蛋白质含量的测定

合集下载

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内一种重要的有机化合物,具有构建细胞结构、调节生理功能等重要作用。

因此,准确测定蛋白质的含量对于生物科学研究和临床诊断具有重要意义。

本文将介绍几种常用的蛋白质含量测定方法及其原理。

一、比色法比色法是一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂形成显色物,根据显色物的光吸收特性来测定蛋白质的含量。

1. 低里氏法低里氏法是一种经典的蛋白质含量测定方法,其原理是利用试剂双硫苏三唑酮(DTNB)与蛋白质中的半胱氨酸残基反应产生黄色的二硫苏三唑,然后通过分光光度计测定其在412nm处的吸光度,根据标准曲线计算出蛋白质的含量。

2. 伯杰法伯杰法是一种基于酪蛋白与浊度试剂金霉素的显色反应来测定蛋白质含量的方法。

酪蛋白与金霉素结合形成沉淀,通过比色法测定沉淀的光吸收度,再根据标准曲线计算出蛋白质的含量。

3. 白蛋白-酷伊斯基(BCA)法BCA法是一种常用的高灵敏度蛋白质测定方法,其原理是在碱性条件下,蛋白质与BCA试剂中的铜离子络合生成紫色的离子螯合物,通过比色法测定在562nm处的光吸收度,再根据标准曲线计算出蛋白质的含量。

二、光谱法光谱法是一种基于蛋白质在特定波长下的吸收特性来测定蛋白质含量的方法。

1. 紫外吸收法紫外吸收法根据蛋白质中的芳香族氨基酸(如酪氨酸、酪氨酸和色氨酸)在紫外光区域(200-400nm)的吸收特性来测定蛋白质含量。

通过分光光度计测定蛋白质溶液在280nm处的吸光度,再根据标准曲线计算出蛋白质的含量。

2. 近红外光谱法近红外光谱法是一种无损、非破坏性的蛋白质含量测定方法,其原理是利用蛋白质溶液在近红外光区域(700-2500nm)的吸收特性与其含量之间的关系。

通过近红外光谱仪获取蛋白质溶液的光谱图像,然后利用化学计量学方法建立标准模型,通过光谱图像预测蛋白质的含量。

三、生化分析法生化分析法是一种利用生化技术和仪器设备来测定蛋白质含量的方法。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内重要的基础结构和功能分子,其含量的测定对于生物学和医学研究具有重要意义。

目前常用的蛋白质含量测定方法主要包括生物化学法、生物物理法和免疫学法等。

下面将对这几种方法的原理进行详细介绍。

1. 生物化学法:生物化学法通过酶促反应或化学反应,将蛋白质转化成可以测定的可溶物或在一定条件下呈现特定吸光度的产物,从而测定蛋白质的含量。

常用的生物化学法有Lowry法、Bradford法和BCA法。

(1) Lowry法:Lowry法是1969年由Lowry等人开发的一种蛋白质定量方法。

该方法利用蛋白质与Folin-Ciocalteu试剂在碱性条件下发生氧化反应,生成具有最大吸收峰的蓝色产物,通过测定产物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。

(2) Bradford法:Bradford法是Bradford于1976年提出的一种测定蛋白质含量的方法。

该方法基于蛋白质与染料(Coomassie Brilliant Blue G-250)之间的特异结合,蛋白质和染料形成一个蛋白质-染料复合物,该复合物的吸光度变化与蛋白质的浓度呈正相关。

