基本色度学
4.11_色度学基础

色度学基础色度学是对颜色刺激进行测量、计算和评价的学科§颜色的分类和特性一颜色及其分类颜色:不同波长可见光辐射作用于人的视觉器官后所产生的心里感受颜色和波长的关系并不是完全固定的光谱上除572nm(黄)、503nm(绿)和478nm(蓝)是不变的颜色外,其它颜色在光强增加时都略向红色或蓝色变化“贝楚德-朴尔克效应”色度学则是将主观的颜色感受和客观的物理刺激联系起来的科学二颜色的表观特征•明度:表示颜色明亮的程度对于光源色,明度值与发光体的光亮度有关物体色,和物体的透射比或反射比有关•色调:区分不同彩色的特征•饱和度:颜色接近光谱色的程度,彩色的纯洁性§颜色混合•颜色混合Ø色光混合:加混Ø色料混合:减混色•格拉斯曼颜色混合定律Ø人的视觉只能分辨颜色的三种变化Ø两种颜色混合,如果一种颜色成分连续变化,混合色的外貌也连续变化补色律:每一种颜色都有相应补色中间色律•混合色的总亮度等于组成混合色的各颜色光亮度的总和Ø亮度相加定律•颜色外貌相同,不管它们的光谱组成是否一样,在颜色混合种等效Ø凡是视觉上相同的颜色是等效的Ø代替律§颜色匹配一颜色匹配实验•把两个颜色调节到视觉上相同的方法叫颜色匹配颜色转盘法色光混合匹配实验利用颜色光相加实现CIE标准色度系统•物体颜色是光刺激人的视觉器官产生的反应,要将观察者的颜色感觉数字化,国际照明委员会(CIE)规定了一套标准色度系统,称为CIE标准色度系统,这一系统是近代色度学的基本组成部分,是色度计算的基础,也是彩色复制的理论基础之一。
•CIE标准色度学系统是一种混色系统,是以颜色匹配实验为出发点建立起来的。
用组成每种颜色的三原色数量来定量表达颜色。
三刺激值和色度图•在颜色匹配中,用于颜色混合以产生任意颜色的三种颜色叫做三原色。
通常加色混色中使用红、绿、蓝三种颜色光为三原色是为了得到最多的混合色。
色度学基础(色温)

饱和度是指色彩的鲜艳程度,也称色彩的纯度。饱和度取决于该色中含色成分和消色成分 (灰色)的比例。含色成分越大,饱和度越大;消色成分越大,饱和度越小。
Brightness亮度
彩色三要素
Hue Lightness Saturation
混色规律及实现方法
相加混色——光的合成,各分色的光谱成分相加,彩色电视就是利用红、绿、蓝三基
表色系统
显色系统(Color Appearance System) (按照所见颜色的心理感受对颜色进行分类、整理)
混色系统 (根据光的混色实验,按照必要的基准色光的混和 量 ,对某种颜色与基准颜色是否相等作出判断)
孟塞尔(Muncell) 表色系统 德国DIN表色系统 瑞典Nature Color system
CIE表色系统 CIE1931RGB CIE1931XYZ CIE1976 L*a*b* CIE1960 L*u*v*
孟塞尔表色系统
竖直方向 ➢中央轴代表明度,它在底盘位置的明度为0,代表黑色;而在中央轴的顶端的照度为102,代表白色;在 此二位置的中间则均分为10等分。由此,照度轴上共有11个刻度。 水平方向 ➢孟塞尔立体的剖面还用横竖线分成很多小格,离中央轴的水平距离则用饱和度表示。饱和度C的竖直有2、 4、6、8、10、12、14。 底盘弧度方向 ➢底盘有五个主要色相:红(R)、黄(Y)、绿(G)、蓝(B)、紫(P)和五个中间色调:黄红(YR)、 绿黄(GY)、蓝绿(BG)、紫蓝(PB)、红紫(RP)。
冷暖色调
生理上的感觉如,红、橙、黄为暖色系;蓝、绿、黑为冷色系。
色温
早霞 黄昏 正午 其它白天时段 白天正午的阴影和月夜 白炽灯 聚光灯 烛光 新闻灯 三基色日光灯 商场日光灯 蜡烛及火光 朝阳及夕阳 家用钨丝灯 日出后一小时阳光
色度学的基本知识

