2006年湖南省高中数学竞赛试卷A
全国高中数学联赛模拟试卷试题.doc

全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。
2009年湖南省高中数学竞赛A卷试题

2009年湖南省高中数学竞赛A 卷试题一、选择题(本大题共6个小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1、设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =( C ) A. 8 B. 6 C. 4 D. 2 【解析】()a i =1=ni ,则最小正整数n 为4,选C.2、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( C) (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) (3)f x +是奇函数 (D) (3)f x +是偶函数()()()()()()()()()()()()()()()()()()()111211122244,33113f x f x f x f t f t f x f x f x f t f t f t f t f x f x T f x x f x f x f x +⇒-+=-+⇒-=--⇒--=--⇒-=--⇒-=--⇒=-⇒=∴+⇔-+=--=--=-+为奇函数为奇函数为奇函数f3、在区间[1,1]-上随机取一个数x ,cos 2x π的值介于0到21之间的概率为( A ). A.31 B.π2 C.21 D.32【解析】:在区间[1,1]-上随机取一个数x ,即[1,1]x ∈-时,要使cos 2xπ的值介于0到21之间,需使223x πππ-≤≤-或322x πππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为32,由几何概型知cos 2x π的值介于0到21之间的概率为31232=.故选A.4、()()()()22223291550A 72B 73C 144D 146f x R R f x x f x x x x f →++-+=-设为,且对任意实数有,则的值为()()(()(()()()()()22222250325432505450254915154250915222150146x x x x x x x x x x f f f f f +==⇒-+=--+==⇒+=-∴+-=-⎝⎭-+=-⎝⎭⨯-⇒=分析: 5、{})()1120091,2,4036080403607840360824036099n n n a n A B C D += 已知数列满足a =0,a =a ,则a =22009111,4036080n a n =⇒=-⇒分析:两边加a =6、()AB AC AB AC 1AB AC BC 0ABC 2AB AC AB AC A B C D ⎛⎫ ⎪∙∙∆ ⎪⎝⎭已知非零向量与满足+=且=,则为三边均不相等的三角形, 直角三角形, 等腰非等边三角形, 等边三角形。
湖南省高中数学竞赛试题及答案

2016年湖南省高中数学竞赛试题及答案一、选择题(本大题共6个小题,每小题5分,满分30分.每小题所提供的四个选项中只有一项是符合题目要求的)1.设集合{}0123,,,S A A A A =,在S 上定义运算“⊕”为:i j k A A A ⊕=,其中k 为i j +被4除的余数,,0,1,2,3.i j =则满足关系()20x x A A ⊕⊕=的()x x S ∈的个数为( )A .1B .2C .3D .4 答案:B .提示:因为()20,x x A A ⊕⊕=,设kx x A ⊕=,所以20,2,k A A a k ⊕==即2x x A ⊕=,故1x A =或3.x A =答案:A .2.一个骰子由1-6六个数字组成,根据如图所示的三种状态显示的数字,可推得“?”的数字是 ( )A .6B .3C .1D .2 3.设函数()2c o s ,fx x x =-{}n a 是公差为8π的等差数列,()()12f a f a +++()n f a 5,π=则()2315f a a a -=⎡⎤⎣⎦ ( )A .0B .116π C .18π D .21316π答案:D .提示:因为{}n a 是公差为8π的等差数列,且 ()()12f a f a +++()5f a()()()1122552cos 2cos 2cos 5,a a a a a a π=-+-++-=即()()1251252cos cos cos 5a a a a a a π+++-+++=,所以33333310cos cos cos cos cos 5.4884a a a a a a πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-+++++= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦即33102cos2cos1cos 5.48a a πππ⎛⎫-++= ⎪⎝⎭记()102cos2cos1cos 548g x x x πππ⎛⎫=-++- ⎪⎝⎭,则 ()102cos 2cos 1sin 048g x x ππ⎛⎫'=+++> ⎪⎝⎭,即()g x 在R 为增函数,有唯一零点2x π=,所以3.2a π=所以()2223151320.2242416f a a a ππππππ⎛⎫⎛⎫⎛⎫-=⨯---+=⎡⎤ ⎪ ⎪⎪⎣⎦⎝⎭⎝⎭⎝⎭ 4.