通过测定复合物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。

(3) BCA法:BCA法是一种在碱性条件下,将蛋白质还原成具有强吸收的蓝色离子的方法。

BCA试剂(含有琥珀酸铜II配合物和增强剂)能与蛋白质中的酸性氨基酸残基(尤其是含有两个以上连续胺基的肽键)发生氧化还原反应,生成具有强吸收的蓝色离子。

利用光密度测定产生的蓝色离子与一系列标准溶液进行比较,即可确定蛋白质的含量。

2. 生物物理法:生物物理法是通过光学原理,利用蛋白质溶液对光的吸收、散射或旋光等性质进行测定,来间接推算蛋白质的含量。

常用的生物物理法有紫外吸收光谱法、比色法和荧光法等。

(1) 紫外吸收光谱法:紫外吸收光谱法是通过蛋白质在紫外光区域的吸收特性来测定蛋白质的含量。

蛋白质的测定方法有哪些

蛋白质的测定方法有哪些

蛋白质的测定方法有哪些蛋白质测定是一个重要的生物化学实验,用于确定样品中蛋白质的含量和纯度。

目前常用的蛋白质测定方法主要有生物化学方法、光谱法、免疫学方法和质谱法等。

下面将详细介绍这些方法。

1. 生物化学方法:生物化学方法是一种常用的蛋白质测定方法,主要包括低里氏法、比色法和滴定法等。

低里氏法基于酵素反应测定蛋白质含量,其中最常用的是双维小麦胚芽过氧化物酶法。

比色法是通过染色剂和蛋白质的反应来测定蛋白质浓度,常用的比色剂有考马斯亮蓝G-250和布拉德福棕色R-250等。

滴定法是通过滴加蛋白质溶液的滴定剂,如硝酸银溶液和碘溶液等,来测定蛋白质的含量。

2. 光谱法:光谱法是利用蛋白质在特定波长下吸收光线的特性来测定蛋白质的含量和纯度。

UV-Vis吸收光谱法是最常用的光谱法之一,根据蛋白质在280 nm处吸收的特性来测定蛋白质浓度。

近红外光谱法也可以用于蛋白质浓度的测定,因为蛋白质的结构可以在近红外区域引起光的散射和吸收。

3. 免疫学方法:免疫学方法是利用抗体与特定蛋白质发生特异性反应来测定蛋白质的含量和纯度。

常用的免疫学方法包括酶联免疫吸附法(ELISA)、免疫印迹法(Western blotting)和免疫沉淀法等。

ELISA是一种高灵敏度的蛋白质测定方法,通过抗原与特异性抗体在单克隆板上的特异性结合来测定蛋白质的含量。

Western blotting是一种常用于检测特定蛋白质的方法,通过电泳分离蛋白质,然后用特异性抗体检测目标蛋白质。

免疫沉淀法利用特异性抗体与目标蛋白质结合,然后通过共沉淀或差速离心的方式将目标蛋白质从混合物中分离出来。

4. 质谱法:质谱法是一种高分辨率的蛋白质测定方法,主要有质谱光查法(MS)和质谱对比法(MS/MS)两种。

质谱光查法通过蛋白质在质谱仪中的分子离子质量和电荷比来确定蛋白质的分子量和浓度。

质谱对比法则是将待测蛋白质与已知质量的蛋白质进行比较,从而确定样品中蛋白质的含量和纯度。

蛋白质含量的测定方法

蛋白质含量的测定方法

蛋白质含量的测定方法蛋白质是生物体内重要的营养成分,对于人体的生长发育和健康维护起着重要的作用。

因此,准确测定食品、药物、生物样品中的蛋白质含量,对于保障食品安全和科学研究具有重要意义。

本文将介绍几种常用的蛋白质含量测定方法,供大家参考。

首先,常用的蛋白质含量测定方法之一是比色法。

比色法是通过蛋白质与某种试剂发生化学反应,产生有色产物,再利用光度计测定产物的吸光度来间接测定蛋白质含量。

其中,最常用的试剂是布拉德福试剂和伯尼斯试剂。

这种方法操作简便,测定结果准确,因此被广泛应用于食品、生物样品的蛋白质含量测定。

其次,还有一种常用的蛋白质含量测定方法是比浊法。

比浊法是通过蛋白质与某种试剂发生沉淀反应,根据沉淀的浑浊度来测定蛋白质含量。

常用的试剂有硫酸铵和三氯乙醛。

比浊法操作简便,成本低廉,适用于大批量样品的测定。

另外,还有一种常用的蛋白质含量测定方法是氨基酸分析法。

氨基酸分析法是通过水解蛋白质,然后利用色谱仪或氨基酸分析仪测定水解产物中各种氨基酸的含量,从而计算出蛋白质的含量。

这种方法对于蛋白质的成分分析非常准确,但操作复杂,需要专业设备和技术支持。

最后,还有一种常用的蛋白质含量测定方法是生物素标记法。

生物素标记法是将生物素标记在蛋白质分子上,然后利用生物素与酶的特异性结合来测定蛋白质含量。

这种方法对于高灵敏度的蛋白质测定非常有效,但需要专门的标记试剂和设备支持。

总之,蛋白质含量的测定方法有很多种,每种方法都有其适用的场合和特点。

在实际应用中,需要根据样品的特点和实验条件选择合适的测定方法,以确保测定结果的准确性和可靠性。

希望本文介绍的几种常用方法能够为大家在蛋白质含量测定方面提供一些帮助。

蛋白质含量测定方法

蛋白质含量测定方法

蛋白质含量的测定方法有:凯氏定氮法、双缩脲法、酚试剂法、紫外吸收法、考马斯亮蓝法。

1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。

即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。

由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。

2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。

双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。

当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。

可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。

鉴定反应的灵敏度为5-160mg/ml。

鉴定反应蛋白质单位1-10mg。

3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。

4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。

5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250定量结合。

一般情况,当溶液中的蛋白质浓度增加时,显色液在595nm处的吸光度基
本能保持线性增加,因此可以用考马斯亮蓝G-250显色法来测定溶液中蛋白质的含量。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理一、紫外吸收法。

