之也成立.
知识探究(一) :事件的关系与运算
思考 4:如果事件 C5 发生或 C6 发生,就意 味着哪个事件发生?反之成立吗?
事件 D2 一定发生, 反之也成立. 事件 D2 为事件 C5 与事件 C6 的并事件(或和 事件).
知识探究(一) :事件的关系与运算
思考 4:如果事件 C5 发生或 C6 发生,就意 味着哪个事件发生?反之成立吗?
知识探究(一) :事件的关系与运算
思考 1:上述事件中哪些是必然事件?哪些是随 机事件?哪些是不可能事件?
知识探究(一) :事件的关系与运算
思考 1:上述事件中哪些是必然事件?哪些是随 机事件?哪些是不可能事件?
思考 2:如果事件 C1 发生,则一定有哪些事件发 生?在集合中, 集合 C1 与这些集合之间的关系怎 样描述?
知识探究(一) :事件的关系与运算
思考 3:分析事件 C1 与事件 D1 之间的包含 关系, 按集合观点这两个事件之间的关系应 怎样描述?
一般地,当两个事件 A、B 满足:
知识探究(一) :事件的关系与运算
思考 3:分析事件 C1 与事件 1 之间的包含 关系, 按集合观点这两个事件之间的关系应 怎样描述?
思考 5:类似地,当且仅当事件 A 发生且事件 B 发生时,事件 C 发生,则称事件 C 为事件 A 与事件 B 的交事件(或积事件) ,记作 C=A ∩B(或 AB) ,在上述事件中能找出这样的例 子吗?
知识探究(一) :事件的关系与运算
思考 6:两个集合的交可能为空集,两个事件 的交事件也可能为不可能事件, 即 A ∩ B= , 此时,称事件 A 与事件 B 互斥,那么在一次 试验中,事件 A 与事件 B 互斥的含义怎样理 解?在上述事件中能找出这样的例子吗?