1_1 映射与函数
函数与映射基础

函数与映射基础函数和映射是数学中两个重要的概念。
它们在数学和其他学科中的应用广泛,对于理解和解决问题起着关键的作用。
本文将介绍函数和映射的基础概念、特性以及它们的应用。
一、函数的定义和特性函数是一种特殊的映射关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
函数可以表示为f:X→Y,它将集合X中的元素映射到集合Y中的元素上。
函数有以下几个基本特性:1. 定义域和值域:函数的定义域是输入的集合,值域是输出的集合。
2. 单射性:如果一个函数的每个不同的元素都有不同的映射元素,那么这个函数是单射的。
3. 满射性:如果一个函数的每个元素都有至少一个映射元素,那么这个函数是满射的。
4. 双射性:如果一个函数既是单射的又是满射的,那么这个函数是双射的。
5. 逆函数:对于双射的函数,可以定义一个逆函数,用于将输出映射回输入。
二、映射的定义和分类映射是一种关联关系,它将一个集合中的元素与另一个集合中的元素对应起来。
映射可以表示为M:X→Y,它将集合X中的元素与集合Y中的元素对应。
根据映射的性质和关系,映射可以分为以下几种类型:1. 单射:每个输入只对应一个输出。
2. 满射:对于输出集合中的每个元素,存在至少一个输入与之对应。
3. 耦合映射:输入的元素与输出的元素具有明确的对应关系。
4. 多对一映射:多个输入对应一个输出。
5. 一对多映射:一个输入对应多个输出。
6. 多对多映射:多个输入对应多个输出。
三、函数与映射的应用函数和映射在数学和其他学科中有许多应用。
以下是一些常见的应用领域:1. 数学分析:函数是数学分析的重要概念,它用于描述和分析数学中的各种关系和变化规律。
2. 统计学:映射在统计学中被广泛应用,用于描述和分析数据和变量之间的关联关系。
3. 计算机科学:函数是编程语言中的基本构建块,它用于实现各种算法和程序逻辑。
4. 金融学:函数和映射在金融学中用于建立数学模型,对市场、投资和风险进行分析和预测。
高一数学第二单元1:映射与函数(附答案)

高一(上)数学单元同步练习及期末试题(三)(第三单元 映射与函数)[重点难点]1. 了解映射的概念及表示方法,能识别集合A 与B 之间的一种对应是不是从集合A 到集合B 的映射;了解一一映射的概念。
2. 理解函数的概念,明确确定函数的三个要素;掌握函数的三种表示方法;理解函数的定义域、函数值和值域的意义,会求某些函数的定义域、函数值和简单函数的值域。
3. 理解函数的单调性和奇偶性的概念;掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程。
4. 了解反函数的概念及互为反函数的函数图像间的关系;会求一些简单函数的反函数。
一、选择题1.已知集合P={40≤≤x x },Q={20≤≤y y },下列不表示从P 到Q 的映射是( )(A )f ∶x →y=21x (B )f ∶x →y=x 31 (C )f ∶x →y=x 32(D )f ∶x →y=x2.下列命题中正确的是( )(A)若M={整数},N={正奇数},则一定不能建立一个从集合M 到集合N 的映射(B)若集合A 是无限集,集合B 是有限集,则一定不能建立一个从集合A 到集合B 的映射 (C)若集合A={a},B={1,2},则从集合A 到集合B 只能建立一个映射 (D)若集合A={1,2},B={a},则从集合A 到集合B 只能建立一个映射3.集合A={x R x x ∈≠,1}⋃{x R x x ∈≠,2},集合B=(-∞,-1)⋃(1,2)⋃(2,+∞),则A 、B 之间的关系是( ) (A )A=B (B )A ⊆B (C )A ⊇B (D )A ⊂B 4.下列函数中图像完全相同的是( ) (A )y=x 与y=2x (B )y=xx 与0x y = (C )y=(x )2与y=x (D )y=)1)(1(11-+=-⋅+x x y x x 与 5.f(x)是一次函数且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,则f(x)等于( )(A )9194+x (B )36x -9 (C )9194-x (D )9-36x 6.若f(x)=21x x+,则下列等式成立的是( )(A )f()()1x f x= (B )f(x 1)=-f(x)(C )f(x 1)=)(1x f (D ))(1)1(x f x f -= 7.