色度学的基本知识色度学是研究人的颜色视觉规律,颜色测量理论与技术的科学,是物理光学,视觉生理,视觉心理等科学为基础的综合性科学。
彩色电视技术中的色度学是研究自然界景物的颜色,如何在彩色电视系统中分解,传输,并在彩色电视机屏幕上正确的复显出来。
名词解释:同色异谱:也就是说一定的光谱分布表现为一定的颜色,但同一种颜色可以有不同的光谱分布合成。
彩色电视机的颜色复显技术正是利用同色异谱概念,在颜色复显过程中,不是重复原来景物的光谱分布,而是利用几种规格化的光源进行配制。
以求在色感上得到等效效果。
如在彩电的复显中用的是R,G,B三基色光谱(因为R,G,B三基色可以混合出自然界中绝大多数颜色)的合成来复显原来景物的颜色。
绝对黑体:是指在辐射作用下既不反射也不透射,而能把落在它上面的辐射全部吸收的物体。
当绝对黑体被加热时,就会发射一定的光谱,这些光谱表现为特定的颜色。
色温:当绝对黑体发射出与某一光源相同特性的光时,绝对黑体所必须保持的温度,便叫某光源的“色温”。
1931CIE-XYZ计色系统现代色度学采用CIE(国际照明委员会)所规定的一套色测量原理,数据和计算方法,称为CIE标准色度学系统。
白色可分为好多种,有偏红的白色(暖白色),偏蓝的白色(冷白色)等。
在彩色电视系统中,为了分解,重现彩色图象,通常也要选择一种白色作为分解,重现颜色的基准白。
为了清楚的描述不同的白色,通常把1931CIE-XYZ图中把白色用色度坐标(x,y)来表示,也可以用相关色温和最小分辨的颜色差来表示。
图中斜竖线称为布朗克轨迹等色温线,与其垂直的斜线称为最小可分辨的颜色差(Minimum Perceptible Colour Difference,简称MPCD),MPCD为零的斜竖线称为黑体(Black body)轨迹,又称布朗克轨迹。
布朗克轨迹上各点呈现的白色代表了绝对黑体在不同绝对温度下呈现的白色(从6000—20000K),竖斜线与布朗克轨迹相交的各点,均称为相应竖斜线上的点所表征的白色的相关色温点,与布朗克轨迹相交的斜线称为等相关色温线。
应用光学第六章色度学基础

高饱和度颜色匹配
二 颜色匹配方程
不能直接匹配,需把某种颜色加到被匹配颜色 一方的情况 例如用红(R)、绿(G)、兰(B)匹配光谱 黄色,需把兰色(B)加到黄色(C)一边再进 行匹配(C)+B(B)=R(R)+G(G)
由r和g所决定的平面上的
点均和某种颜色相对应, 这样一个能表示颜色的平面,
称做色品图
色品图上表示颜色的各 个点称做色品点
三原色红(R)、绿(G)和兰(B)的色品点。 此三点连线,构成一个三角形,三角形里面部 分是三原色以不同比例混合能产生的所有颜色 色品点的集合。这个三角形叫做麦克斯韦颜色 三角形 光谱色的色品坐标
在色品图上,各光谱色色品点形成一条马蹄形 曲线,称之为光谱色品轨迹
六、 色度学中常用的光度学概念
光谱透射率——物体透过的光谱辐通量 与入射光谱辐通量 之比
光谱反射率因数——在限定的方向上、在指定的立体角范 围内,所考虑物体反射的光谱辐通量 与相同照明、相同 方向、在相同立体角内由完全漫射反射体反射的光谱辐 通量 之比
Байду номын сангаас
等能光谱是指各波长辐射能量相等,只有在此条件下, 所得到的光谱色三刺激值才是可比较和有意义的
颜色匹配函数是重要的色度量,它是在颜色现像研究中 把物理刺激与生理响应结合起来的纽带
五 、色品坐标及色品图 三刺激值各自在三刺激值总量中所占的比例,叫做颜色 的色品 r+g+b=1
色度学基础知识

色度学基础知识什么是色度学?色度学是研究色彩的科学,也被称为颜色学。
它涉及颜色的感知、产生、测量和应用等各个方面。
色度学不仅仅关注颜色的外观,还研究颜色的物理和化学特性以及其在人类生活和工业中的应用。