设,m n 为非零实数,i 为虚数单位,z C ∈,则方程z ni z mi n ++-=与方程z ni z mi m+--=-在同一复平面内的图形(其中12,F F 是焦点)是( )答案:B . 提示:z n i z m i n ++-=表示以()()120,,0,F n F m -为焦点的椭圆且0.n >z ni z mi m +--=-表示以()()120,,0,F n F m -为焦点的双曲线的一支.由n z ni z mi m n =++-≥+,知0.m <故双曲线z ni z mi m +--=-的一支靠近点2F .5.给定平面向量()1,1,那么,平面向量11,22⎛+ ⎝⎭是将向量()1,1经过 变换得到的,答案是 ( )A .顺时针旋转60所得B .顺时针旋转120所得C .逆时针旋转60所得D .逆时针旋转120所得 答案:C .提示:设两向量所成的角为θ,则()1,11cos ,2θ⋅==又0,180θ⎡⎤∈⎣⎦,所以60θ=.又110,022<>,所以C 正确. 6.在某次乒乓球单打比赛中,原计划每两名选手各比赛一场,但有3名选手各比赛了两场之后就退出了,这样全部比赛只进行了50场,那么上述3名选手之间比赛场数是( )A .0B .1C .2D .3 答案:B .提示:设这3名选手之间比赛的场数是r ,共n 名选手参赛,依题意有23650n Cr -+-=,即()()3444.2n n r --=+因为03r ≤≤,所以分4种情况讨论:①当0r =时,有()()3488n n --=,即27760n n --=,但它没有正整数解,故0r ≠;②当1r =时,有()()3490n n --=,解得13n =,故1r =符合题意;③当2r =时,有()()3492n n --=,即27800,n n --=但它没有正整数解,故2r ≠; ④当3r =时,有()()3494n n --=,即27820n n --=,但它没有正整数解,故 3.r ≠二、填空题(本大题共6个小题,每小题8分,满分48分,解题时只需将正确答案直接填在横线上.)7.规定:对于x R ∈,当且仅当()*1n n n n N ≤<+∈时,[]x n =.则不等式[][]2436450x x -+≤的解集是 .答案:28.x ≤≤。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
高中数学竞赛湖南省A卷试题与答案

2009年湖南省高中数学竞赛A 卷试题一、选择题(本大题共6个小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1、设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i =( C )A. 8B. 6C. 4D. 2 【解析】()a i =1=ni ,则最小正整数n 为4,选C.2、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( C) (A) ()f x 是偶函数是偶函数 (B) ()f x 是奇函数是奇函数 (C) (3)f x +是奇函数是奇函数 (D) (3)f x +是偶函数是偶函数()()()()()()()()()()()()()()()()()()()111211122244,33113f x f x f x f t f t f x f x f x f t f t f t f t f x f x T f x x f x f x f x +Þ-+=-+Þ-=--Þ--=--Þ-=--Þ-=--Þ=-Þ=\+Û-+=--=--=-+为奇函数为奇函数为奇函数f3、在区间[1,1]-上随机取一个数x ,cos2xp 的值介于0到21之间的概率为( A ). A.31 B.p2 C.21 D.32 【解析】:在区间[1,1]-上随机取一个数x ,即[1,1]x Î-时,要使cos 2x p 的值介于0到21之间,需使223x p p p -££-或322x p p p ££∴213x -££-或213x ££,区间长度为32,由几何概型知cos 22x p 的值介于0到221之间的概率为31232=.故选A.4、()()()()22223291550A 72B 73C 144D 146f x R R f x x f x x x x f ®++-+=-设为,且对任意实数有,则的值为()()()()()()()()()()222222120150325422012320132505422012120112015025422019151223201320154220125091522222150146x x x x x x x x x x f f f f f -++==Þ-+=---+==Þ+=-æö-+-+\+-=-´ç÷èøæö---+=-´ç÷ç÷èø´-Þ=分析: 5、{}()()11200911,2,4036080403607840360824036099n n n n a a n A B C D ++=已知数列满足满足a a =0=0,,a =a +1+2,则a =21200911111,4036080n n n a a a n ++=++Þ=-Þ分析:两边加得a =6、()AB AC AB AC 1AB AC BC 0ABC 2AB AC AB AC A B C D æöç÷··D ç÷èø已知非零向量与满足+=且=,则为三边均不相等的三角形, 直角三角形, 等腰非等边三角形, 等边三角形。