紫外吸收法是一种常用的蛋白质含量测定方法,其原理是根据蛋白质在280nm波长处的特征吸收峰来进行测定。

在实验中,首先将待测样品溶解于适量的缓冲液中,然后使用紫外可见分光光度计测定样品在280nm处的吸光值,通过标准曲线的对照,可以计算出样品中蛋白质的含量。

二、比色法。

比色法是另一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂发生化学反应后产生显色物质,通过测定显色物质的吸光值来计算样品中蛋白质的含量。

常用的试剂包括布拉德福试剂、伯杰试剂等,不同试剂适用于不同类型的蛋白质测定。

三、BCA法。

BCA法是一种基于铜离子与蛋白质中的蛋白质酰基发生还原反应的测定方法。

其原理是将待测样品与BCA试剂混合后在60℃条件下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

四、Lowry法。

Lowry法是一种以菁蓝G与蛋白质发生化学反应产生显色物质的测定方法。

其原理是将待测样品与碱液、菁蓝G和还原剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

五、总蛋白法。

总蛋白法是一种直接测定样品中总蛋白含量的方法,其原理是将待测样品与总蛋白试剂混合后在室温下反应,然后使用分光光度计测定产生的显色物质的吸光值,通过标准曲线计算出样品中蛋白质的含量。

总结,蛋白质含量的测定方法及原理有多种,每种方法都有其适用的样品类型和测定条件,研究人员可以根据自己的实验需要选择合适的方法进行蛋白质含量的测定工作。

希望本文所介绍的内容能为相关领域的研究工作提供一定的参考价值。

蛋白质含量的测试方法

蛋白质含量的测试方法

蛋白质含量的测试方法蛋白质是生物体生命活动所必需的重要营养物质之一、了解食物中蛋白质的含量对于饮食调控和营养评估非常重要。

蛋白质含量的测试方法可以根据不同的样品性质和需要,选择合适的方法进行定量分析。

以下将介绍几种常见的蛋白质含量测试方法。

一、低里氏试剂法低里氏试剂法是目前最常用的蛋白质含量测试方法之一、该方法利用氢氧化钠(NaOH)/硫酸铜(CuSO4)/低里氏试剂进行蛋白质的量化分析。

具体操作步骤如下:1.将待测样品溶解于含有氢氧化钠的试液中,加入硫酸铜和低里氏试剂。

2.进行加热反应,使还原蛋白质与低里氏试剂发生比色反应。

3.通过比色计(常见的是分光光度计)测定试液的吸光度,并与标准曲线对照,计算出样品中蛋白质的含量。

二、布拉得福法布拉得福法是另一种常用的蛋白质定量方法。

该方法利用显色剂最鲁丁(Coomassie Brilliant Blue G-250)与蛋白质分子之间的相互作用来定量测定蛋白质含量。

具体操作步骤如下:1.将待测样品与显色剂最鲁丁充分混合,并保持一定时间使其反应发生。

2.使用比色计测定混合液的吸光度,通过与标准曲线对照,计算出蛋白质的含量。

布拉得福法相对于低里氏试剂法更为敏感,对大多数蛋白质都有较好的定量效果。

三、生物素结合法生物素结合法是一种利用亲和力层析技术测定蛋白质含量的方法。

该方法基于生物素和亲和层析树脂之间的结合作用,通过测定结合蛋白质与酶标记物之间的信号强度,来定量测定蛋白质的含量。

具体操作步骤如下:1.将待测样品与含有生物素键合的亲和层析树脂充分混合,并进行孵育反应。

2.经过层析分离后,将酶标记物加入,通过测定酶标记物与生物素之间的信号强度,计算出蛋白质的含量。

生物素结合法一般适用于高通量的蛋白质含量测定,具有灵敏度高、准确度高的特点。

四、生物学方法在蛋白质含量测定中,生物学方法也具有一定的重要性。

例如,利用生物学方法如酶活性测定、氨基酸组分测定等,可以间接推测蛋白质的含量。

6种方法测定蛋白质含量

6种方法测定蛋白质含量

6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:NH2 CH2 COOH+3H2 SO4――2CO2+3SO2+4H2O+NH3(1)2NH3+H2 SO4――(NH4)2 SO4(2)(NH4)2 SO4+2NaOH――2H2 O+Na2 SO4+2NH3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质含量测定法有四种古老的经典方法,即定氮法,双缩尿法(Biuret法)、Folin-酚试剂法(Lowry 法)和紫外吸收法。