主观与客观颜色在色度学中,我们经常讨论主观和客观颜色。
主观颜色是指人们通过视觉系统感知到的颜色,它受到个体的视觉特性和观察条件的影响。
相比之下,客观颜色是测量和描述颜色特性的科学方法。
在主观颜色的研究中,我们了解了人类视觉系统的工作原理。
视觉系统通过不同类型的感光细胞和神经传递来识别和解释外部光线的不同波长。
这些信息被传递到大脑中的视觉皮层,并被解释为不同的颜色。
客观颜色的研究则使用了各种仪器和方法来测量和描述颜色。
光谱仪是一种常用的工具,可以将光线分解为其组成的不同波长。
通过测量各个波长的强度,可以确定光线的颜色。
色彩空间色彩空间是用来描述颜色的一种系统。
它由不同的坐标轴组成,每个坐标轴表示颜色的一个特定属性。
常见的色彩空间有RGB、CMYK和HSB等。
•RGB色彩空间是由红色(Red)、绿色(Green)和蓝色(Blue)三个原色组成的。
这种色彩空间常用于电子设备和计算机上的颜色显示。
•CMYK色彩空间是由青色(Cyan)、品红色(Magenta)、黄色(Yellow)和黑色(Black)四个颜色组成的。
它常用于印刷行业,用于混合油墨来产生不同的颜色。
•HSB色彩空间代表色相(Hue)、饱和度(Saturation)和亮度(Brightness)。
色相表示颜色的种类,饱和度表示颜色的纯度,亮度表示颜色的明暗程度。
不同的色彩空间可以用来描述不同的颜色特性,选择适合的色彩空间可以更准确地表示和处理颜色。
颜色的应用在生活和工业中,颜色有许多应用。
颜色可以通过情绪而产生不同的影响,对于个人和品牌来说具有重要的影响力。
在设计领域,颜色可以用来传达特定的情感和理念。
例如,在广告中使用红色可以引起人们的注意力和兴奋感,而使用蓝色则可以传达平静和安全的感觉。
色度学基础

• 例如,某个混色后的色效果,可以表示成下式。 • F=3.6(R)+4.8(G)+0.8(B) • 这个表达式的意义是: • 红色分量是3.6个红单基色量 R=3.6 • 绿色分量是4.8个绿单基色量 G=4..8 • 蓝色分量是0.8个蓝单基色量 B=0.8 • 可见(2.3)式中的R、G、B在实际应用中是一些具体 的数字量。这三个值称为“三刺激值”。这三个值决 定了混色光的结果颜色性能,还决定了混色光的光通 量。
色度学
• 色度学是研究人的颜色视觉规律、颜色测量理论与技 术的学科。颜色感觉与听觉、嗅觉、味觉等一样都是
外界刺激使人的感觉器官产生的感觉。
• 色度学是研究颜色度量和评价方法的学科,是宜光学、
视觉生理、视觉心理、心理物理等学科为基础的综合
性科学。
基本物理量
1、色品坐标 色品坐标(x,y)和色品坐标(u,v)来自色度学,这个坐标 是人为构建的一个颜色坐标体系,最初来源于颜色匹配实验,构 建出 R G B 坐标系,后来发现这个坐标系不便于计算,又利用数 学方法转换成没有负值的xy坐标系,这个时候 里面对应的坐标值 就是你说的色品坐标(x,y),在这个坐标之后人们发现x,y坐标 和人眼对颜色的感知上来说并不是均匀的,为了改变色度坐标图 中颜色宽容量不等的缺陷,国际照明委员会于1960年,建立了U-V 色度坐标图,也称均匀色度坐标图。两者在数学的关系是:
基本物理量
基本物理量
8、色偏差 是指电脑计算的配方与目标标准的相差,以单一照明光源下计算,
数值愈小,准确度则愈高。但是要注意,它只代表某一光源下的
颜色比较,未能检测于不同光源下的偏差。
归一化光谱功率分布函数S(λ)
• 归一化光谱功率分布:辐射功率与波长的函数关系。
色度学基础

标准照明体1) 标准照明体A 代表绝对温度大约为2856K完全辐射体(黑体)的光。
2) 标准照明体B 代表相关色温大约为4874K的直射日光﹐它的光色相当于中午阳光。
