山东省济宁市2013届高三4月联考 理科数学

合集下载

山东省济宁市2024届高三下学期三模数学试题(解析版)

山东省济宁市2024届高三下学期三模数学试题(解析版)

山东省济宁市2024届高三下学期三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则中元素的个数为( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】根据分式不等式解集合B ,结合交集的概念与运算即可求解.【详解】由,得且,解得,即,所以,有2个元素.故选:B2. 的展开式中的系数为( )A. B. C. 120 D. 160【答案】A 【解析】【分析】求出二项式展开式的通项公式,再由给定幂指数求解即得.【详解】二项式展开式的通项为,由,得,所以的展开式中的系数为.故选:A{}22,1,1,2,01x A B x x ⎧⎫+=--=≤⎨⎬-⎩⎭A B ⋂201x x +≤-(2)(1)0≤x x +-10x -≠21x -£<{21}B x x =-≤<{2,}1A B ⋂=--262()x x-3x 160-120-262(x x-261231662C ()()(2)C ,N,6r rr r r r r T x x r r x--+=-=-∈≤1233r -=3r =262()x x-3x 336(2)C 160-=-3. 若随机变量,随机变量,则( )A. 0 B.C.D. 2【答案】B 【解析】【分析】利用正态分布的两个参数就是随机变量的期望和方差,再利用两个线性随机变量之间的期望和方差公式,即,就可以求出结果.【详解】由可知:,又因为,所以,,则,故选:B.4. 已知数列中,,则( )A. B. C. 1D. 2【答案】C 【解析】【分析】利用数列的递推公式求出数列的周期,即可求解.【详解】由,得,,,,,,()2~32X N ,1(3)2Y X =-()1()1E Y D Y +=+1245()()(),E Y E kX b kE X b =+=+()2()()D Y D kX b k D X =+=()2~32X N ,()3,()4E X D X ==1(3)2Y X =-()131333()(0222222E Y E X E X =-=-=-=()131()(1224D Y D X D X =-==()1011()1112E Y D Y ++==++{}n a ()*1211212n n n a a a a a n n +-===-≥∈N ,,,2024a=2-1-()*12112,1,2,n n n a a a a a n n +-===-≥∈N3211a a a =-=-4322a a a =-=-4531a a a ==--6541a a a =-=7652a a a =-=8761a a a ==-则是以6为周期的周期数列,所以.故选:C5. 已知抛物线的焦点为,过且斜率为的直线交抛物线于,两点,若,则( )A.B. 1C.D. 2【答案】D 【解析】【分析】设,,,联立抛物线方程,利用韦达定理和抛物线的定义建立关于的方程,解之即可求解.【详解】由题意知,,设,联立直线与抛物线得,消去,得,所以.由抛物线的定义知.而,故,解得.故选:D.{}n a 20243376221a a a ⨯+===2:2(0)C y px p =>F F 2l C A B ||5AB =p =1232:22p l y x ⎛⎫=-⎪⎝⎭()11,A x y ()22,B x y p ,02p F ⎛⎫⎪⎝⎭()()1122:2(),,,,2p l y x A x y B x y =-22()22p y x y px⎧=-⎪⎨⎪=⎩y 22460x px p -+=1232x x p +=1212352222p p AB AF BF x x x x p p p p ⎛⎫⎛⎫=+=+++=++=+= ⎪ ⎪⎝⎭⎝⎭5AB =552p =2p =6. 已知函数,若在区间上的值域为,则实数的取值范围是( )A. B. C. D. 【答案】D 【解析】【分析】利用二倍角公式、辅助角公式化简函数,再借助正弦函数的图象与性质求解即得.【详解】依题意,函数,当时,,显然,且正弦函数在上单调递减,由在区间上的值域为,得,解得,所以实数的取值范围是.故选:D7. 已知函数为偶函数,当时,,则曲线在点处的切线方程是( )A. B. C. D. 【答案】A 【解析】【分析】利用偶函数的性质求出的解析式,再利用导数的几何意义求出切线方程.【详解】函数为偶函数,当时,,则当时,,求导得,则,而,所以曲线在点处的切线方程是,即.故选:A1()cos )cos 2f x x x x =+-()f x π[,]4m -[m ππ[,62ππ[,62π7π[,612π7π,612⎡⎤⎢⎥⎣⎦()f x 211π()cos cos 2cos 2sin(2226f x x x x x x x =+-=+=+π[,]4x m ∈-πππ2[,2]636x m +∈-+π4ππsin(sin 1332-===sin y x =π4π[,]23()f x π[,]4m -[ππ4π2263m ≤+≤π7π612m ≤≤m π7π,612⎡⎤⎢⎥⎣⎦()f x 0x <2()ln()f x x x =-+()y f x =(1,(1))f 320x y --=320x y +-=320x y ++=320x y -+=0x >()f x 0x <2()ln()f x x x =-+0x >2()()ln f x f x x x =-=+1()2f x x x'=+(1)3f '=(1)1f =()y f x =(1,(1))f 13(1)y x -=-320x y --=8. 已知双曲线的左、右焦点分别为,根据双曲线的光学性质可知,过双曲线上任意一点的切线平分.直线过交双曲线的右支于A ,B 两点,设的内心分别为,若与的面积之比为,则双曲线的离心率为( )A.B.C.D..【答案】C【解析】【分析】利用切线长定理求得直线的方程,再借助双曲线的切线方程求出点的横坐标,结合面积关系求解即得.【详解】令圆切分别为点,则,,令点,而,因此,解得,又,则点横坐标为,同理点横坐标为,即直线方程为,设,依题意,直线的方程分别为:,,联立消去得:,整理得,令直线的方程为,于是,即点的横坐标为,因此,所以双曲线的离心率.故选:C的2222:1(00)x y C a b a b-=>>,12,F F C ()00,P x y 0022:1(0,0)x x y yl a b a b-=>>12F PF ∠1l 2F C 12121,,AF F BF F ABF 12,,I I I 12II I 212F I I 35C 325312I I I 1I 1212,,AF AF F F ,,P Q T 1122||||,||||,||||AP AQ F P FT F Q F T ===121212||||||||||||2FT F T F P F Q AF AF a -=-=-=0(,0)T x 12(,0),(,0)F c F c -00()()2x c c x a ----=0x a =112I T F F ⊥1I a 2I a 12I I x a =1122(,),(,)A x y B x y ,AI BI 11221x x y y a b -=22221x x y y a b -=y 122122(1)(1)x x x x y y a a -=-2211221()a y y x x y x y -=-AB x my c =+22211221()()()a y y a x my c y my c y c -==+-+I 2a c12212235II I F I I a a S a c S c a c -===- C 53c e a ==【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得得值,根据离心率定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9. 已知复数,则下列说法中正确的是( )A. B. C. “”是“”的必要不充分条件 D. “”是“”的充分不必要条件【答案】AC 【解析】【分析】根据复数加法、乘法、乘方运算,结合复数的几何意义计算,依次判断选项即可.【详解】A :设,则,所以,则,故A 正确;B :设,则,所以,,则,故B 错误;C :由选项A 知,,,又,所以,不一定有,即推不出;的,a c e ,a c e 12,z z 1212z z z z =⋅1212z z z z +=+12z z ∈R 12z z =12=z z 2212z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 12(i)(i)()()i z z a b c d ac bd ad bc =++=-++12z z ===1212z z z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 12()()i z z a c b d +=+++1z +=12z z +=1212z z z z +≠+12(i)(i)()()i z z a b c d ac bd ad bc =++=-++2i z c d =-12z z ∈R 0ad bc +=a cb d =⎧⎨=-⎩12z z =由,得,则,则,即,所以“”是“”的必要不充分条件,故C 正确;D :设,则,若,则,即,若,则,得,所以“”是“”的既不充分也不必要条件,故D 错误.故选:AC10. 已知数列的前项和为,且满足,数列的前项和为,且满足,则下列说法中正确的是( )A. B. 数列是等比数列C. 数列是等差数列 D. 若,则【答案】BC 【解析】【分析】由数列的前项和为求出判断B ;由递推公式探讨数列的特性判断C ;求出判断A ;由求出,再利用裂求和法求解即得.