另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。

其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。

定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。

值得注意的是,这四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。

每种测定法都不是完美无缺的,都有其优缺点。

在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。

考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。

一、微量凯氏(Kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:CH2COOH|+ 3H2SO4 →2CO2 + 3SO2 +4H2O +NH3 (1)NH22NH3 + H2SO4→(NH4)2SO4(2)(NH4)2SO4 + 2NaOH →2H2O +Na2SO4 + 2NH3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

五种蛋白质测定方法比较如下:170二、双缩脲法(Biuret法)(一)实验原理双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

H2OO=C C=O171HN NHR-CH CH-RO=C Cu C=OHN NHH2O紫色络合物紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1~10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1. 试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(BSA)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用BSA浓度1mg/ml的A280为0.66来校正其纯度。

如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。

牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05N NaOH配制。

(2)双缩脲试剂:称以 1.50克硫酸铜(CuSO4·5H2O)和 6.0克酒石酸钾钠(KNaC4H4O6·4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。

此试剂可长期保存。

若贮存瓶中有黑色沉淀出现,则需要重新配制。

2. 器材:可见光分光光度计、大试管15支、旋涡混合器等。

(三)操作方法1. 标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。

充分摇匀后,在室温(20~25℃)下放置30分钟,于540nm处进行比色测定。

用未加蛋白质溶液的第一支试管作为空白对照液。

取两组测定的平均值,以蛋白质的含量为横座标,光吸收值为纵座标绘制标准曲线。

2、样品的测定:取2~3个试管,用上述同样的方法,测定未知样品的蛋白质浓度。

注意样品浓度不要超过10mg/ml。

172三、Folin—酚试剂法(Lowry法)(一)实验原理这种蛋白质测定法是最灵敏的方法之一。

过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以订购),近年来逐渐被考马斯亮兰法所取代。

此法的显色原理与双缩脲方法是相同的,只是加入了第二种试剂,即Folin—酚试剂,以增加显色量,从而提高了检测蛋白质的灵敏度。

这两种显色反应产生深兰色的原因是:①在碱性条件下,蛋白质中的肽键与铜结合生成复合物。

②Folin—酚试剂中的磷钼酸盐—磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。

在一定的条件下,兰色深度与蛋白的量成正比。

Folin—酚试剂法最早由Lowry确定了蛋白质浓度测定的基本步骤。

以后在生物化学领域得到广泛的应用。

这个测定法的优点是灵敏度高,比双缩脲法灵敏得多,缺点是费时间较长,要精确控制操作时间,标准曲线也不是严格的直线形式,且专一性较差,干扰物质较多。

对双缩脲反应发生干扰的离子,同样容易干扰Lowry反应。

而且对后者的影响还要大得多。

酚类、柠檬酸、硫酸铵、Tris缓冲液、甘氨酸、糖类、甘油等均有干扰作用。

浓度较低的尿素(0.5%),硫酸纳(1%),硝酸纳(1%),三氯乙酸(0.5%),乙醇(5%),乙醚(5%),丙酮(0.5%)等溶液对显色无影响,但这些物质浓度高时,必须作校正曲线。

含硫酸铵的溶液,只须加浓碳酸钠—氢氧化钠溶液,即可显色测定。

若样品酸度较高,显色后会色浅,则必须提高碳酸钠—氢氧化钠溶液的浓度1~2倍。

进行测定时,加F olin—酚试剂时要特别小心,因为该试剂仅在酸性pH条件下稳定,但上述还原反应只在pH=10的情况下发生,故当Folin一酚试剂加到碱性的铜—蛋白质溶液中时,必须立即混匀,以便在磷钼酸—磷钨酸试剂被破坏之前,还原反应即能发生。

此法也适用于酪氨酸和色氨酸的定量测定。

此法可检测的最低蛋白质量达5μg。

通常测定范围是20~250μg。

(二)试剂与器材1.试剂(1)试剂甲:(A)10克Na2CO3,2克NaOH和0.25克酒石酸钾钠(KNaC4H4O6·4H2O)。

溶解于500毫升蒸馏水中。

(B)0.5克硫酸铜(CuSO4·5H2O)溶解于100毫升蒸馏水中,每次使用前,将50份(A)与1份(B)混合,即为试剂甲。

(2)试剂乙:在2升磨口回流瓶中,加入100克钨酸钠(Na2WO4·2H2O),25克钼酸钠(Na2MoO4·2H2O)及700毫升蒸馏水,再加50毫升85%磷酸,100毫升浓盐酸,充分混合,接上回流管,以小火回流10小时,回流结束时,加入150克硫酸锂(Li2SO4),50毫升蒸馏水及数滴液体溴,开口继续沸腾15分钟,以便驱除过量的溴。