2006年全国高中数学联赛一、二试试题及答案

2006年全国高中数学联赛试题第一试一、选择题(本题满分36分,每小题6分)1. 已知△ABC ,若对任意R t ∈≥-,则△ABC 一定为A .锐角三角形 B. 钝角三角形 C. 直角三角形 D. 答案不确定 【答】 ( )2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为A .112x << B .1, 12x x >≠且 C . 1x > D . 01x << 【答】( ) 3. 已知集合{}05≤-=a x x A ,{}06>-=b x x B ,N b a ∈,,且{}2,3,4A B N ⋂⋂=,则整数对()b a ,的个数为A. 20B. 25C. 30D. 42 【答】 ( ) 4. 在直三棱柱111A B C ABC -中,2BAC π∠=,11AB AC AA ===. 已知G与E分别为11A B 和1CC 的中点,D与F分别为线段AC 和AB 上的动点(不包括端点). 若GD EF ⊥,则线段DF的长度的取值范围为A. 1⎫⎪⎭B.1, 25⎡⎫⎪⎢⎣⎭C. 1,⎡⎣D. 【答】 ( ) 5.设(32()log f x x x =+,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件 【答】 ( ) 6. 数码1232006,,,,a a a a 中有奇数个9的2007位十进制数12320062a a a a 的个数为A .200620061(108)2+ B .200620061(108)2- C .20062006108+ D .20062006108- 【答】( )二、填空题(本题满分54分,每小题9分)7. 设x x x x x f 44cos cos sin sin )(+-=,则)(x f 的值域是 。
历年全国高中数学竞赛试卷及答案(77套)

(5月14日下午14:30—16:30)
题目
一
二
三
总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.
湖南省2002年高中数学奥林匹克竞赛试题

选校网 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库湖南省2002年高中数学奥林匹克竞赛试题(9月7日上午9:00-11:00)注意事项:本试卷共18题,满分150分一、选择题(本大题共6个小题,每小题6分,满分36分)1.定义在实数集R 上的函数y =f(-x)的反函数是y =f -1(-x),则(A)y =f(x)是奇函数 (B)y =f(x)是偶函数(C)y =f(x)既是奇函数,也是偶函数 (D)y =f(x)既不是奇函数,也不是偶函数2.二次函数y =ax 2+bx +c 的图象如右图所示。
记N =|a +b +c|+|2a -b|,M =|a -b +c|+|2a +b|,则(A)M >N (B)M =N (C)M <N(D)M 、N 的大小关系不能确定3.在正方体的一个面所在的平面内,任意画一条直线,则与它异面的正方体的棱的条数是(A) 4或5或6或7 (B) 4或6或7或8(C) 6或7或8 (D) 4或5或64.ΔABC 中,若(sinA +sinB)(cosA +cosB)=2sinC ,则(A)ΔABC 是等腰三角形但不一定是直角三角形 (B)ΔABC 是直角三角形但不一定是等腰三角形 (C)ΔABC 既不是等腰三角形也不是直角三角形 (D)ΔABC 既是等腰三角形也是直角三角形5.ΔABC 中,∠C =90°。
若sinA 、sinB 是一元二次方程x 2+px +q =0的两个根,则下列关系中正确的是(A)p =q 21+±且q >21- (B)p =q 21+且q >21-(C)p =-q 21+且q >21- (D)p =-q 21+且0<q ≤216.已知A (-7,0)、B (7,0)、C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(A)双曲线 (B)椭圆(C)椭圆的一部分 (D)双曲线的一部分二、填空题(本大题共6个小题,每小题6分,满分36分)7. 满足条件{1,2,3}⊆ X ⊆{1,2,3,4,5,6}的集合X 的个数为____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年湖南省高中数学竞赛试卷A考生注意:1.本试卷共三大题(16个小题),全卷满分150分。
