2015年高考数学理一轮复习精品资料 专题9.6 双曲线含解析
2015高考数学一轮课件:9.6 双曲线

2.渐近线与离心率 ax22-by22=1 (a>0,b>0)的
一条
渐近
线的
斜率
为
b a
=
b2 a2
=
c2-a2 a2
=
e2-1.可以看出,双曲
线的渐近线和离心率的
实质都表示双曲线张口
的大小.
思想方法
练出高分 第七页,编辑于星期五:十三点 二十九分。
基础知识·自主学习
基础自测
题号
1 2 3 4 5
求双曲线的标准方程
【例 1】 (1)(2011·山东)已知双曲 线xa22-by22=1 (a>0,b>0)和椭圆 1x62+y92=1 有相同的焦点,且双
曲线的离心率是椭圆离心率的
思维启迪
两倍,则双曲线的方程为 __x4_2-__y32_=_1_.
解析 答案
探究提高
(2)与双曲线 x2-2y2=2 有公共
又双曲线的离心率e=
渐近线,且过点 M(2,-2)的双
曲线方程为__________.
a7,所以 a7=247,
a2+b2 a
=
基础知识
题型分类
思想方法
练出高分 第十六页,编辑于星期五:十三点 二十九分。
题型分类·深度剖析
题型一
求双曲线的标准方程
【例 1】 (1)(2011·山东)已知双曲 思维启迪 解析 答案 探究提高
2.渐近线与离心率 ax22-by22=1 (a>0,b>0)的
一条
渐近线的斜率为 Nhomakorabeab a
=
b2 a2
=
c2-a2 a2
=
e2-1.可以看出,双曲
高考数学一轮总复习 第八章 平面解析几何 第六节 双曲线课件(理)

由图象可知,此时点 P 在线段 AF1 与双曲线的交点处(如图所示).
由题意可知直线 AF1 的方程为 y=2 6x+6 6,
b1aa6=2 -12b,32=1,解得ab22==41,,
∴双曲线的标准方程为x42-y2=1. 答案:(1)x42-y32=1 (2)x42-y2=1
1.确定双曲线的标准方程也需要一个“定位”条件,两个“定 量”条件.“定位”是指确定焦点在哪条坐标轴上,“定量”是指确 定 a,b 的值,常用待定系数法.若双曲线的焦点不能确定时,可设 其方程为 Ax2+By2=1(AB<0).
已知 F1、F2 为双曲线 C:x2-y2=2 的左、右焦点,点 P 在 C
上,|PF1|=2|PF2|,则 cos∠F1PF2=( )
1
3
3
4
A.4
B.5
C.4
D.5
解析:由 x2-y2=2,知 a=b= 2,c=2.
由双曲线定义,|PF1|-|PF2|=2a=2 2, 又|PF1|=2|PF2|,∴|PF1|=4 2,|PF2|=2 2, 在△PF1F2 中,|F1F2|=2c=4,由余弦定理,得 cos∠F1PF2=|PF1|22+|PF|P1F|·2|2|P-F|2F| 1F2|2=34. 答案:C
第八章 平面解析几何
第六节 双曲线
(2015·全国Ⅱ卷)已知 F 是双曲线 C:x2-y82=1 的右焦 点,P 是 C 的左支上一点,A(0,6 6).当△APF 周长最小时,该三 角形的面积为________.
2015高考数学一轮总复习课件:9.67 双曲线

即|PF1|2+|PF2|2-|PF1|·|PF2|=(2 2)2=8, ∴|PF1|·|PF2|=4. ∴(|PF1|+|PF2|)2=|PF1|2+|PF2|2+2|PF1|·|PF2|= (4+2|PF1|·|PF2|)+2|PF1|·|PF2|=20. ∴|PF1|+|PF2|=2 5.
c2 ∴ee21=mc1=ma =2.
a
第十五页,编辑于星期五:十二点 四十六分。
(2)直线 x=t 过双曲线xa22-by22=1(a>0,b>0)的右 焦点且与双曲线的两条渐近线分别交于 A、B 两点,若
原点在以 AB 为直径的圆外,则双曲线离心率的取值范
围是___1_,__2______.
【解析】At,bat,Bt,-bat,要使原点在以 AB 为直径的圆外,只需原点到直线 AB 的距离|t|大于半径
A1(0,-a),A2(0, a)
y=±bax
y=±abx
对称轴:坐标轴
对称中心:原点
e=ac,e∈__1_,________,其中 c= a2+b2
线段 A1A2叫做双曲线的实轴,它的长|A1A2| =2a;线段 B1B2 叫做双曲线的虚轴,它的
长|B1B2|=2b;a
叫半实轴,b
叫半虚轴. 第八页,编辑于星期五:十二点 四十六分。
第十七页,编辑于星期五:十二点 四十六分。
(4)已知双曲线 x2-y2=1 的两个焦点分别为 F1、 F2,P 为双曲线上一点,且∠F1PF2=60°,则|PF1|+|PF2| =___2__5____.