函数y=2122--+-+x x xx的定义域是( ) (A )-21-≤≤x (B )-21≤≤x (C )x>2 (D )x 1≠ 8.函数y=122+-x x 的值域是( )(A )[0,+∞] (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ]9.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图像是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图像是抛物线,其中正确的命题个数是( )(A )1 (B )2 (C )3 (D )410.已知g(x)=1-2x,f[g(x)]=)0(122≠-x xx ,则f(21)等于( ) (A )1 (B )3 (C )15 (D )3011.下列函数中值域是R +的是( )(A )y=132+-x x (B )y=2x+1(x>0) (C )y=x 2+x+1 (D )y=112-x12.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( ) (A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4) 13.函数y=13+-+x x 的值域是( )(A)(0,2] (B)[-2,0] (C)[-2,2] (D)(-2,2) 14.下列函数中在(-∞,0)上单调递减的是( ) (A )y =1-x x (B )y=1-x 2(C )y=x 2+x (D )y=-x -115.设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2),f(-π)、f(3)的大小顺序是( )(A )f(-π)>f(3)>f(-2) (B )f(-π)>f(-2)>f(3) (C )f(-π)<f(3)<f(-2) (D )f(-π)<f(-2)<f(3)16.函数y=xx ++-1912是( ) (A )奇函数 (B )偶函数(C )既是奇函数又是偶函数 (D )非奇非偶数17.函数y=4(x+3)2-4的图像可以看作由函数y=4(x-3)2+4的图象,经过下列的平移得到( ) (A )向右平移6,再向下平移8 (B )向左平移6,再向下平移8 (C )向右平移6,再向上平移8 (D )向左平移6,再向上平移818.若函数f(x)=x 2+bx+c 对任意的实数t,都有f(2+t)=f(2-t),那么( ) (A )f(2)<f(1)<f(4) (B )f(1)<f(2)<f(4) (C )f(2)<f(4)<f(1) (D )f(4)<f(2)<f(1)19.f(x)=x 5+ax 3+bx-8且f(-2)=0,则f(2)等于( ) (A )-16 (B )-18 (C )-10 (D )10 20.命题(1)y=R x d cx b ax ∈++(且x c d -≠)与y=)(cax R x a cx b dx ≠∈-+-且互为反函数;(2)函数y=f(x)的定义域为A ,值域为C ,若其存在反函数,则f 必是A 到C 上的一一映射;(3)偶函数一定没有反函数;(4)f(x)与f -1(x )有相同的单调性,其中正确命题的个数是( ) (A )1 (B )2 (C )3 (D )4 二、填空题1.若一次函数f(x)的定义域为[-3,2],值域为[2,7],那么f(x)= 。
大学高等数学 1_1 映射与函数

Page 13
2. 逆映射与复合映射 (1) 逆映射的定义 定义5 定义 若映射 使 称此映射 f −1为 f 的逆映射 . 习惯上 , y = f (x), x ∈D 的逆映射记成
D
f
f −1
为单射, 为单射 则存在一新映射 其中
f (D)
y = f (x) , x ∈ f (D)
例如, 例如 映射 其逆映射为
Page 10
对映射 为满射; 引例2, 若 f ( X ) = Y, 则称 f 为满射 引例 3
X
若
f
Y = f (X )
有
X
Y
为单射; 引例2 则称 f 为单射 引例 既是满射又是单射, 若 f 既是满射又是单射 则称 f 为双射 或一一映射 或一一映射. 引例2 引例
Page 11
例1. 海伦公式 (满射 满射) 满射 如图所示, 例2. 如图所示 对应阴影部分的面积 则在数集 满射) 满射 自身之间定义了一种映射 (满射 如图所示, 例3. 如图所示 则有
为奇函数 .