3) 标准照明体C 代表相关色温大约为6774K的平均日光﹐它的光色近似阴天天空的日光。
4) 标准照明体D65 代表相关色温大约为6504K的日光。
5)其它D照明体代表标准照明体D65 以外的其它日光﹐如D55﹑D75。
D55代表相关色温为5503K的典型日光﹐常用于摄影。
D75代表相关色温为7504K的典型日光﹐用于高色温光源下进行精细辨色的场合。
上述照明体﹐B和C不理想﹐因而用照明体D代表日光。
在应用中﹐推荐A 和D65作为普遍应用的标准照明体。
标准光源为了较为准确和规范地描述色调,CIE(国际照明委员会)制定了4种标准光源,以统一色调值。
这4种标准光源的名称见下表,在这4种标准光源中,常用的C光源和D65光源,我国以D65为标准光源。
1) 标准光源A 色温2856K的充气钨丝灯。
2) 标准光源B A光源加一组特定的戴维斯-吉伯逊液体滤光器﹐以产生相关色温4874K的辐射。
3) 标准光源C A光源加另一组特定的戴维斯-吉伯逊液体滤光器﹐以产生相关色温6774K的辐射。
标准照明体D ﹐CIE尚未推荐出相应的标准光源。
我国以D65为标准光源。
视觉暂留现象人眼之所以能够看清一个物体,乃是由于该物体在光的照射下,物体所反射或透射的光进入人眼,刺激了视神经,引起了视觉反应。
当这个物体从眼前移开,对人眼的刺激作用消失时,该物体的形状和颜色不会随着物体移开而立即消失,它在人眼还可以作一个短暂停留,时间大约为1/10秒。
物体形状及颜色在人眼中这个短暂时间的停留,就称为视觉暂留现象。
正因为有了这种视觉暂留现象,人们才能欣赏到电影、电视的连续画面。
视觉暂留现象是视错觉的一种表现。
眼睛的分辨能力眼睛分辨物体细节的能力与视网膜的结构(主要是其上面的感光单元的分布)有关﹐不同部分亦很大的差别。
基本色度学

基本色度学色度学是—门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。
彩色视觉是人眼的—种明视觉。
彩色光的基本参数有:明亮度、色调和饱和度。
明亮度是光作用于人眼时引起的明亮程度的感觉。
一般来说,彩色光能量大则显得亮,反之则暗。
色调反映颜色的类别,如红色、绿色、蓝色等。
彩色物体的色调决定于在光照明下所反射光的光谱成分。
例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。
对于透射光,其色调则由透射光的波长分布或光谱所决定。
饱和度是指彩色光所呈现颜色的深浅或纯洁程度。
对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。
高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。
因而饱和度是色光纯度的反映。
100%饱和度的色光就代表完全没有混入白光阴纯色光。
色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。
应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。
例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。
事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。
基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。
黄光既能激励红视锥细胞,又能激励绿视锥细胞。
由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。
