广西南宁市2020年中考数学模拟考试试卷(二)

合集下载

南宁市2020年中考数学模拟试题及答案

南宁市2020年中考数学模拟试题及答案

南宁市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

备战2020中考南宁市中考第二次模拟考试数学试卷含答案【含多套模拟】

备战2020中考南宁市中考第二次模拟考试数学试卷含答案【含多套模拟】

中学数学二模模拟试卷一、选择题(本题共5小题,每题3分,共15分)1、把a 3-ab 2分解因式的正确结果是( )A (a+ab)(a -ab)B a (a 2-b 2)C a(a+b)(a -b)D a(a -b)22、在函数21-=x y 中,自变量x 的取值范围是( ) A x ≥2 B x>2 C x ≤2 D x<23、已知:如图1,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m , OC=5m ,则DC 的长为( )(A )3cm (B )2.5cm (C )2cm (D )1cm4、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是( )A 正三角形B 正五边形C 等腰梯形D 菱形5、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是( )(A) (B) (C) (D) 二、填空题(本题共5小题,每小题4分,共20分) 6、函数12++=x x y 中自变量x 的取值范围为___ 7、求值:︒⨯︒45cos 2260sin 21= 8、已知点P (-2,3),则点P 关于x 轴对称的点坐标是 . 9、如果圆锥的底面圆的半径是8,母线的长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是 。

10、已知:如图2,⊙O 的半径为l ,C 为⊙O 上一点,以C 为圆心,以1为半径作弧与⊙O 相交于A 、B 两点,则图中阴影部分的面积是 . 三、解答题(本题共5小题,每小题6分,共30分) 11、先化简,再求值:24422222-++-÷+-yxy x y x y x y x .其中c =2-2,y =22-1 图1图212、制作铁皮桶,需在一块三角形余料上截取一个面积最大的圆,请画出该圆。

广西南宁市2020年中考数学试卷(II)卷

广西南宁市2020年中考数学试卷(II)卷

广西南宁市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分)的值是()A . 4B . 2C . -2D . ±22. (2分) (2020八上·江阴月考) 一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案()A .B .C .D .3. (2分)(2017·淅川模拟) 下列运算正确的是()A . a•a3=a3B . (ab)3=a3bC . (a3)2=a6D . a8÷a4=a24. (2分)(2018·泸县模拟) 六边形的内角和为()A . 360°B . 540°C . 720°D . 900°5. (2分)在平面直角坐标系中有一点M(-4,3),对于下列说法正确的是()A . 点M在第四象限B . 点M到x轴的距离是3C . 点M到y轴的距离是3D . 以上说法都不对6. (2分)(2018·牡丹江) 如图,直线y=kx﹣3(k≠0)与坐标轴分别交于点C,B,与双曲线y=﹣(x <0)交于点A(m,1),则AB的长是()A . 2B .C . 2D .7. (2分)一次函数y=2x+4的图象与y轴交点的坐标是()A . (0,﹣4)B . (0,4)C . (2,0)D . (﹣2,0)8. (2分) (2017九·龙华月考) 一个几何体由若干大小相同的小立方块搭成,图2分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要()A . 5块B . 6块C . 7块D . 8块9. (2分)若t>0,那么a+t与的大小关系是()A . +t>B . a+t> aC . a+t≥ aD . 无法确定10. (2分)若坡面与水平面的夹角为α,则坡度i与坡角α之间的关系是()A . i=cosαB . i=sinαC . i=cotαD . i=tanα二、认真填一填 (共6题;共8分)11. (1分) (2017八上·郑州期中) ,0,3. ,,,(每两个2之间依次多一个3),64,42 ,,,无理数的个数有________个.12. (1分)(________ )÷7st2=3s+2t;(________ )(x﹣3)=x2﹣5x+6.13. (2分)(2020·武汉模拟) 如图,国内截至目前部分地区新冠肺炎治愈出院人数,则这组数据的中位数是________.地区治愈湖北省63612中国香港173中国台湾50上海市348北京市434东省1368河北省310浙江省122814. (1分)(2018·潮阳模拟) 如图,AB是⊙O的直径,D是AC的中点,OD∥BC,若AB=10,AD=4,则OD=________.15. (2分)已知α为锐角,当无意义时,tan(α+15°)﹣tan(α﹣15°)的值是________.16. (1分) (2015七下·泗阳期中) 已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是________三、全面答一答 (共8题;共90分)17. (5分) (2020八下·吉林期末) 已知直线l:y=kx+b与直线y=3x平行,且直线l过点(2,8),求直线l 与x轴的交点坐标.18. (10分) (2018九上·桥东期中) 初三(1)班要从甲、乙、丙、丁这名同学中随机选取名同学参加学校毕业生代表座谈会.(1)已确定甲参加,则另外1人恰好选中乙的概率是________;(2)随机选取2名同学,用树状图或列表求出恰好选中甲和乙的概率.19. (10分) (2019八上·滨海期末) 如图,在中,CD是斜边AB上的中线,,垂足为E(1)如果,,那么 ________cm, ________cm:(2)求证: .20. (15分)(2017·深圳模拟) “低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?21. (10分)(2014·扬州) 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE 后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.22. (15分) (2018九上·利辛期中) 如图(1)如图1所示,在Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,点E在直角边BC上,若∠CDE =45°,求证:△ACD∽△BDE.(2)如图2所示,在矩形ABCD中,AB=4cm,BC=10cm,点E在BC上,连接AE,过点E作EF⊥AE交CD(或CD的延长线)于点F.①若BE:EC=1:9,求CF的长;②若点F恰好与点D重合,请在备用图上画出图形,并求BE的长.23. (15分) (2016九上·封开期中) 已知关于x的二次函数y=x2﹣6x+2m﹣1,(1)当m为何值时,函数与x轴没有交点;(2)当m=﹣3时,求二次函数与坐标轴的交点坐标.24. (10分)(2020·青白江模拟) 如图,抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)求抛物线的解析式;(2) x轴上是否存在点P,使PC+ PB最小?若存在,请求出点P的坐标及PC+ PB的最小值;若不存在,请说明理由;(3)连接BC,设E为线段BC中点.若M是抛物线上一动点,将点M绕点E旋转180°得到点N,当以B、C、M、N为顶点的四边形是矩形时,直接写出点N的坐标.参考答案一、仔细选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、全面答一答 (共8题;共90分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-3、。