【 解 析 】 由 双 曲 线 的 定 义 知 ||PF1| - |PF2|| = 2 , ∴|PF1|2+|PF2|2-2|PF1||PF2|=4.
数学一轮复习第九章解析几何9.6双曲线学案理

9。
6双曲线必备知识预案自诊知识梳理1.双曲线的定义平面内与两个定点F1,F2的等于非零常数(小于|F1F2|)的点的轨迹叫作双曲线。
这两个定点叫作,两焦点间的距离叫作.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a〉0,c>0,且a,c为常数.(1)若a c,则点M的轨迹是双曲线;(2)若a c,则点M的轨迹是两条射线;(3)若a c,则点M不存在.2.标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b〉0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为x2 x2−x2x2=1(a>0,b>0)。
3。
双曲线的性质标准方程x2a2−y2b2=1(a〉0,b〉0)y2a2−x2b2=1(a〉0,b〉0)图形续表标准方程x2a2−y2b2=1(a>0,b〉0)y2a2−x2b2=1(a>0,b〉0)性质范围x≥a或x≤-a,y∈Ry≤—a或y≥a,x∈R 对称性对称轴:,对称中心:顶点A1,A2A1,A2渐近线y=±xxx y=±xxx离心率e=xx,e∈(1,+∞)a,b,c的关系c2=实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|=;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长1.过双曲线x2a2−y2b2=1(a>0,b〉0)上一点M(x0,y0)的切线方程为x0xa2−y0yb2=1.2.双曲线x2a2−y2b2=1(a>0,b〉0)的左、右焦点分别为F1,F2,点P(x0,y0)为双曲线上任意一点,且不与点F1,F2共线,∠F1PF2=θ,则△F1PF2的面积为b2xxxθ2。
3。
若点P(x0,y0)在双曲线x2a2−y2b2=1(a〉0,b〉0)内,则被点P所平分的中点弦的方程为x0xa2−y0yb2=x02a2−y02b2。
高考数学一轮复习第九章平面解析几何9.6双曲线文

【步步高】(江苏专用)2017版高考数学一轮复习第九章平面解析几何 9.6 双曲线文1.双曲线定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a,c为常数且a>0,c>0.(1)当2a<F1F2时,P点的轨迹是双曲线;(2)当2a=F1F2时,P点的轨迹是两条射线;(3)当2a>F1F2时,P点不存在.2.双曲线的标准方程和几何性质【知识拓展】巧设双曲线方程(1)与双曲线x 2a -y 2b =1 (a >0,b >0)有共同渐近线的方程可表示为x 2a -y 2b =t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1 (mn <0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为____________________________________________________________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________. 答案 1 2解析 与双曲线x 24-y 216=1有相同渐近线的双曲线的方程可设为x 24-y 216=λ,即x 24λ-y 216λ=1.由题意知c =5,则4λ+16λ=5⇒λ=14,则a 2=1,b 2=4.又a >0,b >0,故a =1,b =2.3.双曲线x 2+my 2=1的虚轴长是实轴长的2倍,则双曲线的渐近线方程为____________.答案 y =±2x解析 方程化为:x 2-y 2-1m=1,依题意得:-1m =2,∴m =-14. 双曲线方程为x 2-y 24=1, 其渐近线为x 2-y 24=0,即y =±2x .4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为________. 答案3解析 双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±mmx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +3m +1=3.5.(教材改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________. 答案x 28-y 28=1 解析 设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (3,-1)代入,得a 2=8,故所求方程为x 28-y 28=1.题型一 双曲线的定义及标准方程 命题点1 双曲线定义的应用例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得MC 1-AC 1=MA ,MC 2-BC 2=MB ,因为MA =MB ,所以MC 1-AC 1=MC 2-BC 2, 即MC 2-MC 1=BC 2-AC 1=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于C 1C 2=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1. (3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1. 思维升华 求双曲线标准方程的一般方法:(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a 、b 、c 的方程并求出a 、b 、c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值.(1)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________________.(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________. 答案 (1)x 24-y 2=1 (2)x 216-y 29=1解析 (1)由双曲线渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则|PF 1-PF 2|=8.由双曲线的定义知:a =4,b =3. 故曲线C 2的标准方程为x 242-y 232=1.即x 216-y 29=1. 题型二 双曲线的几何性质例3 (1)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2FA →,则此双曲线的离心率为________.(2)(2015·山东)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________. 