三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。
它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。
有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。
不同比例的三基色光相加得到彩色称为相加混色,其规律为:红+绿=黄红+蓝=紫蓝+绿=青红+蓝+绿=白彩色还可由混合各种比例的绘画颜料或染料来配出,这就是相减混色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本色度学-------RGB基本原理
节选自《光电图象处理》竺子民著
色度学是—门研究彩色计量的科学,其任务在于研究人眼彩色视觉的定性和定量规律及应用。
彩色视觉是人眼的—种明视觉。
彩色光的基本参数有:明亮度、色调和饱和度。
明亮度是光作用于人眼时引起的明亮程度的感觉。
一般来说,彩色光能量大则显得亮,反之则暗。
色调反映颜色的类别,如红色、绿色、蓝色等。
彩色物体的色调决定于在光照明下所反射光的光谱成分。
例如,某物体在日光下呈现绿色是因为它反射的光中绿色成分占有优势,而其它成分被吸收掉了。
对于透射光,其色调则由透射光的波长分布或光谱所决定。
饱和度是指彩色光所呈现颜色的深浅或纯洁程度。
对于同一色调的彩色光,其饱和度越高,颜色就越深,或越纯;而饱和度越小,颜色就越浅,或纯度越低。
高饱和度的彩色光可因掺入白光而降低纯度或变浅,变成低饱和度的色光。
因而饱和度是色光纯度的反映。
100%饱和度的色光就代表完全没有混入白光阴纯色光。
色调与饱和度又合称为色度,它即说明彩色光的颜色类别,又说明颜色的深浅程度。
应强调指出,虽然不同波长的色光会引起不同的彩色感觉,但相同的彩色感觉却可来自不同的光谱成分组合。
例如,适当比例的红光和绿光混合后,可产生与单色黄光相同的彩色视觉效果。
事实上,自然界中所有彩色都可以由三种基本彩色混合而成,这就是三基色原理。
基于以上事实,有人提出了一种假设,认为视网膜上的视锥细胞有三种类型,即红视谁细胞、绿视锥细胞和蓝视锥细胞。
黄光既能激励红视锥细胞,又能激励绿视锥细胞。
由此可推论,当红光和绿光同时到达视网膜时,这两种视锥细胞同时受到激励,所造成的视觉效果与单色黄光没有区别。
三基色是这样的三种颜色,它们相互独立,其中任一色均不能由其它二色混合产生。
它们又是完备的,即所有其它颜色都可以由三基色按不同的比例组合而得到。
有两种基色系统,一种是加色系统,其基色是红、绿、蓝;另一种是减色系统,其三基色是黄、青、紫(或品红)。
不同比例的三基色光相加得到彩色称为相加混色,其规律为:
红+绿=黄
红+蓝=紫
蓝+绿=青
红+蓝+绿=白
彩色还可由混合各种比例的绘画颜料或染料来配出,这就是相减混色。
因为颜料能吸收入射光光谱中的某些成分,未吸收的部分被反射,从而形成了该颜料特有的彩色。
当不同比例的颜料混合在一起的时候,它们吸收光谱的成分也随之改变,从而得到不同的彩色。
其规律为:
黄=白-蓝
紫=白-绿
青=白-红
黄+紫=白-蓝-绿=红
黄+青=白-蓝-红=绿
紫+青=白-绿-红=蓝
黄+紫+青=白-蓝-绿-红=黑
相减混色主要用于美术、印刷、纺织等,我们讨论的图象系统用的是相加混色,注意个要将二者混淆。
根据人眼上述的彩色视觉特征,就可以选择三种基色,将它们按不同的比例组合而引起各种不同的彩色视
觉。
这就是三基色原理的主要内容。
原则上可采用各种不同的三色组,为标准化起见,国际照明委员会(CIE)作了统一规定。
选水银光谱中波长为 546.1 纳米的绿光为绿基色光;波长为 435.8 纳米的蓝光为蓝基色光。