【详解】由,得,,当时,,满足上式,因此,数列是等比数列,B 正确;由,得,,解得,,A 错误;当时,,两式相减得,于是,两式相加得,整理得,因此数列是等差数列,C 正确;12z z =i i a b c d +=-a cb d=⎧⎨=-⎩0ad bc +=12z z ∈R 12z z ∈R 12z z =12i,i(,,,)z a b z c d a b c d =+=+∈R 22222212()2i,()2i z a b ab z c d cd =-+=-+12=z z =2222+=+a b c d 2212z z=2222()2i ()2i a b ab c d cd -+=-+222222a b c d ab cd⎧-=-⎨=⎩12=z z 2212z z ={}n a n n S 1233n nS +=-{}n b n n T 112n n T b n =+113=a b {}n a {}n b 23b =101319log 10na n nb ==∑{}n a n n S n a {}n b 1b 23b =n b 1233n nS +=-113322n n S +=⋅-113a S ==2n ≥111(33)32n nn n n n a S S +-=-=-=13a =3n n a ={}n a 112n n T b n =+2n n n T b n =+111112b T b ==+12b =113a b ≠2n ≥11112n n n T b n ---=+-121122n n n n b b ---+=11122n n n n b b +-=+112211222n n n n n n b b b -+---=+112n n n b b b -+=+{}n b当时,等差数列的公差为1,通项,,所以,D 错误.故选:BC11. 如图,在直三棱柱中,,,分别是棱,上的动点(异于顶点),,为的中点,则下列说法中正确的是( )A. 直三棱柱体积的最大值为B. 三棱锥与三棱锥的体积相等C. 当,且时,三棱锥外接球的表面积为D. 设直线,与平面分别相交于点,,若,则的最小值为【答案】BCD 【解析】【分析】A 选项:根据三棱柱体积公式,结合三角函数值域可得最值;B 选项:根据等体积转化可判断;C 选项:结合正弦定理确定正三角形外心,进而确定球心及半径;D选项:根据相似及基本不等式可得最值.【详解】A 选项:由已知可得,又,所以,即体积的最大值为,A 选项错误;B 选项:如图所示,23b ={}n b 1n b n =+31111log (1)1n a n b n n n n ==-++10131111111111011log 22391010111111na n nb ==-+-++-+-=-=∑ 111ABC A B C -2AB BC ==13AA =D E 1AA 1CC 1AD C E =F 11B C 111ABC A B C -1B DEF -A DEF -60ABC ∠=︒123AD AA =D ABC -28π3DF EF ABC P Q 1cos 4ABC ∠=AP CQ +111111sin 6sin 2ABC A B C ABC V S AA BA BC ABC AA ABC -=×=××Ð×=Ð()0,ABC π∠∈(]sin 0,1ABC ∠∈6由点为的中点,则,设点到平面的距离为,则,,又,所以,所以,B 选项正确;C 选项:如图所示,由已知为正三角形,设外接球球心为,中心为,中点为,则平面,且,,即,所以外接球半径为,外接球表面积为,C 选项正确;D 选项:如图所示,取中点,可知在的延长线上,在的延长线上,F 11B C 111B DEF C DEF F C DE V V V ---==F 11AA C C h 11113B DEF F C DE C DE V V S h --==×13B DEF F ADE ADE V V S h --==×1ADC E =1ADE C DE S S = 1F C DE F ADE V V --=ABC O ABC 1O AD M 1OO ⊥ABC 1111123OO AD AA ===12sin AB O A ACB ==∠1O A =R ==228π4π3R =BC N P NA Q BC则,即,设,,易知,,则,,则,,,所以,当且仅当,即时取等号,故D 选项正确;故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数则____________.【解析】【分析】利用已知分段函数,可先求,再求.【详解】因为,所以.所以..13. 甲和乙两个箱子中各装有6个球,其中甲箱子中有4个红球、2个白球,乙箱子中有2个红球、4个白球,现随机选择一个箱子,然后从该箱子中随机取出一个球,则取出的球是白球的概率为____________.【答案】##05的.22212coc 4122144AN BA BN BA BN ABC =+-⋅⋅∠=+-⨯⨯⨯=2AN =11AD C E AA λ==()0,1λ∈PAD PNF 1QCE FC E PA AD PN NF =11QC CEFC C E=()()2PA PN PA AN PA λλλ==+=+21PA λλ=-111QC FC λλλλ--==211AP CQ λλλλ-+=+≥-211λλλλ-=-1λ=410()2log 0xx f x x x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪>⎩,,,…12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭11(22f =-1122f f f ⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭410()2log 0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,,,44111log =log 2222f ⎛⎫=-=- ⎪⎝⎭11221112222f f f -⎛⎫⎛⎫⎛⎫⎛⎫=-=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭12【解析】【分析】把所求概率的事件分拆成两个互斥事件的和,再利用互斥事件的概率公式及相互独立事件的概率公式求解即得.【详解】依题意,取出的球是白球的事件是取甲箱并取白球的事件与取乙箱并取白球的事件的和,显然事件与互斥,,,所以.故答案为:14. 已知,则的最小值为____________.【解析】【分析】根据平面向量的模求出数量积,利用向量的几何意义和运算律计算可得与点的距离之和,作出图形,确定的最小值,结合图形即可求解.【详解】由,得,即,解得.,与点的距离之和.如图,点关于x轴的对称点为,连接,A1A2A 1A2A1121()266P A=⨯=2141()263P A=⨯=121()()()2P A P A P A=+=126a a b=-=11()()23f x xa b xa b x=-+-∈Ra b⋅()f x=(,0)P x1111(,(,)2233A B----PA PB+6,a a b=-=222218a b a a b b-=-⋅+=1823618a b-⋅+=18a b⋅=-11()23f x ax b ax b=-+-=====(,0)P x1111(,(,)2233A B----A11(,)22A'-A B'则,当且仅当三点共线时等号成立,所以的最小值为与点的距离之和,结合图形,确定(当且仅当三点共线时等号成立).四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15. 产品重量误差是检测产品包装线效能的重要指标.某食品加工厂为了检查一条新投入使用的全自动包装线的效能,随机抽取该包装线上的20件产品作为样本,并检测出样本中产品的重量(单位:克),重量的分组区间为.由此得到样本的频率分布直方图(如图),已知该产品标准重量为500克.(1)求直方图中的值;(2)若产品重量与标准重量之差的绝对值大于或等于5,即判定该产品包装不合格,在上述抽取的20件PA PB PA PB A B +=+≥=='',,A P B '()f x (,0)P x 1111(,(,)2233A B ----PA PB PA PB A B ++'=≥',,A P B '(485,490],(490,495],,(505,510] a产品中任取2件,求恰有一件合格产品的概率;(3)以样本的频率估计概率,若从该包装线上任取4件产品,设为重量超过500克的产品数量,求的数学期望和方差.【答案】(1)0.05; (2); (3),.【解析】【分析】(1)利用频率分布直方图中小矩形面积和为1求出的值.(2)求出抽取的20件产品中的不合格件数,再利用古典概率计算即得.(3)求出样本中,重量超过500克的产品数量及对应概率,利用二项分布的期望、方差公式计算得解.【小问1详解】依题意,,解得,所以直方图中的值是0.05.【小问2详解】样本中不合格产品数量为,记事件表示“在上述抽取的20件产品中任取2件,恰有一件合格产品”则,所以在上述抽取的20件产品中任取2件,恰有一件合格产品的概率为.小问3详解】根据该样本频率分布直方图,重量超过500克的产品数量为,则从包装线上任取一件产品,其重量超过500克的概率为所以,随机变量,因此,.16. 图1是由正方形ABCD 和两个正三角形组成的一个平面图形,其中,现将沿AD 折起使得平面平面,将沿CD 折起使得平面平面,连接EF ,BE ,BF ,如图2.【Y Y 4895652125a (0.010.060.070.01)51a ++++⨯=0.05a =a 20(0.010.060.01)58⨯++⨯=A 11812220C C 48()C 95P A ==489520(0.050.01)56⨯+⨯=632010=3~(4,)10Y B 36()4105E Y =⨯=3321()4(1)101025D Y =⨯⨯-=,ADE CDF △△2AB =ADE V ADE ⊥ABCD CDF CDF ⊥ABCD(1)求证:平面;(2)求平面与平面夹角的大小.