2.用钢笔、签字笔或圆珠笔作答。
3.解题书写不要超出装订线。
4.不能使用计算器。
一、选择题(本大题共6小题,每小题6分,满分36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.记[x]为不大于x 的最大整数,设有集合}2]x [x |x {A 2=-=,}2|x ||x {B <=,则=B A ( )A .(-2,2)B .[-2,2]C .}1,3{-D .}1,3{-2.若()()200634554x 57x 53x 2x 2x f +--+=,则⎪⎪⎭⎫⎝⎛-21111f =( )A .-1B .1C .2005D .20073.四边形的各顶点位于一个边长为1的正方形各边上,若四条边长的平方和为t ,则t 的取值区间是 ( ) A .[1,2] B .[2,4] C .[1,3] D .[3,6] 4.如图,在正方体ABCD -A 1B 1C 1D 1中,P 为棱 AB 上一点,过点P 在空间作直线l ,使l 与平面 ABCD 和平面ABC 1D 1均成 30角,则这样的直 线条数是( ) A .1 B .2 C .3 D .45.等腰直角三角形∆ABC 中,斜边BC=24,一个椭圆以C 为其焦点,另一个焦点在线段AB 上,且椭圆经过A ,B 两点,则该椭圆的标准 方程是(焦点在x 轴上) ( )A .124y 246x 22=++ B .1243y 246x 22=+++C .1246y 24x 22=++D . 1246y 243x 22=+++(注:原卷中答案A 、D 是一样的,这里做了改动)6.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三 角形个数为 ( ) A .1372 B . 2024 C . 3136 D .4495二、填空题(本大题共6小题,每小题6分,满分36分,请将正确答案填在横线上。
) 7.等差数列}a {n 的前m 项和为90,前2 m 项和为360,则前4m 项和为_____.8.已知]4,4[y ,x ππ-∈,R a ∈,且⎪⎩⎪⎨⎧=++=-+0a y 2sin 21y 40a 2x sin x 33,则()y 2x cos +的值为_________.9.100只椅子排成一圈,有n 个人坐在椅子上,使得再有一个人坐入时,总与原来的n 个人A C D中的一个坐在相邻的椅子上,则n 的最小值为__________.10.在∆ABC 中,AB=30,AC=6,BC=15,有一个点D 使得AD 平分BC 并且ADB ∠是直角,比值ABC ADB S S ∆∆能写成n m的形式,这里m 、n 是互质的正整数,则m -n=______ __. 11.设ABCD -A 1B 1C 1D 1是棱长为1的正方体,则上底面ABCD 的内切圆上的点P 与过顶点A ,B ,C 1,D 1的圆上的点Q 之间的最小距离是___________.12.一项“过关游戏”的规则规定:在第n 关要抛一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于n 2,则算过关。
则连过前3关的概率为_________. 三、解答题(本大题共4小题,满分78分要求解答要有必要的过程) 13.(本小题满分16分)是否存在最小的正整数t ,使得不等式()()t n 3tn t n n 1t n +>++对任何正整数n 恒成立,证明你的结论。
14.(本小题满分18分)设x ,y ,z 为正实数,求函数()()()()()xyz1z 2z 3y 4x 4y 3x 21z ,y ,x f ++++=的最小值。
15.(本小题满分22分)设A 、B 分别为椭圆1b y a x 2222=+ ()0b a >>和双曲线1by a x 2222=-的公共的左、右顶点。
P 、Q 分别为双曲线和椭圆上不同于A 、B 的动点,且满足()+=+λ()1,R >∈λλ。
设直线AP 、BP 、AQ 、BQ 的斜率分别为k 1、k 2、k 3、k 4.(1)求证:k 1+k 2+k 3+k 4=0;(2)设 F 1、F 2分别为椭圆和双曲线的右焦点。
若12QF //PF ,求24232221k k k k +++的值。
16.(本小题满分22分)将m 位性别相同的客人,按如下方法入住A 1、A 2、…、A n 共n 个房间。
首先,安排1位客人和余下的客人71的入住房间A 1;然后,从余下的客人中安排2位和再次余下的客人71的入住房间A 2;依此类推,第几号房间就安排几位客人和余下的客人71的入住;这样,最后一间房间A n 正好安排最后余下的n 位客人。
试求客人的数目和客房的数目,以及每间客房入住客人的数目。
参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.选择题和填空题严格按标准给分,不设中间档次分.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准适当档次评分.一、选择题(本大题共6个小题。