实验发现,人眼的视觉响应应取决于红、绿、蓝三分量的代数和,即它们的比例决定了彩色视觉,而其亮度在数量上等于三基色的总和。
这个规律称为 Grassman 定律。
由于人眼的这一特性,就有可能在色度学中应用代数法则。
白光(W)可由红(R)、绿(G)、蓝(B)三基色相加而得,它们的光通量比例为
ΦR:ΦG:ΦB = 1:4.5907:0.0601
通常,取光通量为1光瓦的红基色光为基准,于是要配出白光,就需要4.5907光瓦的绿光和 0.0601光瓦的蓝光,而白光的光通量则为
Φw =1 + 4.5907 + 0.0601=5.6508光瓦
为简化计算,使用了三基色单位制,记作[R]、[G]、[B],它规定白光是由各为1个单位的三基色光组成,即
M
W = 1[R] + 1[G] + 1
符号M的含义是“可由…混合配出”。
由此可知,
=
1个单位[R]=1光瓦(红基色光)
1个单位[G]=4.5907光瓦(绿基色光)
1个单位[B]=O.0601光瓦(蓝基色光)
选定上述单位以后,对于任意给出的彩色光C,其配色方程可写成
C=r1[R] + g1[G] + b1[B]
该色的光通量为
Φc=(r1+4.5907g1+0.0601b1)光瓦
=680(r1+4.5907g1+0.0601b1)流明
其中,r1、g1、b1为三个色系数。
在只考虑色光色度时,起决定作用的是r1、g1、b1的相对比例,而不是其数值大小,于是可进一步规格化。
令
m = r1 + g1 + b1
r = r1/m
g = g1/m
b = b1/m
显然, r+g+b=1
式中, m称为色模,它代表某彩色光所含三基色单位的总量。
r、 g、 b称为 RGB制的色度座标或相对
色系数,它们分别表示:当规定所用三基色单位总量为 1 时,为配出某种给定色度的色光所需的[R]、[G]、[B]数值。
这样,C=m{r[R]+g[G]+b[B]}。
除了数学表达式以外,描述色彩的还有色度图,色度图能把选定的三基色与它们混合后得到的各种彩色之间的关系简单而方便地描述出来。
图1 表示一个以三基色顶点的等边三角形。
三角形内任意一点 P到三边的距离分别为r、g、b。
若规定顶点到对应边的垂线长度为1,则不难证明关系r+g+b=1成立,因此r、 g、 b 就是这一色三角形的色度座标。
显然,白色色度对应于色三角形的重心,记为 W,因为该点 r=1/3,g=1/3,b=1/3 沿 RG边表示由红色和绿色合成的彩色,此边的正中点为黄色,其色度座标为 r=1/2, g=1/2, b=0.橙色在黄色与红色之间(r=3/4,g=1/4,b=O)。
同样,品红色(也称紫色,但与谱色紫不一样)在RB边的中点(r=1/2,g=0,b=1/2),青色在 BG边的中点 (r=0,g=1/2,b=1/2)。
穿过 W点的任一条直线连接三角形上的两点,该两点所代表的颜色相加均得到白色。
通常把相加后形成白色的两种颜色称为互补色。
例如图中的红与青、绿与品红、蓝与黄皆为互补色。
从三角形边线上任一点(如R点)沿着此点与W的连线 (如RW)移向 W点,则其颜色(如100%饱和度的纯红色)逐渐变淡,到达W点后颜色就完全消失。
上述色三角形称为 Maxwell色三角形,使用起来有所不便。
如果我们用类似直角三角形的形式直接标度,就方便多了。
基于r+g+b=l,故在直角三角形中只需标出 r和g的单位,由 b=1-r-g即可知道b。
如色度Q,位于座标r=0.5, g=0.2处,说明色度Q包含0.5单位[R]、0.2单位[G]和0.3单位[B]。
虽然RGB色度图的物理概念清晰,但还有不足之处。
譬如在色度图上不能表示亮度,且相对色系数出现负值等。