答案 (1)2 (2)2+ 3 解析 (1)如图,∵FB →=2FA →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴b a=tan 60°=3, ∴e 2=1+(b a)2=4,∴e =2. (2)把x =2a 代入x 2a 2-y 2b2 =1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =b a. ∴(2+3)a =c .∴双曲线C 的离心率为e =ca=2+ 3.思维升华 (1)双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba满足关系式e 2=1+k 2.(2)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =c a转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.(1)(2015·重庆改编)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左,右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为________.(2)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是______.答案 (1)±1 (2)62解析 (1)由题意知,双曲线x 2a 2-y 2b 2=1的右焦点F (c,0),左,右顶点分别为A 1(-a,0),A 2(a,0),易求B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a , 则kA 2C =b 2aa -c,kA 1B =b 2aa +c,又A 1B 与A 2C 垂直,则有kA 1B ·kA 2C =-1,即b 2aa +c ·b 2aa -c=-1,∴b 4ac 2-a2=1,∴a 2=b 2,即a =b ,∴渐近线斜率k =±b a=±1.(2)F 1F 2=2 3.设双曲线的方程为x 2a 2-y 2b2=1.∵AF 2+AF 1=4,AF 2-AF 1=2a , ∴AF 2=2+a ,AF 1=2-a . 在Rt△F 1AF 2中,∠F 1AF 2=90°, ∴AF 21+AF 22=F 1F 22,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a=32=62. 题型三 直线与双曲线的综合问题例4 (1)(2015·四川)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =________. 答案 4 3解析 右焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,∴y =±23, ∴A (2,23),B (2,-23),∴AB =4 3.(2)若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.①求k 的取值范围;②若AB =63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.解 ①由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*) ∵直线与双曲线右支交于A ,B 两点,故⎩⎪⎨⎪⎧k >1,Δ=k2--k2-,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2.故k 的取值范围是{k |1<k <2}. ②由(*)得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1, ∴AB =1+k 2·x 1+x 22-4x 1x 2=2+k2-k2k 2-2=63,整理得28k 4-55k 2+25=0,∴k 2=57或k 2=54,又1<k <2,∴k =52, 所以x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8. 设C (x 3,y 3),由OC →=m (OA →+OB →),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点. ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. 思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A 、B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A ),B (x B ,y B ), 将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=-k 2,x A +x B =62k 1-3k 2<0,x A x B =-91-3k 2>0,解得33<k <1.∴当33<k <1时,l 与双曲线左支有两个交点. (3)由(2)得:x A +x B =62k1-3k 2,∴y A +y B =(kx A +2)+(kx B +2) =k (x A +x B )+22=221-3k2.∴AB 的中点P 的坐标为(32k 1-3k 2,21-3k 2).设直线l 0的方程为:y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.∵33<k <1,∴-2<1-3k 2<0. ∴m <-22.∴m 的取值范围为(-∞,-22).11.忽视“判别式”致误典例 (14分)已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?易错分析 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,所以在解决直线与圆锥曲线相交的问题时,有时不需要考虑“判别式”.致使有的考生思维定势的原因,任何情况下都没有考虑“判别式”,导致解题错误. 规范解答解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意.[2分] 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .[4分]由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0 (2-k 2≠0).① [7分]∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2.[10分] 当k =2时,方程①成为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.[13分]∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.[14分] 温馨提醒 (1)本题是以双曲线为背景,探究是否存在符合条件的直线,题目难度不大,思路也很清晰,但结论却不一定正确.错误原因是忽视对直线与双曲线是否相交的判断,从而导致错误,因为所求的直线是基于假设存在的情况下所得的.(2)本题属探索性问题.若存在,可用点差法求出AB 的斜率,进而求方程;也可以设斜率k ,利用待定系数法求方程.