【答案】(1)证明见解析; (2).【解析】【分析】(1)取的中点,利用面面垂直的性质,结合平行四边形的性质、线面平行的判定推理即得.(2)以为原点建立空间直角坐标系,求出平面的法向量,利用面面角的向量求法求解即得.【小问1详解】分别取棱的中点,连接,由是边长为2正三角形,得,又平面平面,平面平面,平面,则平面,同理平面,于是,即四边形为平行四边形,,而平面平面,所以平面.【小问2详解】//EF ABCD ADE BCF π6,CD AD ,O P O BCF ,CD AD ,O P ,,OF PE OP CDF ,OF CD OF ⊥=CDF ⊥ABCD CDF ⋂ABCD DC =OF ⊂CDF OF ⊥ABCD PE ⊥,ABCD PE =//,OF PE OF PE =OPEF //OP EF OP ⊂,ABCD EF ⊄ABCD //EF ABCD取棱的中点,连接,由四边形为正方形,得,以为坐标原点,的方向分别为轴的正方向,建立空间直角坐标系,则,,设平面的一个法向量为,则,令,得,由,平面平面,平面平面平面,得平面,则为平面的一个法向量,设平面与平面的夹角为则,解得,所以平面与平面的夹角为.17. 在△ABC 中,角A ,B ,C 所对的边分别为,已知.(1)求证:;(2)若,求面积的取值范围.【答案】(1)证明见解析 (2)【解析】【分析】(1)根据两角和差的正弦公式、二倍角的余弦公式化简计算可得,结合诱导公式计算即可证明;(2)由(1)得且,根据正弦定理、三角形的面积公式和三角恒等变换化简可得,结合正切函数的性质即可求解.【小问1详解】,,,又,则,,AB Q OQ ABCD OQ CD ⊥O ,,OQ OC OF,,x y z (2,1,0),(0,1,0),(0,1,0)B C F D -(2,0,0),(0,CB CF ==-BCF (,,)n x y z = 200n CB x n CF y ⎧⋅==⎪⎨⋅=-=⎪⎩1z =n =CD AD ⊥ADE ⊥ABCD ADE ,ABCD AD CD =⊂ABCD CD ⊥ADE (0,2,0)DC =ADE ADE BCF θ||cos |cos ,|||||DC n DC n DC n θ⋅=〈〉===π(0,]2θ∈π6θ=ADE BCF π6a b c ,,(1cos 2)(sin 1)cos sin 20C A A C -+-=π2B C =+ππ4,,86a C ⎛⎫=∈⎪⎝⎭ABC (4,2sin (sin cos )0C C B +=π22A C =-ππ64A <<4tan 2ABC S C = (1cos 2)(sin 1)cos sin 20C A A C -+-=sin 1cos 2sin cos 2cos sin 20A C A C A C +---=sin cos 21sin(2)0A C A C -+-+=πA CB +=-sin()cos 21sin()0BC C B C +-+--=2sin cos sin cos 12sin 1sin cos sin cos 0B C C B C B C C B +-++-+=,即,又,所以,即,又,所以;【小问2详解】由(1)知,,得,由,得,由正弦定理得,得,所以,又,所以,又在上单调递增,则,所以,即的面积我取值范围为.18. 已知椭圆的左焦点为,上顶点为,离心率,直线FB 过点.(1)求椭圆的标准方程;(2)过点的直线与椭圆相交于M ,N 两点(M 、N 都不在坐标轴上),若,求直线的方程.【答案】(1);(2).【解析】【分析】(1)根据给定条件,求出即得椭圆的标准方程.(2)根据给定条件,借助倾斜角的关系可得,设出直线的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得.【小问1详解】22sin 2sin cos 0C C B +=2sin (sin cos )0C C B +=sin 0C >sin cos 0C B +=πcos sin cos()2B C C =-=+0π,0πB C <<<<π2B C =+π2B C =+πA B C ++=π22A C =-ππ86C <<ππ64A <<sin sin a c A C=sin sin 4sin πsin cos 2sin(2)2a C a C Cc A C C ===-2211sin π1sin 4sin 2sin 4sin()4cos 4tan 222cos 222cos 2cos 2ABC C C CS ac B C C C C C C==⨯⨯+=⨯⨯== ππ86C <<ππ243C <<tan y x =ππ(,22-tan 2C ∈4tan 2C ∈ABC (4,2222:1(0)x y E a b a b +=>>F B e =(1,2)P E F l E MPF NPF =∠∠l 2212x y +=550x y ++=,,a b c E 1MP NP k k ⋅=l令,由,得,则直线的斜率,由直线过点,得直线的方程为,因此所以椭圆的标准方程为.【小问2详解】设,直线的倾斜角为,直线的倾斜角为,由直线的斜率知直线的倾斜角为,于是,即有,显然均不等于,则,即直线的斜率满足,由题设知,直线的斜率不为0,设直线的方程为,由,消去x 并整理得,,显然,设,则,由,得,即,则,整理得,即,于是,而,解得,,所以直线的方程为,即.【点睛】关键点点睛:本题第2问,由,结合直线倾斜角及斜率的意义求得(,0)F c -c e a ==,a b c ==FB 1k =FB (1,2)P FB 1y x =+1,b c a ===C 2212x y +=MPF NPF θ∠=∠=MP βNP αFP 1k =FP π4ππ,44αθβθ=+=+π2αβ+=,αβπ2πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,MP NP 1MP NP k k ⋅=l l 1,1x my m =-≠22122x my x y =-⎧⎨+=⎩22(2)210m y my +--=0∆>1122(,),(,)M x y N x y 12122221,22m y y y y m m +==-++1MP NP k k ⋅=121222111y y x x --⋅=--1212(1)(1)(2)(2)0x x y y -----=1212(2)(2)(2)(2)0my my y y -----=21212(1)(22)(0)m y y m y y ---+=2221(22)2022m m m m m --⋅--=++25410m m --=1m ≠15m =-l 115x y =--550x y ++=MPF NPF =∠∠是解题之关键.19. 已知.(1)判断在上的单调性;(2)已知正项数列满足.(i )证明:;(ii )若的前项和为,证明:.【答案】(1)单调递减;(2)(i )证明见解析;(ii )证明见解析.【解析】【分析】(1)求出函数的导数,再判断时,导数值的正负即可得解.(2)(i )利用(1)的结论,结合分析法可得,再利用分析法推理,构造函数借助导数确定单调性即可得;(ii )利用(i )的结论,借助放缩法及等比数列求和即得.【小问1详解】函数的定义域为,求导得,令,求导得,当时,,函数在上单调递减,则,即所以在上单调递减.【小问2详解】(i )首先证明:,即证明,即证明,即证明,由及(1)知,,所以;要证明,即证,只需证,而,则只需证,,令,则,由,知,则,1MP NP k k ⋅=()(2)e x f x x x =--()f x (0,)+∞{}n a 1*1)1,e e 1(n n a a n a a n +=⋅=-∈N *112()n n n a a a n ++<<∈N {}n a n n S *112()2n n S n -≥-∈N ()f x 0x >1n n a a +<12n n a a +<()f x R ()(1)e 1x f x x '=--()(1)e 1x g x x =--()e x g x x '=-,()0x ∈+∞()0g x '<()g x (0,)+∞()(0)g x g <()0f x '<()f x (0,)+∞1n n a a +<1ee n na a +<e 1e n na a na -<(1e 10)n a n a --<0n a >((1)e 0)1n an n g a a =--<1n n a a +<12n n a a +<112n n a a +<112e e n n a a n n a a +<1*e e 1()n n a a n a n +⋅=-∈N 12e e 1n n aa na ⋅<-12e n a t =2ln n a t =111,n n a a a +=<01n a <≤t ∈只需证,即证,令,求导得,于是函数在上单调递减,,即,因此,所以.(ii )由(i )可知,,则当且时,,当时,,所以.【点睛】思路点睛:数列是一类特殊的函数某些数列问题,,准确构造相应的函数,借助函数导数研究其单调性是解题的关键,背景函数的条件,应紧扣题中的限制条件.22ln 1t t t ⋅<-12ln ,t t t t<-∈1()2ln (),h t t t t t =--∈222222121(1)()10t t t h t t t t t-+--'=--==-<()ht t ∈()(1)0h t h <=12ln t t t<-12n n a a +<112n n n a a a ++<<1213243231111111,,,222222a a a a a a a =>=>>>>541411111,,2222n n n a a a a -->>>> 2n ≥*n ∈N 1232111111112*********n n nn n S a a a a ---=++++>++++==-- 1n =11S =*112()2n n S n -≥-∈N。