2020-2021学年广西省中考数学模拟试题及答案解析

2020-2021学年广西省中考数学模拟试题及答案解析

@学无止境!@广西最新下学期九年级数学综合模拟训练(2)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间120分钟,赋分120分) 第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确的.1.2014的倒数是( )A .12014B .12014- C .2014 D .2014- 2.1.四边相等的四边形是( ) A. 正方形 B.矩形 C. 菱形D.梯形 3.下列各式中,与2a 是同类项的是( )A .3aB .2abC .23a -D .a 2b4.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是( ) A .B . C . D .5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点坐标为( )A .(3,2)B .(2,3-)C .(2-,3)D .(2-,3-)6.一次函数y=kx+b (k ≠0)的图像如图1所示,则下列结论正确的是( )A .k=2B .k=3C .b=2D .b=37.下列命题中,是真命题的是( )A .等腰三角形都相似B .等边三角形都相似C .锐角三角形都相似D .直角三角形都相似8.⊙O 的半径为5cm ,点A 到圆心O 的距离OA=3cm ,则点A 与圆O的位置关系为( )A .点A 在圆上B . 点A 在圆内C . 点A 在圆外D .无法确定9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球。

则下列事件是必然事件的是( )A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球@学无止境!@ C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球11.如图2,在△ABC 中,∠CAB=70°,将△ABC 绕点A 逆时针旋转到△AB'C'的位置,使得CC'∥AB ,则∠BAB'的度数是( )A .70°B .35°C .40°D .50°12.如图3,在等腰梯形ABCD 中(图(1)),∠B=60°,P 、Q 同时从B 出发,以每秒1单位长度分别沿B-A-D-C 和B-C-D 方向运动至相遇时停止,设运动时间为t (秒),△BPQ 的面积为S (平房单位),S 与t 的函数图象如图(2)所示,则下列结论错误的是( )A .当t=4秒时,S=43B .AD=4C .当4≤t ≤8时,S=23tD .当t=9秒时,BP 平分梯形ABCD 的面积第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:a 2+2a=.14.震惊世界的马航MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中首次侦听到疑似飞机黑匣子的脉冲信号,探测到的信号源所在海域水深4500米左右,把4500米用科学记数法表示为米.15.如图4,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是.16.关于x 的一元二次方程x 2+a=0没有实数根,则实数a 的取值范围是 a >0 ..17.已知关于x 的一元二次方程()22x 2k 1x k 20+++-=的两根x 1和x 2,且()()112x 2x x 0--=,则k 的值是.18.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分10分,每小题5分)(1)计算:()20142sin45421--+︒+-(2)解不等式:4x 3>x 6-+,并把解集在数轴上表示出来.20.(本题6分)在ABCD 中,对角线AC 、BD 交于点O ,过点O 作直线EF 分别交线段AD 、BC 于点E 、F.(1)根据题意,画出图形,并标上正确的字母;(2)求证:DE=BF.图421.(本题6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.22.(本题6分)电动自行车已成为市民日常出行的首选工具。