(3)求得的方程是否符合要求,一定要注意检验.[方法与技巧]双曲线标准方程的求法:(1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2n=1 (mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1 (AB <0),这种形式在解题时更简便; (2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ (λ≠0),据其他条件确定λ的值. [失误与防范]1.区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1 (a >0,b >0)的渐近线方程是y =±a bx .4.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.A 组 专项基础训练 (时间:30分钟)1.(2015·广东)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为______________.答案x 216-y 29=1解析 因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1.2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为________. 答案3解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的一个焦点且与对称轴垂直,因此直线l 的方程为:x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a 2,∴y =±b 2a ,故AB =2b 2a ,依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.(2014·江西改编)过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为__________. 答案x 24-y 212=1 解析 由⎩⎪⎨⎪⎧x =a ,y =-ba x ,得⎩⎪⎨⎪⎧x =a ,y =-b ,∴A (a ,-b ).由题意知右焦点到原点的距离为c =4, ∴a -2+-b 2=4,即(a -4)2+b 2=16.而a 2+b 2=16,∴a =2,b =2 3. ∴双曲线C 的方程为x 24-y 212=1.4.(2015·课标全国Ⅰ改编)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是____________. 答案 ⎝ ⎛⎭⎪⎫-33,33 解析 由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 5.已知椭圆x 2a 21+y 2b 21=1 (a 1>b 1>0)的长轴长、短轴长、焦距成等比数列,离心率为e 1;双曲线x 2a 22-y 2b 22=1 (a 2>0,b 2>0)的实轴长、虚轴长、焦距也成等比数列,离心率为e 2.则e 1e 2=________. 答案 1解析 由b 21=a 1c 1,得a 21-c 21=a 1c 1,∴e 1=c 1a 1=5-12. 由b 22=a 2c 2,得c 22-a 22=a 2c 2,∴e 2=c 2a 2=5+12. ∴e 1e 2=5-12×5+12=1. 6.(2015·北京)已知双曲线x 2a2-y 2=1(a >0)的一条渐近线为3x +y =0,则a =________.答案33解析 双曲线x 2a 2-y 2=1的渐近线为y =±xa,已知一条渐近线为3x +y =0,即y =-3x ,因为a >0,所以1a =3,所以a =33.7.已知双曲线x 2m -y 23m =1的一个焦点是(0,2),椭圆y 2n -x 2m=1的焦距等于4,则n =________.答案 5解析 因为双曲线的焦点是(0,2),所以焦点在y 轴上,所以双曲线的方程为y 2-3m -x 2-m =1,即a 2=-3m ,b 2=-m ,所以c 2=-3m -m =-4m =4,解得m =-1.所以椭圆方程为y 2n+x 2=1,且n >0,椭圆的焦距为4,所以c 2=n -1=4或1-n =4,解得n =5或-3(舍去).8.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为______________. 答案 (3+23,+∞)解析 由条件知a 2+1=22=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1,设P 点坐标为(x ,y ),则OP →=(x ,y ),FP →=(x +2,y ), ∵y 2=x 23-1,∴OP →·FP →=x 2+2x +y 2=x 2+2x +x 23-1=43x 2+2x -1=43(x +34)2-74. 又∵x ≥3(P 为右支上任意一点), ∴OP →·FP →≥3+2 3.9.(2014·浙江)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足PA =PB ,则该双曲线的离心率是________. 答案52解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x .由⎩⎪⎨⎪⎧y =b a x ,x -3y +m =0得A (am 3b -a ,bm3b -a),由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B (-am a +3b ,bma +3b), 所以AB 的中点C 的坐标为(a 2m 9b 2-a 2,3b 2m9b 2-a2).设直线l :x -3y +m =0(m ≠0), 因为PA =PB ,所以PC ⊥l , 所以k PC =-3,化简得a 2=4b 2. 在双曲线中,c 2=a 2+b 2=5b 2, 所以e =c a =52. 10.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)在(2)的条件下求△F 1MF 2的面积. (1)解 ∵离心率e =2, ∴双曲线为等轴双曲线,可设其方程为x 2-y 2=λ(λ≠0), 则由点(4,-10)在双曲线上, 可得λ=42-(-10)2=6, ∴双曲线方程为x 2-y 2=6.(2)证明 ∵点M (3,m )在双曲线上, ∴32-m 2=6,∴m 2=3,又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0), ∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m ) =(-3)2-(23)2+m 2=9-12+3=0, ∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上. (3)解 S △F 1MF 2=12×43×|m |=6.B 组 专项能力提升 (时间:20分钟)11.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是__________. 