2013年高考理科数学山东卷(含详细答案)

2013年高考理科数学山东卷(含详细答案)

数学试卷 第1页(共45页) 数学试卷 第2页(共45页) 数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B );如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则2(i)a b += ( )A .54i -B .54i +C .34i -D .34i + 2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =( ) A .[0,2] B .(1,3)C .[1,3)D .(1,4) 3.函数()f x( )A .1(0,)2B .(2,)+∞C .1(0,)(2,)2+∞D .1(0,][2,)2+∞4.用反证法证明命题“设a ,b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( )A .方程30x ax b ++=没有实根B .方程30x ax b ++=至多有一个实根C .方程30x ax b ++=至多有两个实根D .方程30x ax b ++=恰好有两个实根5.已知实数x ,y 满足x y a a <(01a <<),则下列关系式恒成立的是( )A .221111x y >++ B .22ln(1)ln(1)x y +>+ C .sin sin x y >D .33x y >6.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B.C .2D .47.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 ( )A .6B .8C .12D .188.已知函数()|2|1f x x =-+,()g x kx =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,)+∞9.已知x ,y 满足约束条件10,230,x y x y --⎧⎨--⎩≤≥当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值时,22a b +的最小值为( )A .5B .4CD .210.已知>0a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的则2C 的渐近线方程为 ( )A.0x = B0y ±= C .20x y ±= D .20x y ±=第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为 .12.在ABC △中,已知t a n A B A C A = ,当π6A =时,ABC △的面积为 .13.三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . 14.若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .15.已知函数()()y f x x =∈R .对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x是()g x =关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量a (,cos2)m x =,b (sin 2,)x n =,函数()f x =a b ,且()y f x =的图象过点π(12和点2π(,2)3-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0π)ϕ<<个单位后得到函数()y g x =的图象,若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.17.(本小题满分12分)姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共45页) 数学试卷 第5页(共45页) 数学试卷 第6页(共45页)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠= ,AB =22CD =,M 是线段AB 的中点.(Ⅰ)求证:1C M 平面11A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.18.(本小题满分12分)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数2e 2()(ln )x f x k x x x =-+(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.21.(本小题满分14分)已知抛物线C :22(0)y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF △为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1l l ,且1l 和C 有且只有一个公共点E . (ⅰ)证明:直线AE 过定点,并求出定点坐标;(ⅱ)ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.3 / 15数学试卷 第10页(共45页) 数学试卷 第11页(共45页) 数学试卷 第12页(共45页)5 / 15数学试卷第16页(共45页)数学试卷第17页(共45页)数学试卷第18页(共45页)7 / 15数学试卷第22页(共45页)数学试卷第23页(共45页)数学试卷第24页(共45页)59 / 15数学试卷第28页(共45页)数学试卷第29页(共45页)数学试卷第30页(共45页)。

山东省2014届理科数学一轮复习试题选编29:二项式定理

山东省2014届理科数学一轮复习试题选编29:二项式定理

山东省2014届理科数学一轮复习试题选编29:二项式定理一、选择题 1.(山东省淄博市2013届高三上学期期末考试数学(理))若()()()()()()923112012311132222xx a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为( )A .0B .5-C .5D .255【答案】C【 解析】令2x =,则290(21)(23)5a =+-=-.令3x =,则01110a a a ++⋅⋅⋅+=,所以1110(5)5a a a +⋅⋅⋅+=-=--=,选C .2 .(山东省德州市2013届高三上学期期末校际联考数学(理))51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-20B .—10C .10D .20【答案】C【解析】令1x =,可得各项系数和为5(1)(21)12a a +-=+=,所以1a =.所以555111()(21)()(21)()(12)ax x x x x x x x x+-=+-=-+-,5(12)x -的展开式的通项公式为155(2)(2)k k k k k k T C x x C +=-=-,当1k =时,125(2)10T C x x =-=-;所以展开式的常数项为1(10)10x x-⨯-=,选 C .3 .(山东省2013届高三高考模拟卷(一)理科数学)若2013(2)x -220130122013a a x a x a x =++++ ,则02420121352013a a a a a a a a ++++=++++( )A .201320133131+-B .201320133131+--C .201220123131+-D .201220123131+--【答案】B 【解析】令1=x 得01234520131a a a a a a a +++++++= ①,令1-=x 得201301234520133a a a a a a a -+-+-+-= ②,由①②联立,可得2012420a a a a ++++ 2013312+=,++31a a 52013a a ++ 2013132-=,从而02420121352013a a a a a a a a ++++++++ 20132013312132+=-201320133131+=--. 4 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)若4(1,)a a b +=+为有理数,则a+b=( )A .36B .46C .34D .44【答案】D二项式的展开式为11223344441118928C C C ++++=+++=+,所以28,16a b ==,281644a b +=+=,选 D .5 .(山东省济南市2013届高三3月高考模拟理科数学)二项式8(2x-的展开式中常数项是 ( )A .28B .-7C .7D .-28【答案】C展开式的通项公式为488831881()(()(1)22k k k k k k k k x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选C .6 .(山东省临沂市2013届高三第三次模拟考试 理科数学)51()(2)x a x x+-的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-40B .-20C .20D .40【答案】 .A .7 .(山东省潍坊市2013届高三第二次模拟考试理科数学)设0(cos sin )a x x dx π=⎰-,则二项式26()a x x+展开式中的3x 项的系数为 ( )A .-20B .20C .-160D .160【答案】C 因为00(cos sin )(sin cos )2a x x dx x x ππ=⎰-=+=-,所以二项式为26262()()a x x x x+=-,所以展开式的通项公式为261231662()()(2)kk k k k k k T C x C x x--+=-=-,由1233k -=得3k =,所以333346(2)160T C x x =-=-,所以3x 项的系数为160-.选C .8 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))设a=π0⎰sin x d x ,则二项式6⎛⎝的展开式的常数项是( )A .160B .-160C .240D .-240【答案】B【解析】由2)cos (sin 00=-=⎰ππx xdx ,所以2=a ,所以二项式为6)12(xx -,展开式的通项为22666661)1(2)1()2(k k kk k k k k k xxC xx C T ----+-=-=k k k k x C ---=366)1(2,所以当3=k ,为常数,此时160)1(23336-=-C ,选B .9 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x-展开式中2x 项的系数为 ( )A .15B .15-C .30D .30-【答案】A 因为函数()|2||4|f x x x =++-的最小值为4(2)6--=,即6n =.展开式的通项公式为6621661()(1)k k k k k k k T C x C x x--+=-=-,由622k -=,得2k =,所以222236(1)15T C x x =-=,即2x 项的系数为15,选A .10.(山东省济宁市2013届高三4月联考理科数学)设221(32)=⎰-a x x dx ,则二项式261()-ax x展开式中的第4项为( )A .31280-xB .1280-C .240D .240-【答案】A11.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )(82展开式中不含..4x项的系数的和为( )A .-1B .1C .0D .2【答案】C12.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)设22(13)40a x dx =-+⎰,则二项式26()a x x+展开式中不含..3x 项的系数和是( )A .160-B .160C .161D .161-【答案】C13.(山东省菏泽市2013届高三第二次模拟考试数学(理)试题)()5a x x R x ⎛⎫+∈ ⎪⎝⎭展开式中3x 的系数为10,则实数a 等于 ( )A .-1B .12C .1D .2【答案】D14.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)若2012(3)nnn x a a x a x a x -=++++ ,其二项式系数的和为16,则012n a a a a ++++=( )A .8B .16C .32D .64【答案】B15.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)若()()()()()()923112012311132222x x a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为 ( )A .0B .5-C .5D .255【答案】C【解析】令3x =,则有012110a a a a +++⋅⋅⋅+=,令2x =,则290(21)(23)5a =+-=-,所以121105a a a a ++⋅⋅⋅+=-=,选C .二、填空题16.(山东省夏津一中2013届高三4月月考数学(理)试题)若52345012345(12),x a a x a x a x a x a x +=+++++则a 3=______________.【答案】8017.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若261()xax -的二项展开式中3x 项的系数为52,则实数a =_______.【答案】-218.(山东省莱芜五中2013届高三4月模拟数学(理)试题)若31()nx x-展开式中的所有二项式系数和为512,则该展开式中3x 的系数为______.【答案】84;19.(2013届山东省高考压轴卷理科数学)(2013滨州市一模)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.【答案】-160词 【解析】,3,2)1(,)12()1(,2|)cos (sin 36616600=∴-=-=-∴=-==--+⎰r x C T x x x x a x dx x a r r r r r ππ所以常数项为-160.20.(山东省威海市2013届高三上学期期末考试理科数学)8(2x -的展开式中,常数项为___________. 【答案】7展开式的通项公式为488831881()((1)()22k k k k k k kk x T C C x ---+==-,由4803k -=,解得6k =,所以常数项为226781(1)()72T C =-=.21.(山东省烟台市2013届高三3月诊断性测试数学理试题)若(x 2-nx)1的展开式中含x 的项为第6项,设(1-3x)n=a o +a 1x+a 2x 2++a n x n,则a l +a 2++a n 的值为_____________ 【答案】255展开式(x 2-n x )1的通项公式为22311()()(1)k n k k kk n k k n n T C x C x x--+=-=-,因为含x 的项为第6项,所以5,231k n k =-=,解得8n =,令1x =,得88018(13)2a a a +++=-= ,又01a =,所以81821255a a ++=-= .22.(山东省德州市2013届高三第二次模拟考试数学(理)试题)二项式)10的展开式中含x 的正整数指数幂的项数是____________. 【答案】523.(2013年山东临沂市高三教学质量检测考试理科数学)在62(x )x-的二项展开式中,常数项等于_______. 【答案】 【答案】160- 展开式的通项公式为6621662()(2)k k k k k kk T C x C x x--+=-=-,由620k -=,得3k =,所以3346(2)160T C =-=-,即常数项为160-.24.(山东省济南市2013届高三4月巩固性训练数学(理)试题)设dx x )12(20-⎰,则二项式4⎪⎭⎫ ⎝⎛+x a x 的展开式中的常数项为__________.___【答案】2425.(2011年高考(山东理))若62(x x -展开式的常数项为60,则常数a 的值为_________.【答案】解析:6(x 的展开式616(k k k k T C x -+=636(kk C x -=,令630,2,k k -==226(1560,4C a a ===,答案应填:4.26.(山东省济宁市2013届高三第一次模拟考试理科数学 )25(ax的展开式中各项系数的和为243,则该展开式中常数项为 【答案】10【解析】因为展开式中各项系数的和为243,所以当1x =时,5(1)243a +=,解得2a =,展开式的通项公式为5102552155(2)2k kkk k kk T C x C x ---+==,由51002k -=,解得4k =,所以常数项为455210T C =⨯=.27.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于______(用数字作答). 【答案】1215展开式的通项公式为666316621(3)()3kk k k k kk T C x C x x---+==,由630k -=得2k =,所以常数项为423631215T C ==.28.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.【答案】160-00sin =cos 2a xdx x ππ=-=⎰,所以二项式的展开式为663166(((1)2k k kk k k k k T C C x ---+==-⋅⋅,由30k -=时,3k =,所以常数项为33346(1)2160T C =-⋅=-.29.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是_________.【答案】180。