Page 23
(4) 周期性
∀x ∈D, ∃l > 0, 且 x ± l ∈D, 若
一般指最小正周期 则称 f (x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
y
π −2π −
o π 2π x
周期为 周期函数不一定 不一定存在最小正周期 注: 周期函数不一定存在最小正周期 . 例如, 例如 常量函数 f (x) = C 狄里克雷函数
Page 4
半开区间 [ a , b ) = { x a ≤ x < b } ( a , b ] = {x a < x ≤ b} 无限区间 [ a , + ∞ ) = { x a ≤ x } (−∞ , b ] = { x x ≤ b }
1-1 映射与函数

例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
1-1 映射与函数

面积、体积 、作功… 元素法 不定 积分 连续 定 积分 积分学 无穷 级数
微分学
导数
分析 引论
微分
极限
函数
空间解析几何
常微分 方程
多元函数
多元函数 微分学 应用 偏导数 全微分 重积分 线面积分 曲面面积 体积、质心… 多元函数 积分学
切线、法平面 、梯度…
应用
切线、图形 、速度… 中值定理
面积、体积 、作功… 元素法 不定 积分 连续 定 积分 积分学 无穷 级数
函数的特性
1.有界性
设函数f (x) 的定义域为D,数集 X D
如果存在数 K 1 , 使得 f ( x ) K 1 对任一 x X 都成立 y 则称函数f (x)在X上有上界
K 1 称为函数f (x)在X上的一个上界
类似可以定义函数f (x)在X上有下界
o
x
函数的特性
1.有界性
映射,这个映射称为映射g和f 构成的复合映射,记作
即:
Y1
注 (1)映射g和f 构成复合映射的条件: (2) 映射g和f 的复合是有顺序的
例题 例1 写出下列映射的定义域和值域,并回答如下问题: (1)映射f 是否单射?是否满射? (2)若存在逆映射,求出逆映射 1. 设
对每个
2. 设映射f 将平面上的一个圆心在原点单位圆周上的点
(3) 映射又称为算子,在不同数学分支中有不同的名称
X
非空集X 非空集X 实数集X
f
X上的泛函 X上的变换
Y
数集Y 非空集X 实数集Y
X上的函数
概念
集 合 区 邻 间 域
映 射
构造
逆映射
函 数
逆映射
《高等数学》第一节:映射与函数

[
, ] 2 2
y
y tan x 定义域 (,) y x 值域 ( 2 , 2 ) 2 y arctan x
2
2
0
2
x
| arctanx |
定义域 (,)
2
2
y
y x
0
2
y arc cot x x
x
shx e e 双曲正切 thx x chx e e x 反双曲正切
1 1 x y arthx ln . 2 1 x
(3)非初等函数 狄利克雷函数、 取整函数、 分段函数等
练习
[ x] (1) f ( x )定义域为 (0,1),求 g( x ) f ( )的定义域 . x D { x R | x 1且x 2,3,}.
cos
,
(2)初等函数
由常数和基本初等函数经过有限次四则运算和 有限次的函数复合步骤所构成并可用一个式子表示 的函数,称为初等函数.
例3:双曲函数与反双曲函数 双曲函数 反双曲函数
e x e x 双曲正弦 shx 2 e x e x 双曲余弦 chx 2
x
反双曲正弦 y arshx ln( x x 2 1) 反双曲余弦 y archx ln( x x 2 1)
高 等 数 学
研究对象 研究内容 研究工具
上册 极限
一元函数 微分学与积分学 函数 微分方程 空间解析几何与向量代数 多元函数 微分学与积分学 下册 无穷级数
高 等 数 学
应用
用哪个? 条件?
不合条件, 改造!