每小题6分,满分36分.)(注:选择题有些解答是不同于标准答案的简单一点的解法,供参考) 1.选C 解:由于x=0∉A ,排除答案A 、C ,又x=-1满足题意,故选C; 2.选B 解:令21111t -=,则055t 2t 22=-+,故 ()()()11]11t t 55t 2t 2[)t (f 2006200632=-=--+-+=,故选B;3.选B 解: 当四边形顶点与正方形顶点重合时知t=4,排除A 、C ,又取各边中点时可得 t=2,排除D ,故选B;4.选B 解: 由于二面角C 1-AB -D 的平面角为450,所以在这个二面角及它的“对顶”二面角内,不存在过点P 且与面ABCD 和面ABC 1D l 均成300角的直线.转而考虑它的补二面角,易知过点P 有且仅有两条直线与面ABCD 和面ABC l D l 均成300角.故满足条件 的直线l 有2条,选B;5.选A 解:因为BC=42,设椭圆的另一个焦点为D .以DC 为x 轴,中点为原点建立直角坐标系.设椭圆方程为:1by a x 2222=+ (a>b>0),所以|AD|+|BD|+|AC|+|BC|= 4a .即8+42=4a ,a=2+2.|AD|=2a -|AC|=22.在直角三角形ADC 中,24168|CD |2=+=,6c 2=,24c a b 222=-= 故方程124y 246x 22=++为所求,选A ;6.选C 解法一:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法;再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然 后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136. 解法二:31364C C 37328=-二、填空题(本大题共6个小题.每小题6分.满分36分.请将正确的答案填在横线上.) 7.1440 解:设S k =a 1+a 2+…+a k ,易知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,从而S 3m = 810.又易知S 2m -S m ,S 3m -S 2m ,S 4m -S 3m 成等差数列,即 S 4m =3S 3m -3S 2m +S m =2430-1080+90=1440 故填1440.8.1 解:设f(t)=t 3+sin t .则f (t)在]2,2[ππ-上是单调增加的.由原方程组可得f(x)=f(-2y)=2a ,又x ,-2y∈]2,2[ππ-,,所以x=-2y ,x+2y=0,故cos(x+2y)=1.故填1. 9.34 解:由题知,n 个人人坐后,每两人中间至多有两只空椅子.故若能让两人中间恰好有两只空椅,则n 最小.这样,若对已坐人的椅子编号,不难得一等差数列:1,4,7,…,100.从而100=1+3(n -1),解得n=34.填34; 10.65 解:设BC 中点为E ,AD=2x .由中线公式得AE=257.由勾股定理,得120-15+57=x 572,3827572x AE 2AD n m ===,故m+n=27+38=65.故填65. 11.223- 解:设点O 是正方体的中心,则易得OQ=23,OP=22,则由三角不等式PQ ≥O Q -OP=223-.等号当且仅当三点O 、P 、Q 共线时成立.又显然当点P 为线段AB 中点时,设射线OP 与ABC 1D 1的外接圆的交点为Q 时满足要求. 故填223-; 12.243100解:由于骰子是均匀正方体,所以抛掷后各点数出现的可能性是相等的.设事件A n 为“第n 次过关失败”,则对立事件B n 为“第n 次过关成功”第n 次游戏中,基本事件总数为6n第1关:事件A l 所含基本事件数为2(即出现点数1和2两种情况).所以过此关的概率为P(B 1)=1- P(A 1)=32621=-; 第2关:事件A 2所含基本事件数为方程x+y=a 当a 分别取2、3、4时的正整数解组数之和,即6个.所以过此关概率为P(B 2)=1-P(A 2)=656612=-; 第3关:事件A 3所含基本事件数为方程x+y+z=a 当a 分别取3、4、5、6、7、8时的正整数解组数之和,即56个.所以过此关概率为P(B 3)=1-P(A 3)=272065613=-; 故连过三关的概率为P(B 1)×P(B 2)×P(B 3)=243100. 故填243100。
三、解答题(本大题共4个小题.满分78分,要求解答有必要的过程.)13.解:取(t ,n )=(1,1),(2,2),(3,3),容易验证知t=1,2,3时均不符合要求. ………………………(4分) 当t=4时,若n=l ,式①显然成立.n ≥2,则()()()3322n 3n 422n 2n 2n 1n n 4⨯+=+-…………………………(8分)≤ ()()4n 24n 34n 14n 8n ]4n 22n 23n 22n 2n [++⎪⎪⎭⎫⎝⎛+++=++++⨯+-… (12分)<()4n 4n 24n 4n 16n 8n +++=⎪⎪⎭⎫⎝⎛+++故①式成立。