山东省2021届高三数学(理)4月联考试题(含答案)

山东省2021届高三数学(理)4月联考试题(含答案)

高三4月份联考数学(理科)试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将答题卡交回.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上; 如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+ P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.定义集合{}|A B x x A x B -=∈∉且,若集合{},2,3,4,5,M =1集合{}21,N x x k k Z ==-∈,则集合M N -的子集个数为( )A .2B .3C .4D .无数个【答案】C【解析】1,3,5,N ∈M N -={},42,所以集合M N -的子集个数为224=个.【考点】新定义问题、集合的运算、子集.2.i 为虚数单位,复数2016i 的共轭复数为( )A . 1B .iC . -1D .-i【答案】A【解析】20164504504i (i )11===,所以复数2016i 的共轭复数1.【考点】复数四则运算及共轭复数的概念.3.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x +y 的值为( )A .168B .169C .8D .9【答案】D【解析】由题意得,甲班学生成绩的中位数为83,则x =83-80=3,乙班学生成绩的平均数是86,则86796919180818176=+++++++y ⇒6=y ,故x +y =9.【考点】茎叶图、中位数、平均数4.命题:,sin()cos p R απαα∃∈-=;命题:"04"q a <<是”关于x 的不等式210ax ax ++>的解集是实数集"R 的充分必要条件,则下面结论正确的是( )A.p 是假命题B.q 是真命题C.""p q ∧是假命题D.""p q ∨是假命题【答案】C【解析】对于命题p ,2,sin()cos 42παπαα∃=-==因此命题p 是真命题; 对于命题q ,”关于x 的不等式210ax ax ++>的解集是实数集"R 的充分必要条件是0a =或2040a a a >⎧⎨∆=-<⎩,即04a ≤<,所以"04"a <<是”关于x 的不等式210ax ax ++>的解集是实数集"R 的充分不必要条件,因此命题q 是假命题;""p q ∧是假命题;""p q ∨是真命题.【考点】充要条件,简易逻辑.5. 已知变量,x y 满足约束条件230,330,10,x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩若目标函数z ax y =+ (其中0a >)仅在点(1,1)处取得最大值,则a 的取值范围为 ( )A .(0,2)B .1(0,)2C .1(0,)3D .11(,)32【答案】B【解析】由约束条件表示的可行域如图所示,作直线l :ax +y =0,过点(1,1)作l 的平行线l ′,则直线l ′介于直线x +2y -3=0与直线y =1之间, 因此,-12<-a <0,即0<a <12.【考点】线性规划.6.设,a b 为正数,231122,()4()a b ab a b+≤-=,则a b += ( ) A .2 B .22C .42D .2 【答案】B【解析】由1122,a b+≤得22a b ab +≤. 又22332()()44()442()8(),a b a b ab ab ab ab ab ab +=-+=+≥⨯⋅= 即22a b ab +≥,所以22a b ab +=.由不等式22a b ab +≥成立的条件,得1ab =,所以222 2.a b ab +== 【考点】基本不等式.7.如图是函数()sin()(0,0,)f x A x A x R ωϕω=+>>∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到sin ()y x x R =∈的图象,只要将函数)(x f 的图象上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B .向右平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D .向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】D【解析】由图象可知A =1,T =5π6-⎝ ⎛⎭⎪⎫-π6=π,∴ω=2πT=2.∵图象过点⎝⎛⎭⎪⎫π3,0,且⎝ ⎛⎭⎪⎫π3,0在函数的单调递减区间上,∴sin ⎝⎛⎭⎪⎫2π3+φ=0,∴ππϕπk 232+=+ ∴φ=π3+2k π,k ∈Z .∴)(x f =sin ⎝ ⎛⎭⎪⎫2x +π3+2k π=sin ⎝⎛⎭⎪⎫2x +π3.故将函数)(x f = sin ⎝ ⎛⎭⎪⎫2x +π3向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变,可得y =sin x 的图象. 法二:也可通过平移法求出φ的值.【考点】三角函数的图象性质及图象变换.8. 某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员也不能分给同一个部门,则不同的分配方案种数是( )A.18B.24C. 36D.72【答案】C【解析】由于均分8人,所以甲、乙两个部门各4人。

(2013年济宁二模)济宁市2013届高三4月联考 理科综合

(2013年济宁二模)济宁市2013届高三4月联考 理科综合

高三理综4月考试试题2013.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共两卷。

其中第Ⅰ卷为第1页至第5页,共87分;第Ⅱ卷为第6页至第14页,共153页。

两卷合计240分。

考试时间为150分钟第Ⅰ卷(必做,共87分)注意事项:1.第Ⅰ卷共20小题。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上不得分。

一、选择题(本题包括13小题,每小题只有一个选项符合题意)1.美国加州大学教授卢云峰做出一个纳米级小笼子,可把分解酒精的酶(化学本质不是RNA)装入其中,有了这身“防护服”,酶就不怕被消化液分解,可安心分解酒精分子。

下列推测合理的是()A.该成果中用于分解酒精的酶可能是脂质B.纳米级小笼子可通过主动运输的方式被吸收进入血液C.该酶进入人体后能分解人体内无氧呼吸的产物D.“防护服”的主要功能是阻碍消化道内蛋白酶的作用2.有人用化学方法分离提纯某细胞器的成分后,用双缩脲试剂和吡罗红甲基绿染色剂进行检测,发现分离的成分能够与双缩脲试剂呈现紫色反应,也能被吡罗红甲基绿染成红色。

有关该细胞器的叙述正确的是()A.能够对蛋白质进行加工处理B.能够通过脱水缩合产生水C. 是为细胞生命活动提供能量的主要场所D.利用光能将CO2合成(CH2O)3.右图为人体内或人体细胞内某些信息传递机制的模式图,图中箭头表示信息的传递方向。

下列叙述中正确的是( )A.如果该图表示细胞中遗传信息的表达过程,则在e过程中有两种RNA参与。

B.如果a表示抗原、b表示吞噬细胞和T细胞、c为B细胞,则该过程为体液免疫。

C.如果该图表示反射弧,则其中的信息始终是以电信号的形式传导的D.如果该图中a为下丘脑、b为垂体、c甲状腺,则b只受到d这一种激素的调节。

4.下图为高等动物睾丸中一些细胞内某条染色体的变化情况,下列叙述中正确的是()A .睾丸中的细胞每分裂一次,染色体就会完成一次①→⑤的变化B .形成精子的过程中,③时期会出现非同源染色体的自由组合C .④时期可能发生的可遗传变异有基因重组和染色体变异D .睾丸中的细胞处于④时期时,染色体数目都是原始生殖细胞的两倍 5.下列调节过程不属于负反馈调节的是 ( )A .人体血糖浓度上升引起胰岛素分泌增加,导致血糖浓度降低B .在一些酶促反应中,反应终产物过量会导致酶的活性下降C .大量猎杀草原上的食肉动物,导致食草动物的数量先升后降D .甲状腺细胞产生的甲状腺激素促进细胞的新陈代谢6.玉米植株的高度达到1.5m 以上时,遇到大风雨天气,很容易造成倒伏。