答案 (1,2)解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0),∵△ABE 是锐角三角形,∴EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a)·(-c -a ,-b 2a)>0,整理得3e 2+2e >e 4, ∴e (e 3-3e -3+1)<0, ∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2).12.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60°的直线A 1B 1和A 2B 2,使A 1B 1=A 2B 2,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是__________. 答案 ⎝⎛⎦⎥⎤233,2 解析 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30°且小于等于60°,即tan 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=(c a )2=c 2a 2=1+b 2a 2,∴43<e 2≤4,∴233<e ≤2. 13.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5, ∴点A (5,0)是双曲线C 的右焦点, 且PQ =QA +PA =4b =16,由双曲线定义,得PF -PA =6,QF -QA =6. ∴PF +QF =12+PA +QA =28, 因此△PQF 的周长为PF +QF +PQ =28+16=44.14.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知PF 1-PF 2=2a . 又PF 1=4PF 2,∴PF 1=83a ,PF 2=23a .在△PF 1F 2中,由余弦定理,得cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值, ∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.15.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=P B →,求△AOB 的面积.解 (1)依题意得⎩⎪⎨⎪⎧ab=2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1. (2)由题意知双曲线的渐近线方程为y =±2x ,设A (m,2m ),B (-n,2n ),其中m >0,n >0,由 AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n .将点P 的坐标代入y 24-x 2=1,整理得mn =1. 设∠AOB =2θ,∵t an ⎝ ⎛⎭⎪⎫π2-θ=2, 则tan θ=12,从而sin 2θ=45.又OA =5m ,OB =5n ,∴S △AOB =12OA ·OB ·sin 2θ=2mn =2.。
高三数学一轮复习-双曲线 (带答案)

解析几何—双曲线一、学习目标知识与技能:了解圆锥曲线的实际背景,感受圆锥曲线在解决实际问题时的应用。
过程与方法:掌握双曲线的定义、标准方程及简单的几何性质。
情感态度价值观:理解数形结合的思想,了解椭圆的简单应用。
二、学习重难点重点:双曲线的定义的灵活应用、利用标准方程研究几何性质,尤其是离心率求值问题。
难点:双曲线的综合问题三、考纲解读:掌握双曲线的定义、标准方程,能够根据条件利用待定系数法求双曲线方程. 四、知识链接1.共渐近线的双曲线系方程:与双曲线x 2a 2-y 2b 2=1有相同渐近线的双曲线系方程可设为x 2a 2-y 2b 2=λ(λ≠0),若λ>0,则双曲线的焦点在 轴上;若λ<0,则双曲线的焦点在 轴上.2.双曲线的形状与e 的关系:∵双曲线渐近线的斜率k =ba =c 2-a 2a=c 2a2-1=e 2-1,∴e 越大,则渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔.故双曲线的离心率越大,它的开口就越宽阔.3. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为 ,而双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为 应注意其区别与联系.4.平行于双曲线的渐近线的直线与双曲线有且仅有 个交点. 五、基础检测A1.已知()()3,0,3,0,6M N PM PN --=,则动点P 的轨迹是( ) A .一条射线B .双曲线右支C .双曲线D .双曲线左支【答案】A 因为6PM PN MN -==,故动点P 的轨迹是一条射线:0,3y x =≥A2.若12,F F 分别是双曲线2211620x y-=的左、右焦点,P 为双曲线C 上一点,且19PF =,则2PF 的长为( )A .1B .17或1C .17D .12【答案】C 因为194610PF a c =<+=+=,所以P 必在双曲线左支上, :212248PF PF a -==⨯=,又19PF =,所以298PF -=,解得:217PF =,A3.若00(,)P x y 是双曲线22124x y -=左支上一点,则0x 的取值范围是_____【答案】(,-∞六、学习过程B1.已知双曲线()2222:10,0x y C a b a b -=>>的左、右焦点分别为1F 、2F ,O 为坐标原点,P 是双曲线上在第一象限内的点,直线PO 、2PF 分别交双曲线C 左、右支于另一点M 、N ,122PF PF =,且260MF N ∠=,则双曲线C 的离心率为( )A B CD 【答案】B122PF PF =,122PF PF a -=,14PF a ∴=,22PF a =.连接1MF 、2MF ,根据双曲线的对称性可得12MF PF 为平行四边形,260MF N ∠=o Q ,1260F PF ∴∠=,由余弦定理可得2224164242cos60c a a a a =+-⋅⋅⋅o ,c ∴=,ce a∴== B2.已知△ABP 的顶点A 、B 分别为双曲线的左右焦点,顶点P 在双曲线C 上,则sin sin sin A BP-的值等于( )AB C .54D .45【答案】D 由题意得双曲线22:1169x y C -=得4a =, 3b =,根据双曲线的定义得:28PB PA a -==‖,又210AB c ===, 从而由正弦定理,得sin sin 4sin 5PB PA A B P AB --==‖,B4.双曲线C 与双曲线2212y x -=有共同的渐近线,且过点.(1)求双曲线C 的方程;(2)若直线:1l y kx =+与双曲线C 左支交于,A B 两点,求k 的取值范围;【答案】(1)2212y x -=;(2) (1)因为双曲线C 与双曲线2212y x -=有共同的渐近线,所以设双曲线C 的方程为222y x λ-=,把点代入C中,即(22λ-=,解得λ1=-,所以双曲线C 的方程为2212y x -=.