冷却后溶液173呈黄色(如仍呈绿色,须再重复滴加液体溴的步骤)。

稀释至1升,过滤,滤液置于棕色试剂瓶中保存。

使用时用标准NaOH滴定,酚酞作指示剂,然后适当稀释,约加水1倍,使最终的酸浓度为1N左右。

(3)标准蛋白质溶液:精确称取结晶牛血清清蛋白或γ—球蛋白,溶于蒸馏水,浓度为250 μg/ml左右。

牛血清清蛋白溶于水若混浊,可改用0.9 % NaCl溶液。

2. 器材(1)可见光分光光度计(2)旋涡混合器(3)秒表(4)试管16支(三)操作方法1. 标准曲线的测定:取16支大试管,1支作空白,3支留作未知样品,其余试管分成两组,分别加入0,0.1,0.2,0.4,0.6,0.8,1.0毫升标准蛋白质溶液(浓度为250μg/ml)。

用水补足到1.0毫升,然后每支试管加入5毫升试剂甲,在旋涡混合器上迅速混合,于室温(20~25℃)放置10分钟。

再逐管加入0.5毫升试剂乙(Folin—酚试剂),同样立即混匀。

这一步混合速度要快,否则会使显色程度减弱。

然后在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于700nm处测定各管中溶液的吸光度值。

以蛋白质的量为横座标,吸光度值为纵座标,绘制出标准曲线。

注意:因Lowry反应的显色随时间不断加深,因此各项操作必须精确控制时间,即第1支试管加入5毫升试剂甲后,开始计时,1分钟后,第2支试管加入5毫升试剂甲,2分钟后加第3支试管,余此类推。

全部试管加完试剂甲后若已超过10分钟,则第1支试管可立即加入0.5毫升试剂乙,1分钟后第2支试管加入0.5毫升试剂乙,2分钟后加第3支试管,余此类推。

待最后一支试管加完试剂后,再放置30分钟,然后开始测定光吸收。

每分钟测一个样品。

进行多试管操作时,为了防止出错,每位学生都必须在实验记录本上预先画好下面的表格。

表中是每个试管要加入的量(毫升),并按由左至右,由上至下的顺序,逐管加入。

最下面两排是计算出的每管中蛋白质的量(微克)和测得的吸光度值。

Folin—酚试剂法实验表格:1742. 样品的测定:取1毫升样品溶液(其中约含蛋白质20~250微克),按上述方法进行操作,取1毫升蒸馏水代替样品作为空白对照。

通常样品的测定也可与标准曲线的测定放在一起,同时进行。

即在标准曲线测定的各试管后面,再增加3个试管。

如上表中的8、9、10试管。

根据所测样品的吸光度值,在标准曲线上查出相应的蛋白质量,从而计算出样品溶液的蛋白质浓度。

注意,由于各种蛋白质含有不同量的酪氨酸和苯丙氨酸,显色的深浅往往随不同的蛋白质而变化。

因而本测定法通常只适用于测定蛋白质的相对浓度(相对于标准蛋白质)。

四、改良的简易Folin—酚试剂法(一)试剂1. 试剂甲:碱性铜试剂溶液中,含0.5N NaOH、10%Na2CO3、0.1%酒石酸钾和0.05%硫酸铜,配制时注意硫酸铜用少量蒸馏水溶解后,最后加入。

2. 试剂乙:与前面的基本法相同。

临用时加蒸馏水稀释8倍。

3. 标准蛋白质溶液:同基本法。

(二)操作步骤测定标准曲线与样品溶液的操作方法与基本法相同。

只是试剂甲改为1毫升,室温放置10分钟后,试剂乙改为4毫升。

在55℃恒温水浴中保温5分钟。

用流动水冷却后,在660nm下测定其吸光度值。

改良的快速简易法,可获得与Folin—酚试剂法(即Lowry基本法)相接近的结果。

五、考马斯亮兰法(Bradford法)(一)实验原理双缩脲法(Biuret法)和Folin—酚试剂法(Lowry法)的明显缺点和许多限制,促175使科学家们去寻找更好的蛋白质溶液测定的方法。

相关文档
最新文档