山东省2014届理科一轮复习试题选编4:函数的奇偶性与周期性

山东省2014届理科一轮复习试题选编4:函数的奇偶性与周期性

山东省2014届理科数学一轮复习试题选编4:函数的奇偶性与周期性、对称性(教师版)一、选择题错误!未指定书签。

.(2013届山东省高考压轴卷理科数学)已知函数()f x 是R 上的奇函数,若对于0x ≥,都有()2()f x f x +=, [)()()20,2,log 1x f x x ∈=+当时时,()()20132012f f -+的值为 ( )A .2-B .1-C .1D .2【答案】B 【解析】由()2()f x f x +=知,函数()f x 的周期为2,所以()()20132012f f -+ .1)0()1()0()121006()21006()2013(-=+-=++⨯-=⨯+-=f f f f f f错误!未指定书签。

.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)已知函数()f x 对任意x R ∈都有(6)()2(3),(f x f x f y f x ++==-的图象关于点(1,0)对称,则(2013)f = ( )A .10B .5-C .5D .0【答案】D错误!未指定书签。

.(山东省威海市2013届高三上学期期末考试理科数学)已知函数()f x 的定义域为(32,1)a a -+,且(1)f x +为偶函数,则实数a 的值可以是( ) A .23 B .2 C .4 D .6【答案】B 因为函数(1)f x +为偶函数,所以(1)(1)f x f x -+=+,即函数()f x 关于1x =对称,所以区间(32,1)a a -+关于1x =对称,所以32112a a -++=,即2a =,所以选 B . 错误!未指定书签。

.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)已知函数()f x 是定义在R 上的奇函数,当x >0时,()12x f x -=-,则不等式()f x <12-的解集是 ( )A .(),1-∞-B .(],1-∞-C .()1,+∞D .[)1,+∞ 【答案】A 【解析】因为()111122f -=-=,又因为函数为奇函数,所以1(1)(1)2f f -=-=-,所以不等式1()2f x <-等价于()(1)f x f <-,当0x >时,()1121()2x x f x -=-=-单调递增,且0()1f x <<,所以在(,0)-∞上函数也单调递增,由()(1)f x f <-得1x <-,即不等式的解集为(),1-∞-,选 ( )A .错误!未指定书签。

2024学年济宁市重点中学高三数学试题查缺补漏试题

2024学年济宁市重点中学高三数学试题查缺补漏试题

2024学年济宁市重点中学高三数学试题查缺补漏试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC ∆中,,2,BD DC AP PD BP AB AC λμ===+,则λμ+= ( )A .13- B .13 C .12- D .122.复数()(1)2z i i =++的共轭复数为( )A .33i -B .33i +C .13i +D .13i - 3.若a R ∈,则“3a =”是“()51x ax +的展开式中3x 项的系数为90”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4.已知函数()cos sin 2f x x x =,下列结论不正确的是( )A .()y f x =的图像关于点(),0π中心对称B .()y f x =既是奇函数,又是周期函数C .()y f x =的图像关于直线2x π=对称 D .()y f x =5.设过抛物线()220y px p =>上任意一点P (异于原点O )的直线与抛物线()280y px p =>交于,A B 两点,直线OP 与抛物线()280y px p =>的另一个交点为Q ,则ABQ ABO SS =( )A .1B .2C .3D .4 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺7.已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为( ) A 317 B .210C .132 D .3108.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<9.设i 是虚数单位,若复数1z i =+,则22||z z z+=( ) A .1i + B .1i - C .1i -- D .1i -+10.已知集合{}A m =,{}1,B m =,若A B A ⋃=,则m =( )A .03B .0或3C .13D .1或3 11.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( )A .12m >B .12m ≥ C .1m D .m 1≥ 12.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12± 二、填空题:本题共4小题,每小题5分,共20分。

2013年山东卷数学试题及答案(理)

 2013年山东卷数学试题及答案(理)