(2)联立22112y kx y x =+⎧⎪⎨-=⎪⎩,消去y 得:()222230k x kx ---=,①因为直线与双曲线左支有两个交点,A B ,设()()1122,,,A x y B x y ,且120,0x x <<,解不等式()2221221222041220202302k k k k x x k x x k ⎧-≠⎪+->⎪⎪⎨+=<⎪-⎪-⎪=>-⎩,解得:k k k ⎧<<⎪⎪≠⎨⎪>⎪⎩k <<B5.已知双曲线两个焦点分别是())12,F F,点)P在双曲线上.(1)求双曲线的标准方程;(2)过双曲线的右焦点2F 且倾斜角为60︒的直线与双曲线交于,A B 两点,求1F AB ∆的周长.【答案】(1)221x y -=;(2)12 (1)()22,0F,)P2P F x∴⊥轴 221b PF a∴==且c =又222c a b =+,即220a a +-=,解得:1a = 21b ∴=∴双曲线的标准方程为:221x y -=(2)由(1)知,双曲线渐近线为y x =,倾斜角为45 直线AB 过2F 且倾斜角为60 ,A B ∴均在双曲线的右支上122BF BF ∴-=,122AF AF -= 112244AF BF AF BF AB ∴+=++=+设直线AB方程为:y x =代入双曲线方程得:2270x -+=4AB ∴== 1F AB ∴∆的周长为:114212AF BF AB AB ++=+=七、达标检测A1.设1k >,则关于,x y 的方程()22211k x y k -+=-所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线【答案】C ∵k >1,∴1+k >0,k 2-1>0,方程()22211k x y k -+=-,即222111y x k k -=-+,表示实轴在y 轴上的双曲线,A2.已知双曲线的渐近线为2y x =±,实轴长为4,则该双曲线的方程为( ) A .22142x y -=B .22142x y -=或22148y x -=C .22148y x -=D .22142x y -=或22148y x -=【答案】D双曲线的渐近线方程为2y x =±,实轴长为4,24a ∴=,则2a =,∴当双曲线的焦点在x 轴上时,设双曲线方程为22214x y b -=,0b >,此时2b =b =∴双曲线方程为22142x y -=,当双曲线的焦点在y 轴上时,设双曲线方程为22214y x b-=,0b >,此时22b =,解得b =22148x y -=. B3.已知双曲线22:1(04)4x y C m m m-=<<-的渐近线与圆22(2)3x y -+=相切,则m =( )A .1B C .2D .3【答案】A 双曲线22:1(04)4x y C m m m-=<<-的渐近线方程为y =将y =0= 由双曲线的渐近线0±=与圆22(2)3x y -+==解得1m = C4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为( ) A .B .C .D .3【答案】B 因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以B5.设双曲的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A B C .12D .12【答案】D设该双曲线方程为2222100x ya ba b-=(>,>),可得它的渐近线方程为by xa=±,焦点为F(c,0),点B(0,b)是虚轴的一个端点,∴直线FB的斜率为FBb bkc c-==--,∵直线FB与直线by xa=互相垂直,1b bc a∴-⨯=-,2b ac∴=,22222b c a c a ac=-∴-=,,210e e∴--=,e∴=,。
2015届高考数学(人教,理科)大一轮配套第八章平面解析几何第6节双曲线

2009~2013年高考真题备选题库 第8章 平面解析几何 第6节 双曲线考点一 双曲线的定义、标准方程1.(2013广东,5分)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y 25=1B.x 24-y 25=1 C.x 22-y 25=1 D.x 22-y 25=1 解析:本题考查双曲线的方程,考查考生的运算能力.由题意可知c =3,a =2,b = c 2-a 2=32-22=5,故双曲线的方程为x 24-y 25=1.答案:B2.(2013湖北,5分)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:本题考查三角函数、双曲线等知识,意在考查考生对双曲线知识的掌握情况,会求实轴、虚轴、焦距和离心率的值,掌握三角函数的重要公式是求解本题的基础.双曲线C 1的离心率e 1=c 1a 1=a 21+b 21a 21= cos 2θ+sin 2θcos 2θ=1cos θ,双曲线C 2的离心率e 2=c 2a 2= a 22+b 22a 22= sin 2θ+sin 2θtan 2θsin 2θ=1+tan 2θ= 1+sin 2θcos 2θ=1cos θ,所以e 1=e 2,而双曲线C 1的实轴长为2a 1=2cos θ,虚轴长为2b 1=2sin θ,焦距为2c 1=2 a 21+b 21=2,双曲线C 2的实轴长为2a 2=2sin θ,虚轴长为2b 2=2sin θsin θ,焦距为2c 2=2 a 22+b 22=2 sin 2θ+sin 2θtan 2θ=2tan θ,所以A ,B ,C 均不对,故选D.答案:D3.(2012湖南,5分)已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1C.x 280-y 220=1 D.x 220-y 280=1 解析:根据已知列出方程即可.c =5,双曲线的一条渐近线方程为y =ba x 经过点(2,1),所以a =2b ,所以25=4b 2+b 2,由此得b 2=5,a 2=20,故所求的双曲线方程是x 220-y 25=1.答案:A4.(2011山东,5分)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y 23=1 解析:圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx ±ay =0,根据已知得3b a 2+b 2=2,即3b 3=2,解得b =2,则a 2=5,故所求的双曲线方程是x 25-y 24=1. 答案:A5.(2011安徽,5分)双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4D .4 2解析:双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,2a =4.答案:C6.(2011安徽,5分)双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A .(22,0) B .(52,0) C .(62,0) D .(3,0)解析:将双曲线方程化为标准方程为: x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,故右焦点坐标为(62,0). 答案:C考点二 双曲线的简单几何性质1.