1-1函数与映射

在[1,+ ],有界;在(0, 1)无界。
2019年12月24日星期二
蚌埠学院 高等数学
18
2)单调性
设函数 f (x)的定义域为D, 区间I D,
如果对于区间 I 上任意两点 x1及 x2, 当 x1 x2时,
恒有 (1) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调增加的 ;
蚌埠学院 高等数学
21
设D关于原点对称 , 对于x D, 有
f (x) f (x) 称 f (x)为奇函数 ;
-x f (x)
y
y f (x)
f (x)
o
xx
奇函数
2019年12月24日星期二
蚌埠学院 高等数学
22
4)周期性 设函数f ( x)的定义域为D, 如果存在一个不为零的
y sin x2 y u u sin v v x2
或 y u u sin x 注:不是任何函数都可以复合成一个函数。 如: y u 与 u sin x 不能进行复合。
2019年12月24日星期二
蚌埠学院 高等数学
28
4. 函数的运算
和、差、积、商。 注:只有具备公共定义域的函数才能运算 。
y
y f (x)
f (x1)
f (x2 )
o
x
I
2019年12月24日星期二
蚌埠学院 高等数学
20
3)奇偶性
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数;
y y f (x)
f (x)
f (x)
-x o x
x
偶函数
一函数与映射的基本概念

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。
例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。
3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|,半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由薄到厚 , 由厚到薄 .
Page 4
三、集合
1. 定义及表示法
定义 1. 具有某种特定性质的事物的总体称为集合.
组成集合的事物称为元素. 不含任何元素的集合称为空集 , 记作 . 元素 a 属于集合 M , 记作 a M . 元素 a 不属于集合 M , 记作 a M ( 或 a M ) . 注: M 为数集
说明: 还可定义有上界、有下界、无界 (2) 单调性 y x1 x2 时, x1 , x2 I , 当 , f ( x) M , 称 为有上界 若 f ( x1 ) f ( x2 ) , 称 f ( x) 为 I 上的 , M f (单调增函数 x), 称 为有下界 ; )1 x M 2 , x ( x) 为 Ix上的 D, 使 f ( xx 若 若对任意正数 f ( x1 ) f ( x2 ) , 称 M ,f 均存在 单调减函数 . 则称 f ( x ) 无界 .
( a a 点的 邻域 ( a , ) x a x a
0
( , ) x x R x
) a
xa
去心 邻域 ( a , ) x 0 x a 左 邻域 : (a , a) ,
例如, 常量函数 f ( x) C
周期为
狄里克雷函数
1, 0,
x 为有理数 x 为无理数 Page
25
3. 反函数与复合函数
(1) 反函数的概念及性质 若函数 为单射, 则存在逆映射
称此映射 f 1 为 f 的反函数 . 习惯上, y f ( x) , x D 的反函数记成
y f 1 ( x) , x f ( D)
1 ) , 并写出定义域及值域 . ) 求 f (1 及 f ( 2 t
)2 解: f ( 1 2
1 2
2
1 1 , 0 t 1 t 1 f (t ) 2 t 1 , t 定义域 D (0 , )
值 域 f ( D ) (0, )
t 0时
函数无定义
Page 21
有了变数 , 运动进入了数学,
有了变数,辩证法进入了数学 , 恩格斯 有了变数 , 微分和积分也就立刻成 为必要的了,而它们也就立刻产生.
Page 2
主要内容
1.分析基础 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
2. 微积分学: 一元微积分 (上册) 多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
7
其中, a 称为邻域中心 , 称为邻域半径 .
). 右 邻域 : (a , a Page
2. 集合之间的关系及运算
定义2 . 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B .
若 例如 , 且 , 则称 A 与 B 相等, 记作 A B . ,
第1章 函数与极限
§1.1 映射与函数
一、什么是高等数学 ?
0011 0010 1010 1101 0001 0100 1011
二、如何学习高等数学 ? 三、集合 四、映射 五、函数
4
1
2
1
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学. 数学中的转折点是笛卡儿的变数.
o
P ( a, b)
x
互为反函数 , 对称 .
Page 27
(2) 复合函数 — 复合映射的特例 设有函数链
y f (u ), u D1
则
且 g ( D) D 1
① ②
称为由①, ②确定的复合函数 , u 称为中间变量. 注意: 构成复合函数的条件 g ( D) D 1 不可少. 可定义复合 例如, 函数链 : y arcsin u , 函数
f 称为X 上的变换
X (数集 或点集 )
f
R
f 称为定义在 X 上的为函数
Page 15
2. 逆映射与复合映射 (1) 逆映射的定义
定义5 若映射 使 称此映射 f 1 为 f 的逆映射 .
f
为单射, 则存在一新映射
其中
D
f 1
习惯上 , y f ( x) , x D
的逆映射记成
f ( D)
合映射 , 记作
g f
或 f g ( x), x D.
g ( D)
注意: 构成复合映射的条件 g ( D) D1 不可少. 以上定义也可推广到多个映射的情形.