2013·山东卷(理科数学)1. 复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ) A .2+i B .2-i C .5+i D .5-i1.D [解析] 设z =a +bi ,(a ,b ∈),由题意得(a +bi -3)(2-i)=(2a +b -6)+(2b -a+3)i =5,即⎩⎪⎨⎪⎧2a +b -6=5,2b -a +3=0,解之得⎩⎪⎨⎪⎧a =5,b =1,∴z =5-i.2. 已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .92.C [解析] ∵x ,y ∈{}0,1,2,∴x -y 值只可能为-2,-1,0,1,2五种情况,∴集合B 中元素的个数是5.3. 已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x,则f(-1)=( )A .-2B .0C .1D .23.A [解析] ∵f ()x 为奇函数,∴f ()-1=-f(1)=-⎝⎛⎭⎫12+11=-2.4. 已知三棱柱ABC —A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π64.B [解析] 设侧棱长为a ,△ABC 的中心为Q ,联结PQ ,由于侧棱与底面垂直,∴PQ ⊥平面ABC ,即∠PAQ 为PA 与平面ABC 所成的角.又∵V ABC -A 1B 1C 1=34×()32×a =94,解得a =3,∴tan ∠PAQ =PQ AQ =332×3×23=3,故∠PAQ =π3.5. 将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后,得到一个偶函数的图像,则φ的一个可能取值为( )A.3π4B.π4 C .0 D .-π45.B [解析] 方法一:将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后得到f(x)=sin ⎝⎛⎭⎫2x +π4+φ的图像,若f(x)=sin ⎝⎛⎭⎫2x +π4+φ为偶函数,必有π4+φ=k π+π2,k ∈,当k =0时,φ=π4.方法二:将函数y =sin(2x +φ)的图像沿x 轴向左平移π8个单位后得到f(x)=sin ⎝⎛⎭⎫2x +π4+φ的图像,其对称轴所在直线满足2x +π4+φ=k π+π2,k ∈,又∵f(x)=sin ⎝⎛⎭⎫2x +π4+φ为偶函数,∴y 轴为其中一条对称轴,即π4+φ=k π+π2,k ∈,当k =0时,φ=π4.6. 在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-126.C [解析] 不等式组表示的可行域如图,联立⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0,解得P ()3,-1,当M 与P 重合时,直线OM 斜率最小,此时k OM =-1-03-0=-13.图1-17. 给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件7.A [解析] ∵⌝p 是q 的必要不充分条件,∴q 是⌝p 的充分而不必要条件,又“若p ,则⌝q ”与“若q ,则⌝p ”互为逆否命题,∴p 是⌝q 的充分而不必要条件.8. 函数y =xcos x +sin x 的图像大致为( )图1-28.D [解析] ∵f(-x)=-xcos(-x)+sin(-x)=-(xcos x +sin x)=-f(x),∴y =xcos x+sin x 为奇函数,图像关于原点对称,排除选项B.当x =π2时,y =1>0,排除选项C ;x =π,y =-π<0,排除选项A ;故选D.9. 过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=09.A [解析] 方法一:设点P(3,1),圆心为C ,设过点P 的圆C 的切线方程为y -1=k ()x -3,由题意得|2k -1|1+k 2=1,解之得k =0或43,即切线方程为y =1或4x -3y -9=0.联立⎩⎨⎧y =1,()x -12+y 2=1,得一切点为()1,1,又∵k PC =1-03-1=12,∴k AB =-1k PC =-2,即弦AB 所在直线方程为y -1=-2()x -1,整理得2x +y -3=0.方法二:设点P(3,1),圆心为C ,以PC 为直径的圆的方程为()x -3()x -1+y ()y -1=0,整理得x 2-4x +y 2-y +3=0,联立⎩⎨⎧x 2-4x +y 2-y +3=0①,()x -12+y 2=1②,①,②两式相减得2x +y-3=0.10. 用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .27910.B [解析] (排除法)十个数排成不重复数字的三位数求解方法是:第一步,排百位数字,有9种方法(0不能作首位),第二步,排十位数字,有9种方法,第三步,排个位数字,有8种方法,根据乘法原理,共有9×9×8 = 648(个)没有重复数字的三位数.可以组成所有三位数的个数:9×10×10=900,所以可以组成有重复数字的三位数的个数是:900-648=252.11.、 抛物线C 1:y =12p x 2(p>0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M.若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316 B.38 C.2 33 D.4 3311.D [解析] 抛物线C 1:y =12p x 2()p>0的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为()2,0,连线的方程为y =-p4()x -2,联立⎩⎨⎧y =-p4(x -2),y =12px 2得2x 2+p 2x -2p 2=0.设点M 的横坐标为a ,则在点M 处切线的斜率为y′|x =a =⎝⎛⎭⎫12p x 2′.又∵双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,∴a p =33,即a =33p ,代入2x 2+p 2x -2p 2=0得,p =4 33或p =0(舍去).12. 设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1 C.94D .312.B [解析] 由题意得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12 x y ·4yx-3=1, 当且仅当x y =4yx,即x =2y 时,等号成立,∴2x +1y -2z =22y +1y -24y 2-6y 2+4y 2=-⎝⎛⎭⎫1y -12+1≤1.13.图1-3执行如图1-3所示的程序框图,若输入的ε的值为0.25,则输出的n 的值为________.13.3 [解析] 第一次执行循环体时,F 1=3,F 0=2,n =1+1=2,1F 1=13>0.25;第二次执行循环体时,F 1=2+3=5,F 0=3,n =2+1=3,1F 1=15<0.25,满足条件,输出n =3.14.、 在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 14.13[解析] 当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x ≤2时,不等式化为x +1+x -2≥1,解之得x ≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x +1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.15. 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.15.712 [解析] ∵AP →⊥BC →, ∴AP →·BC →=()λAB →+AC →·()AC →-AB→=-λAB →2+AC →2+()λ-1AC →·AB →=0, 即-λ×9+4+()λ-1×3×2×⎝⎛⎭⎫-12=0,解之得λ=712. 16.、 定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b )=bln +a ;②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2. 其中的真命题有________.(写出所有真命题的编号)16.①③④ [解析] ①中,当a b ≥1时,∵b>0,∴a ≥1,ln +(a b )=ln a b =bln a =bln +a ;当0<a b <1时,∵b>0,∴0<a<1,ln +(a b )=bln +a =0,∴①正确;②中,当0<ab<1,且a>1时,左边=ln +(ab)=0,右边=ln +a +ln +b =ln a +0=ln a>0,∴②不成立;③中,当a b ≤1,即a ≤b 时,左边=0,右边=ln +a -ln +b ≤0,左边≥右边成立;当a b >1时,左边=ln ab=ln a -ln b>0,若a>b>1时,右边=ln a -ln b ,左边≥右边成立;若0<b<a<1时,右边=0, 左边≥右边成立;若a>1>b>0,左边=ln ab=ln a -ln b>ln a ,右边=ln a ,左边≥右边成立,∴③正确;④中,若0<a +b<1,左边=ln +()a +b =0,右边=ln +a +ln +b +ln 2=ln 2>0,左边≤右边;若a +b ≥1,ln +()a +b -ln 2=ln ()a +b -ln 2=ln(a +b 2),又∵a +b 2≤a 或a +b 2≤b ,a ,b 至少有1个大于1,∴ln(a +b 2)≤ln a 或ln(a +b 2)≤ln b ,即有ln +()a +b -ln 2=ln ()a +b -ln 2=ln(a +b 2)≤ln +a +ln +b ,∴④正确.17.、 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79. (1)求a ,c 的值;(2)求sin(A -B)的值.17.解:(1)由余弦定理b 2=a 2+c 2-2accos B ,得b 2=(a +c)2-2ac(1+cosB),又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =4 29.由正弦定理得sin A =asin B b =2 23.因为a =c ,所以A 为锐角,所以cos A =1-sin 2 A =13.因此sin(A -B)=sin Acos B -cos Asin B =10 227.图1-418.、 如图1-4所示,在三棱锥P -ABQ 中,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,联结GH.(1)求证:AB ∥GH ;(2)求二面角D -GH -E 的余弦值.18.解:(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,所以EF ∥AB ,DC ∥AB ,所以EF ∥DC.又EF 平面PCD ,DC 平面PCD , 所以EF ∥平面PCD.又EF 平面EFQ ,平面EFQ ∩平面PCD =GH ,所以EF ∥GH. 又EF ∥AB ,所以AB ∥GH.(2)方法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ.因为PB ⊥平面ABQ ,所以AB ⊥PB.又BP ∩BQ =B ,图1-5所以AB ⊥平面PBQ.由(1)知AB ∥GH ,所以GH ⊥平面PBQ.又FH 平面PBQ ,所以GH ⊥FH.同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角.设BA =BQ =BP =2.联结FC ,在Rt △FBC 中,由勾股定理得FC =2,在Rt △PBC 中,由勾股定理得PC = 5.又H为△PBQ 的重心,所以HC =13PC =53.同理FH =53.在△FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45.方法二:在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E(1,0,1),F(0,0,1),Q(0,2,0),D(1,1,0),C(0,1,0),P(0,0,2).所以EQ →=(-1,2,-1),FQ →=(0,2,-1),DP →=(-1,-1,2),CP →=(0,-1,2).设平面EFQ 的一个法向量为=(x 1,y 1,z 1), 由·EQ →=0,·FQ →=0, 得⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得=(0,1,2). 设平面PDC 的一个法向量为=(x 2,y 2,z 2), 由·DP →=0,·CP →=0, 得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0, 取z 2=1,得=(0,2,1).所以cos 〈,〉=m·n |m||n |=45.因为二面角D -GH -E 为钝角,所以二面角D -GH -E 的余弦值为-45.图1-519.、 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P(A 1)=(23)3=827,P(A 2)=C 23(23)2(1-23)×23=827, P(A 3)=C 24(23)2(1-23)2×12=427. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427.(2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立,所以P(A 4)=C 24(1-23)2(23)2×(1-12)=427, 由题意,随机变量X 的所有可能的取值为0,1,2,3. 根据事件的互斥性得 P(X =0)=P(A 1+A 2)=P(A 1)+P(A 2)=1627.又P(X =1)=P(A 3)=427.P(X =2)=P(A 4)=427,P(X =3)=1-P(X =0)-P(X =1)-P(X =2)=327,故X 的分布列为X 0 1 2 3P 1627 427 427 327所以E(X)=0×1627+1×427+2×427+3×327=79.20.、 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n =λ(λ为常数),令c n =b 2n (n ∈),求数列{c n }的前n 项和R n .20.解:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1 得⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1, 解得a 1=1,d =2,因此a n =2n -1,n ∈*.(2)由题意知T n =λ-n 2n -1,所以n ≥2时,b n =T n -T n -1=-n2n -1+n -12n -2=n -22n -1.