(2013福建,5分)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A.25 B.45 C.255D.455解析:本题考查双曲线的图象与性质,点到直线的距离等基础知识,意在考查考生的数形结合能力、转化和化归能力以及运算求解能力.双曲线x 24-y 2=1的渐近线方程为y =±x2,即x ±2y =0,所以双曲线的顶点(±2,0)到其渐近线距离为25=255.答案:C2.(2013浙江,5分)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62解析:本题考查椭圆、双曲线的定义,几何图形和标准方程,简单几何性质,考查转化与化归思想、数形结合思想、函数与方程思想以及运算求解能力.设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)①,点A 的坐标为(x 0,y 0).由题意得a 2+b 2=3=c 2②,则|OA |=c =3,所以⎩⎪⎨⎪⎧x 20+y 20=3,x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线上,代入①得,83b 2-13a 2=a 2b 2③,联立②③解得a =2,所以e =c a =62,故选D.答案:D3.(2013北京,5分)若双曲线x 2a 2-y 2b 2=1 的离心率为3,则其渐近线方程为( )A. y =±2x B .y =±2x C. y =±12xD. y =±22x解析:本题考查双曲线的方程和简单几何性质,意在考查考生的运算求解能力.在双曲线中离心率e =ca=1+⎝⎛⎭⎫b a 2=3,可得b a=2,故所求的双曲线的渐近线方程是y =±2x . 答案:B4.(2013陕西,5分)双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:本题考查双曲线的几何性质和方程思想的具体应用.⎩⎪⎨⎪⎧a 2=16,b 2=m ,e 2=2516⇒2516=16+m16⇒m =9. 答案:95.(2013江苏,5分)双曲线x 216-y 29=1的两条渐近线的方程为________.解析:本题考查双曲线的几何性质,意在考查学生的运算能力. 令x 216-y 29=0,解得y =±34x . 答案:y =±34x6.(2013湖南,5分)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:本小题主要考查双曲线的定义及其几何性质和余弦定理,考查数形结合思想与运算求解能力,属中档题.依题意及双曲线的对称性,不妨设F 1,F 2分别为双曲线的左、右焦点,点P 在双曲线的右支上,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,求得|PF 1|=4a ,|PF 2|=2a .而|F 1F 2|=2c ,所以在△PF 1F 2中由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1|·|F 1F 2|·cos ∠PF 1F 2,所以4a 2=16a 2+4c 2-2·4a ·2c ·cos 30°,即3a 2-23ac +c 2=0,所以3a -c =0,故双曲线C 的离心率为 3. 答案: 37.(2012新课标全国,5分)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A.2 B .2 2 C .4D .8解析:抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.答案:C8.(2012浙江,5分)如图,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )A.233B.62C. 2D. 3解析:不妨设c =1,则直线PQ :y =bx +b ,两渐近线为y =±bax ,因此有交点P (-a a +1,b a +1),Q (a 1-a ,b 1-a ),设PQ 的中点为N ,则点N 的坐标为(a 21-a 2,b1-a 2), 因为线段PQ 的垂直平分线与x 轴交于点M ,|MF 2|=|F 1F 2|,所以点M 的坐标为(3,0), 因此有k MN =b1-a 2-0a 21-a 2-3=-1b ,所以3-4a 2=b 2=1-a 2,所以a 2=23,所以e =62.答案:B9.(2011湖南,5分)设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )A .4B .3C .2D .1解析:双曲线方程x 2a 2-y 29=1的渐近线方程为3x ±ay =0,与已知方程比较系数得a =2.答案:C10.(2009·浙江,5分)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C .若=12,则双曲线的离心率是( )A.2B. 3C. 5D.10解析:直线l :y =-x +a 与渐近线l 1:bx -ay =0交于B (a 2a +b ,aba +b ),l 与渐近线l 2:bx+ay =0交于C (a 2a -b ,-ab a -b),A (a,0),=(-ab a +b ,ab a +b ),=(2a 2b a 2-b 2,-2a 2b a 2-b 2).∵=12,∴-ab a +b =a 2b a 2-b 2,b =2a ,∴c 2-a 2=4a 2,∴e 2=c 2a2=5,∴e = 5.答案:C11.(2012湖北,5分)如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =________;(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.解析:由题意可得a b 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.设sin θ=b b 2+c 2,cos θ=cb 2+c 2, S 1S 2=2bc 4a 2sin θcos θ=2bc4a 2bc b 2+c 2=b 2+c 22a 2=e 2-12=2+52. 答案:1+52 2+5212.(2011辽宁,5分)已知点(2,3)在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上,C 的焦距为4,则它的离心率为________.解析:根据点(2,3)在双曲线上,可以很容易建立一个关于a ,b 的等式,即4a 2-9b 2=1,考虑到焦距为4,这也是一个关于c 的等式,2c =4,即c =2.再有双曲线自身的一个等式a 2+b 2=c 2,这样,三个方程,三个未知量,可以解出a =1,b =3,c =2,所以,离心率e =2.答案:213.(2010江苏,5分)在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M 的坐标为(3,15)或(3,-15), 则点M 到此双曲线的右焦点的距离为4. 答案:4。
2015高考数学一轮精品课件:9.6 双曲线

=
考点一
3
=
2 1+ 2 +1
2
3
2 1+ 2 -1
3
2 1+ 2 -1
考点二
=1+
考点三
.