Page 18
五、函数
1. 函数的概念
定义7. 设数集 D R , 则称映射 D 上的函数 , 记为 定义域 自变量 为定义在
Page 3
二、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣. 一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
要辨证而又唯物地了解自然 , 就必须熟悉数学.
恩格斯
2. 学数学最好的方式是做数学.
聪明在于学习 , 天才在于积累 .
学而优则用 , 学而优则创 .
Page 22
(3) 奇偶性
x D, 且有 x D,
若 则称 f (x) 为偶函数;
y
若 f ( x) f ( x) , 则称 f (x) 为奇函数.
说明: 若 f ( x) 在 x = 0 有定义 , 则当
x o
y x e
xx
f ( x) 为奇函数时, 必有 f (0) 0.
称为 f 的 值域 .
Page 12
注意: 1) 映射的三要素— 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
对映射
若 f ( X ) Y , 则称 f 为满射; 引例2, 3
X
若
f
Y f (X )
有
X
Y
则称 f 为单射; 引例2 若 f 既是满射又是单射, 则称 f 为双射 或一一映射. 引例2
(2) 描述法: M x x 所具有的特征 例: 整数集合 Z x x N 或 x N p p Z , q N , p 与 q 互质 有理数集 Q q 实数集合 R x x 为有理数或无理数 开区间 ( a , b ) x a x b
B
A c BA
B
特例: R R 记 R 2 为平面上的全体点集
A B
Page 9
A
四、 映射
1. 映射的概念 引例1. 某校学生的集合 学号的集合 按一定规则查号
某班学生的集合 按一定规则入座
某教室座位 的集合
Page 10
引例2.
引例3.
(点集)
(点集)
向 y 轴投影
Page 11
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
但函数链 y arcsin u , u 2 x 2 不能构成复合函数 .
Page 28
两个以上函数也可构成复合函数. 例如,
y u, u0 u cot v , v k (k 0, 1, 2 ,) x v , x (, ) 2
可定义复合函数:
则 f , 使得
有唯一确定的
与之对应 , 则
称 f 为从 X 到 Y 的映射, 记作 f : X Y .
X
f
Y
元素 y 称为元素 x 在映射 f 下的 像 , 记作 y f ( x). 元素 x 称为元素 y 在映射 f 下的 原像 . 集合 X 称为映射 f 的定义域 ; Y 的子集 f ( X ) f ( x) x X
y f ( x) , x D
因变量 f ( D ) 称为值域 函数图形:
y y
C ( x , y ) y f ( x) , x D D f ( D)
a x b ( D [a, b] )
Page 19
x
xD
(定义域) • 定义域
f
y f ( D) y y f ( x), x D
闭区间 [ a , b ] x a x b
Page 6
半开区间 [ a , b ) x a x b ( a , b ] x a x b 无限区间 [ a , ) x a x ( , b ] x x b
记
奇函数
y 1
th x 双曲正切
o 1
y th x x
Page 24
(4) 周期性
x D, l 0 , 且 x l D, 若
则称 f ( x)为周期函数 , 称 l 为周期 ( 一般指最小正周期 ).
y
2
o 2 x
周期为 注: 周期函数不一定存在最小正周期 .
Page 13
例1.
海伦公式
(满射) 例2. 如图所示, 对应阴影部分的面积 则在数集 自身之间定义了一种映射 (满射) 例3. 如图所示, 则有
r
(满射)
Page 14
说明: 映射又称为算子. 在不同数学分支中有不同的惯用 名称. 例如,
X (≠ )
X (≠ )
f f
Y (数集) X
f 称为X 上的泛函
y f 1 ( x) , x f ( D)
例如, 映射 其逆映射为
Page 16
(2) 复合映射
引例.