故c n =b 2n =2n -222n -1=(n -1)⎝⎛⎭⎫14n -1,n ∈*.所以R n =0×⎝⎛⎭⎫140+1×⎝⎛⎭⎫141+2×⎝⎛⎭⎫142+3×⎝⎛⎭⎫143+…+(n -1)×⎝⎛⎭⎫14n -1, 则14R n =0×⎝⎛⎭⎫141+1×⎝⎛⎭⎫142+2×⎝⎛⎭⎫143+…+(n -2)×⎝⎛⎭⎫14n -1+(n -1)×⎝⎛⎭⎫14n ,两式相减得34R n =⎝⎛⎭⎫141+⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -1-(n -1)×⎝⎛⎭⎫14n =14-⎝⎛⎭⎫14n 1-14-(n -1)×⎝⎛⎭⎫14n=13-1+3n 3⎝⎛⎭⎫14n , 整理得R n =19(4-3n +14n -1).所以数列{c n }的前n 项和R n =19(4-3n +14n -1).21.、 设函数f(x)=xe2x +c(e =2.718 28…是自然对数的底数,c ∈).(1)求f(x)的单调区间、最大值;(2)讨论关于x 的方程|ln x|=f(x)根的个数.21.解:(1)f′(x)=(1-2x)e -2x .由f′(x)=0,解得x =12,当x<12时,f ′(x)>0,f(x)单调递增;当x>12时,f ′(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是(-∞,12),单调递减区间是(12,+∞),最大值为f ⎝⎛⎭⎫12=12e -1+c. (2)令g(x)=|lnx|-f(x)=|lnx|-xe -2x -c ,x ∈(0,+∞).①当x ∈(1,+∞)时,lnx>0,则g(x)=lnx -xe-2x-c ,所以g′(x)=e-2x(e 2xx+2x -1).因为2x -1>0,e 2xx>0,所以g′(x)>0.因此g(x)在(1,+∞)上单调递增.②当x ∈(0,1)时,lnx<0,则g(x)=-lnx -xe -2x -c ,所以g′(x)=e -2x(-e 2x x+2x -1).因为e 2x ∈(1,e 2),e 2x >1>x>0,所以-e 2xx<-1.又2x -1<1,所以-e 2xx+2x -1<0,即g′(x)<0.因此g(x)在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g(x)≥g(1)=-e -2-c.当g(1)=-e -2-c>0,即c<-e -2时,g(x)没有零点,故关于x 的方程|lnx|=f(x)根的个数为0;当g(1)=-e -2-c =0,即c =-e -2时,g(x)只有一个零点,故关于x 的方程|lnx|=f(x)根的个数为1;当g(1)=-e -2-c<0,即c>-e -2时,(ⅰ)当x ∈(1,+∞)时,由(1)知g(x)=lnx -xe -2x -c ≥lnx -(12e -1+c)>lnx -1-c ,要使g(x)>0,只需使lnx -1-c>0,即x ∈(e 1+c ,+∞);(ⅱ)当x ∈(0,1)时,由(1)知g(x)=-lnx -xe -2x -c ≥-lnx -(12e -1+c)>-lnx -1-c ,要使g(x)>0,只需-lnx -1-c>0,即x ∈(0,e -1-c);所以c>-e -2时,g(x)有两个零点, 故关于x 的方程|lnx|=f(x)根的个数为2. 综上所述,当c<-e -2时,关于x 的方程|lnx|=f(x)根的个数为0;当c =-e -2时,关于x 的方程|lnx|=f(x)根的个数为1;当c>-e -2时,关于x 的方程|lnx|=f(x)根的个数为2.22. 椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,联结PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线PF 1,PF 2的斜率分别为k 1,k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.22.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a .由题意知2b 2a=1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)方法一:设P(x 0,y 0)(y 0≠0). 又F 1(-3,0),F 2(3,0), 所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0,lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知||my 0+3y 0y 20+(x 0+3)2=||my 0-3y 0y 20+(x 0-3)2. 由于点P 在椭圆上,所以x 204+y 20=1, 所以|m +3|⎝⎛⎭⎫32x 0+22=|m -3|⎝⎛⎭⎫32x 0-22 . 因为-3<m<3,-2<x 0<2,可得m +332x 0+2=3-m 2-32x 0. 所以m =34x 0. 因此-32<m<32. 方法二:设P(x 0,y 0).当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P ⎝⎛⎭⎫3,-12. 若P ⎝⎛⎭⎫3,12,则直线PF 1的方程为x -4 3y +3=0. 由题意得|m +3|7=3-m , 因为-3<m<3,所以m =3 34. 若P ⎝⎛⎭⎫3,-12,同理可得m =3 34. ②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22, 所以(m +3)2(m -3)2=1+1k 211+1k 22. 因为x 204+y 20=1, 并且k 1=y 0x 0+3,k 2=y 0x 0-3, 所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+8 3x 0+163x 20-8 3x 0+16=(3x 0+4)2(3x 0-4)2, 即|m +3||m -3|=|3x 0+4||3x 0-4|.因为-3<m<3,0≤x 0<2且x 0≠3, 所以3+m 3-m =4+3x 04-3x 0. 整理得m =3x 04, 故0≤m <32且m ≠3 34. 综合①②可得0≤m <32. 当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是⎝⎛⎭⎫-32,32. (3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1, 所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0. 由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0, 所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·2x 0y 0=-8, 因此为定值,这个定值为-8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侧视图高三数学(理科)4月考试试题2013.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答卷前,考生务必用2B铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合M={x|x2+2x-3≤0),N={x|-1≤x≤4},则M N等于()A.{x| 1≤x≤4} B.{x |-1≤x≤3} C.{x |-3≤x≤4} D.{x |-1≤x≤1}2.复数12ii+-表示复平面内的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知命题:,p m n为直线,α为平面,若//,,m n n⊂α则//mα;命题:q若,>a b则>ac bc,则下列命题为真命题的是()A.p或q B.⌝p或q C.⌝p且q D.p且q4.设a=30.3,b=logπ3,c=log0.3 e则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.c<a<b5.将函数()sin(2)6f x xπ=+的图象向右平移6π个单位后,则所得的图象对应的解析式为()A.y=sin 2x B.y=cos 2x C.y=sin(2x+2)3πD.y=sin(2x一6π)6.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为1V,直径为4的球的体积为2V,则12:V V=()A.1:2B.2:1C.1:1D.1:4≤≥17.设实数x ,y 满足不等式组1103300x y x y x +-≤⎧⎪-+≤⎨⎪≥⎩,则z =2x +y 的最大值为( )A .13B .19C .24D .298.左图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为1214,,,.A A A 右图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是( ) 7 98 6 3 89 3 9 8 8 4 1 5 10 3 1 11 4A .7B .8C .9D .10 9.已知()21sin ,42f x x x π⎛⎫=++ ⎪⎝⎭()f x '为()f x 的导函数,则()f x '的图像是( )10.设221(32)=⎰-a x x dx ,则二项式261()-ax x展开式中的第4项为( ) A .31280-x B .1280- C .240 D .240-11.已知椭圆方程22143x y +=,双曲线22221(0,0)x y a b a b-=>>的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为 ( ) ABC .2D .312.已知定义在R 上的函数f (x ),对任意x ∈R ,都有f (x +6)=f (x )+f (3)成立,若函数(1)y f x =+的图象关于直线x =-1对称,则f (201 3)=( )A .0B .201 3C .3D .—201 3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知不等式2x x ++≤a 的解集不是空集,则实数a 的取值范围是 14.航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘攻击型核潜艇一前一后,2艘驱逐舰和2艘护卫舰分列左、右,同侧不能都是同种舰艇,则舰艇分配方案的方法数为 .15.若圆C 以抛物线y 2=4x 的焦点为圆心, 截此抛物线的准线所得弦长为6,则该圆 的标准方程是 1 6.根据下面一组等式 S 1=1S 2=2+3=5 S 3=4+5+6=1 5 S 4=7+8+9+1 0=34S 5=1 1+1 2+1 3+1 4+1 5=65S 6=1 6+1 7+1 8+1 9+20+2 1=1 1 1 S 7=22+23+24+25+26+27+28=1 75 … … … … … … … … 可得S 1+S 3+S 5+……+S 2n-1= .三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知锐角△ABC 中的内角A 、B 、C 的对边分别为,,a b c ,定义向量2(2sin (2cos 1,cos 2),2B m B n B ==- 且.m n ⊥(1)求()sin 2cos cos2sin f x x B x B =-的单调减区间; (2)如果4,b =求ABC ∆面积的最大值. 18.(本小题满分12分)某产品按行业生产标准分成6个等级,等级系数ξ依次为1,2,3,4,5,6,按行业规定产品的等级系数5ξ≥的为一等品,35ξ≤<的为二等品,3ξ<的为三等品.若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下;(1)以此30件产品的样本来估计该厂产品的总体情况,试分别求出该厂生产原一等品、二等品和三等品的概率;(2)该厂生产一件产品的利润y (单位:元)与产品的等级系数ξ的关系式为1,32,354,5y ξξξ<⎧⎪=≤<⎨⎪≥⎩,若从该厂大量产品中任取两件,其利润记为Z ,求Z 的分布列和数学期望. 19. (本小题满分12分)如图,正三棱柱ABC-A 1B 1C 1的所有棱长都为2,)(1R CC CD ∈=λλ20.(本小题满分12分)已知数列{}n a 中,()*111,,.3nn n a a a n N a +==∈+ (1)求数列{}n a 的通项公式;n a (2)若数列{}n b 满足()31,2nn nnn b a =-数列{}n b 的前n 项和为,nT 若不等式()1nn T λ-<对一切*n N ∈恒成立,求λ的取值范围.21、(本小题满分12分)已知椭圆C :222210x y (a b )a b+=>>的离心率与等轴双曲线的离心率互为倒数关系,直线0l :x y -=与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切. (1)求椭圆C 的方程;(2)设M 是椭圆的上顶点,过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=4,证明:直线AB 过定点(12-,-l).22、(本小题满分14分)已知函数220a f (x )aln x x(a )x=-++≠ (1)若曲线y f (x )=在点(1,()1f )处的切线与直线20x y -=垂直,求实数a 的值; (2)讨论函数f (x )的单调性;(3)当0a (,)∈-∞时,记函数f (x )的最小值为g (a ),求证:g(a )≥-e -4.高三数学(理科)4月考试参考答案13、a ≥2 14、32 15、()13122=+-y x 16、4n1819.解:(Ⅰ)取BC 的中点为O ,连结AO在正三棱柱111ABC A B C -中面ABC ⊥面1CB ,ABC ∆为正三角形,所以AO BC ⊥,故AO ⊥平面1CB .以O 为坐标原点建立如图空间直角坐标系O xyz -,――――2分则A ,1(1,2,0)B ,(1,1,0)D -,1A ,(1,0,0)B . 所以1(1,3)AB =,1(1,1DA = ,(2,1,0)DB =-,因为1111230,220AB DA AB DB ⋅=+-=⋅=-=,所以111,AB DA AB DB ⊥⊥,又1DA DB D = ,所以1AB ⊥平面1A BD . ――――-6分(Ⅱ)由⑴得(1,2,0)D λ-,所以1(1,22DA λ=- ,(2,2,0)DB λ=-,(1,2DA λ=-,设平面1A BD 的法向量1(,,)n x y z = ,平面1AAD 的法向量2(,,)n s t u =, 由1110,0,n DA n DB ⎧⋅=⎪⎨⋅=⎪⎩得平面1A BD的一个法向量为1(n λ= , 同理可得平面1AA D的一个法向量21)n =-,由1212121cos ,2||||n n n n n n ⋅<>==⋅,解得14λ=,为所求.――――12分又()()44min ----==e e g a g …………………………13分 所以当0a (,)∈-∞时, g(a )≥-e -4…………………………14分。

相关文档
最新文档