误区警示
第二十一页,编辑于星期五:十三点 六分。
9.6
第九章
双曲线
考纲要求
此时 1 +
3
>1,且
2
2
所以 1<1+
3
1+
||
||
=
||
||
<3,且
考点二
3
2 1+ 2 -1
梳理自测
探究突破
巩固提升
2.双曲线的标准方程和几何性质
标准方程
x2
a2
y2
y2
b
a2
− 2=1(a>0,b>0)
x2
− 2=1(a>0,b>0)
b
图形
第四页,编辑于星期五:十三点 六分。
9.6
第九章
双曲线
考纲要求
标准方程
范围
对称性
性
质
性
质
顶点
x2
a2
梳理自测
梳理自测
探究突破
y2
y2
b
a2
− 2=1(a>0,b>0)
||
的取值范围是
||
考点一
2
<3,且 1+
综上所述,
巩固提升
3
≠2,
2
2 1+ 2 -1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考数学理一轮复习精品资料【新课标版】预测卷
第九章 解析几何 第六节 双曲线
一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1. 设P 是双曲线x 2a 2-y 2
9=1上一点,双曲线的一条渐近线方程为320x y -=,F 1,F 2分别是双曲线的左,
右焦点,若|PF 1|=3,则|PF 2|=( )
A .1或5
B .6
C .7
D .9
2. 抛物线y 2
=4x 的焦点到双曲线x 2
-y 2
3
=1的渐近线的距离是( )
A.1
2 B.
32
C .1
D. 3
3. 双曲线x 2-my 2=1的实轴长是虚轴长的2倍,则m =( )
A.14
B.12 C .2
D .4
4.【2014山东高考理第10题】 已知0>>b a ,椭圆1C 的方程为122
22=+b
y a x ,双曲线2C 的方程为
22221x y a b -=,1C 与2C 的离心率之积为2
3,则2C 的渐近线方程为( ) A.02=±y x B.02=±y x C.02=±y x D.02=±y x
5. 已知定点A 、B ,且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( ) A .
12 B .32 C .7
2
D .5
6. 【2014全国1高考理第4题】已知F 为双曲线C :)0(322>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离为( ) A.
3 B. 3 C. m 3 D. m 3
7.【改编题】已知斜率为2的直线l 双曲线22
22:1(0,0)x y C a b a b
-=>>交,A B 两点,若点(2,1)P 是AB 的
中点,则C 的离心率等于( )
(A) (B) 2 (C) (D)
【答案】D
8. 已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,
则OA FP uu r uu r
⋅的取值范围为( )
A .
)
1,1 B .
C .(
D .
)
+∞
9. 若双曲线2
2
21(0)y x b b
-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取
值范围是( )
(A )(1,2] (B )[2,)+∞ (C )(1 (D ))+∞
10. 已知双曲线22
221(0,0)x y a b a b -=>>的两个焦点为1F 、2
F ,其中一条渐近线方程为(*)2b y x b N =∈,P 为双曲线上一点,且满足5OP <(其中O 为坐标原点),若1PF 、12F F 、2PF 成等比数列,则双曲
线C 的方程为( )
A.2214x y -=
B.22
1x y -= C.22149x y -= D.221416
x y -=
二、填空题
11. .已知双曲线221x y -=,点12,F F 为其两个焦点,点P 为双曲线上一点,若12PF PF ⊥,则12PF PF +的值为__________.
12. P 为双曲线右支上一点,M 、N 分别是圆和上的点,则
的最大值为________.
因为M 、N 分别是圆
和
上的点,所以
,
13. 已知F 是双曲线C:22x a -2
2y b
=1(a>0,b>0)的左焦点,B 1B 2是双曲线的虚轴,M 是OB 1的中点,过F 、M 的直线
与双曲线C 的一个交点为A,且FM =2MA ,则双曲线C 离心率是 .
三、解答题
14. 已知中心在原点的双曲线的右焦点为)0,2(F ,右顶点为)0,1(A . (1)试求双曲线的方程;
(2)过左焦点作倾斜角为
6
π
的弦MN ,试求OMN ∆的面积(O 为坐标原点). 【解析】(1)3,1,2===b a c ,方程为13
2
2
=-y x
(2)直线MN :)2(3
3
+=
x y , 与13
2
2
=-y x 联立,消y 并整理得013482=--x x 则3)8
13
(4)21(311||2=-⨯-⋅+
=MN 又原点到直线MN 的距离为11)3
3(33
22
=+=d
故所求OMN ∆的面积的面积为2
31321=⨯⨯=
S . 15. 已知双曲线2
2
:12
y C x -=的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点. (1)求12PA PF ⋅的最小值;
(2)若直线l 为圆2
2
:2O x y +=上动点0000(,)(0)Q x y x y ≠处的切线,且与双曲线C 交于不同的两个点,A B ,证明ABO ∆为直角三角形.
;
2222
000022220000828(82)1[4]03423434
x x x x x x x x --=+-+=---- 2
AOB π
∴∠=
,AOB ∴∆为直角三角形.
16. 一条双曲线14
22=-y x 的左、右顶点分别为21,A A ,点()),(,,1111y x N y x M -是双曲线上不同的两个动
点.
(1)求直线M A 1与N A 2交点的轨迹E 的方程式;
(2)设直线l 与曲线E 相交于不同的两点B A ,,已知点A 的坐标为)0,2(-,若点()0,0y Q 在线段AB 的垂直平分线上,且4=⋅QB QA .求0y 的值.
(1)当k=0时,点B 的坐标为(2,0).线段AB 的垂直平分线为y 轴,于是
000(2,y ),(2,=QA QB y QA QB y →→→→
=--=-±)由4,得=。