无线通信基础知识

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线通信之所以成为既富挑战性又能引起研究人员兴趣的课题,主要原因有两个,这两个原因对于有线通信而言基本没有什么影响。首先是衰落(fading)现象;其次是无线用户是在空中进行通信,因此彼此间存在严重的干扰(interference),下面分别做一简要介绍。

1)衰落

首先介绍一些无线衰落信道的特性,与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为:

P(d)=|d|-n S(d)R(d)

其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种:

(1) 大尺度衰落:电波在自由空间内的传播损耗|d|-n,其中n一般为3~4,与频率无关;

(2) 阴影衰落:S(d)表示,由于传播环境的地形起伏、建筑物和其他障碍物对地波的阻塞或遮蔽而引发的衰落,被称作中等尺度衰落;

(3) 小尺度衰落:R(d)表示,它是由发射机和接收机之间的多条信号路径的相长干扰和相消干扰造成的,当空间尺度与载波波长相当时,会出现小尺度衰落,因此小尺度衰落与频率有关。

大尺度衰落与诸如基站规划之类的问题关系更为密切,小尺度衰落是本文的

重点。

2)干扰

干扰可以是与同一台接收机通信的发射机之间的干扰(如蜂窝系统的上行链路),也可以是不同发射机——接收机对之间的干扰(例如不同小区中用户之间的干扰)。

无线信道的多径衰落

无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,参见图1。由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。

图1

例如发射端发送一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的。对应一个发送脉冲信号,图2给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion ),其中τmax被定义为最大时延扩展。

在传输过程中,由于时延扩展,

接收信号中的一个符号的波形会扩

展到其他符号当中,造成符号间干

扰( Inter Symbol interference,

ISI )。为了避免产生ISI,应该令图2

符号宽度要远远大于无线信道的最大时延扩展,或者符号速率要小于最大时延扩展的倒数。由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩

展都可能是不同的,因此需要采用大量测量数据的统计平均值。表1给出两种不同信道环境下的时延扩展值。

不同信道环境下的时延扩展值

环境最大时延扩展最大到达路径差

室外40ns~200ns 12m~60m

室内1um~20um 300m~6km

表1

在频域内,与时延扩展相关的另一个重要概念是相干带宽,实际应用中通常用最大时延扩展的倒数来定义相干带宽,即:

(ΔB)c= 1/τmax

从频域角度观察,多径信号的时延扩展可以导致频率选择性衰落(frequency-selective fading),即针对信号中不同的频率成分,无线传输信道会呈现不同的随机响应,由子信号中不同频率分量的衰落是不一致的,所以经过衰落之后,信号波形就会发生畸变。

下面从傅里叶变换的角度分析一下频率选择性衰落的原因:

我们以最简单二径传输为例,首先我们假设到达接收点的两路径信号具有相同的强度和一个相对时延差。那么,若令发射信号为f (t),则到达接收点的两条路径信号可分别表示成k·f(t-t0)和k·f(t-t0-τ),在这里t0是固定的时延,τ是两条路径信号的相对时延差,k为某一确定值。不难看出,上述的传播过程可用下图来表示:

K K

延时t0

延时t0+τ

相加

k·f(t-t0-τ)

k·f(t-t0)

k·f(t)

k·f(t)

f(t)

f(t)

G(t)

图中输出:

G(t)= k·f(t-t0)+k·f(t-t0-τ)

我们假设f (t)的傅立叶变换是F(ω),那么就有:

f (t) <=> F(ω)

k·f(t-t0) <=> k·F(ω)e-jωt0

k·f(t-t0-τ) <=> k·F(ω)e-jω(t0+τ)

k·f(t-t0)+ k·f(t-t0-τ) <=> k·F(ω)e-jωt0 (1+e-jωτ)

那么我们可以得出此时模型的传输特性H(ω)为:

H(ω)=k·e-jωt0 (1+e-jωτ)

上式中所求的传输特性除常数因子k外,是由一个模为1,固定时延为t。的网络与另一个特性为(1+e-jωτ)的网络级联所组成,而后一个网络的模特性为:

|(1+e-jωτ)|=|1+sinωτ-jsinωτ|=2|cos(ωτ/2)|

由此可见,两径传播的模特性将依赖于2|cos(ωτ/2)|,这就是说,对不同的频率,两径传播的结果将有不同的衰减。并且在ωτ=2nπ时出现传输的极点,在wτ= 2(n+1)π时出现零点。

相干带宽是无线信道的一个特性,至于信号通过无线信道时,是出现频率选择性衰落还是平坦衰落,这要取决于信号本身的带宽。

无线信道的时变性以及多普勒频移

当移动台在运动中进行通信时,接收信号的频率会发生变化,称为多普勒效应,这是任何波动过程都具有的特性。以可见光为例,假设一个发光物体在远处以固定的频率发出光波,我们可以接收到的频率应该是与物体发出的频率相同。现在假定该物体开始向我们运动,但光源发出第二个波峰时,它距我们的距离应该要比发出第一个波峰的时候要近,这样第二个波峰达到我们的时同要小于第一个波峰到达我们的时间,因此这两个波峰到达我们的时间间隔变小了,与此相应我们接收到的频率就会增加。相反,当发光物体远离我们而去的时候,我们接收到的频率就要减小,这就是多普勒效应的原理。在天体物理学中,天文学家利用多普勒效应可以判断出其他星系的恒星都在远离我们而去,从而得出宇宙是在不断膨胀的结论。这种称为多普勒效应的频率和速度的关系是我们日常熟悉的,例如我们在路边听汽车的汽笛声:当汽车驶近我们时,其汽笛音调变高(对应频率增加);而当它始离我们时,汽笛音调又会变低(对应频率减小)。

信道的时变性是指信道的传递函数是随时间而变化的,即在不同的时刻发送相同的信号,在接收端收到的信号是不相同的,见图1. 10(a)。时变性在移动通信系统中的具体体现之一就是多普勒频移( Doppler shift),即单一频率信号经过时变衰落信道之后会呈现为具有一定带宽和频率包络的信号。这又可以称为信道的频率弥散性(frequency dispersion)。

相关文档
最新文档