广西南宁市2020年中考数学二模试卷(含解析)

广西南宁市2020年中考数学二模试卷(含解析)

2020年广西南宁市中考数学二模试卷一.选择题(共12小题,满分36分,每小题3分)1.已知室内温度为3℃,室外温度为﹣3℃,则室内温度比室外温度高()A.6℃B.﹣6℃C.0℃D.3℃2.如图所示的几何体的俯视图是()3.下列图案中,可以看做是中心对称图形的有()A.1个B.2个C.3个D.4个4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2.-1.0、1.3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为( )A.0.8B.0.6C.0.4D.0.25.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108B.3×107C.3×106D.0.3×1086.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( )A.20°B.40°C.30°D. 25°7.在Rt△ABC中,∠C=900,sinA=0.6,BC=6,则 AB=().A.4B.6C.8D.108.如图,AB是⊙O的直径,C,D为圆上两点,∠AOC=130°,则∠D等于()A.25°B.30°C.35°D.50°9.小华有x元,小林的钱数是小华的一半还多2元,小林的钱数是()A. B. C. D.10.下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.对载人航天器“神舟十一号”零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式11.下列各式中,能用平方差公式计算的是()A. B.C. D.12.如图,正方形ABCD的边长为4,点P、Q分别是CD.AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E.F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()二.填空题(共6小题,满分18分,每小题3分)13.若x+y=1,xy=﹣7,则x2y+xy2=.14.一个多边形的内角和等于它的外角和,这个多边形是边形.15.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为.16.如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN=.17.观察下列等式31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34+…+32020的末位数字是.18.如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=.三.解答题(共8小题,满分66分)19.(6分)计算:2﹣1+20160﹣3tan30°+|﹣|20.(6分)解方程:﹣=121.(8分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B (2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.(1)画出△A1OB1;(2)直接写出点A1和点B1的坐标;(3)求线段OB1的长度.22.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.23.(8分)在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.24.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.(1)甲的速度是米/分钟;(2)当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;(3)乙出发后多长时间与甲在途中相遇?(4)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?25.(10分)如图,以AB为直径的⊙O与BC相切于点B,与AC相交于点D.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母.(保留作图痕迹,不写作法)①作∠BAC的平分线AE,交⊙O于点E;②连接BE并延长交AC于点F.探索与发现:(2)试猜想AF与AB有怎样的数量关系,并证明;(3)若AB=10,sin∠FBC=,求BF的长.26.(10分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.2020年广西南宁市沛鸿民族中学中考数学二模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.A;2.B3.B4.C5.B.6.A.7.D8.A9.A10.D;11.C12.A二.填空题(共6小题,满分18分,每小题3分)13.【分析】原式提取公因式,将已知等式代入计算即可求出值.【解答】解:∵x+y=1,xy=﹣7,∴原式=xy(x+y)=﹣7,故答案为:﹣7【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故答案为四.【点评】本题考查了多边形的外角和定理以及四边形的内角和定理,比较简单.15.【分析】观察可以看出,三个未知数的值都没有直接给出,而是隐含在已知条件中,根据已知的等式和算术平方根与绝对值的非负性,我们可以得出各个加数均为零,从而求出各个未知数的值,代入即可求出所求代数式的值.【解答】解:∵ ++|10﹣2c|=0,算术平方根和绝对值又都具有非负性,∴=0,=0,|10﹣2c|=0,∴a+b+c=0,b﹣6=0,10﹣2c=0,解得:c=5,b=6,a=﹣11,将其代入所求代数式得:ab+bc=﹣11×6+6×5=﹣36.【点评】此题主要考查了非负数的性质,解题突破点是根据已知求出未知数的值,另外要注意算术平方根,绝对值具有非负性的知识点的运用,在了解了这些的基础上再来看这道题就不会那么难了.16.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,∴BC=2NB=10,∴AB=AC+BC=8+10=18,∴BM=9,∴MN=BM﹣NB=9﹣5=4,故答案为:4.【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.17.【分析】通过观察31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,对前面几个数相加,可以发现末位数字分别是3,2,9,0,3,2,9,0,可知每四个为一个循环,从而可以求得到3+32+33+34+…+32020的末位数字是多少.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,∴3=3,3+9=12,12+27=39,39+81=120,120+243=363,363+729=1092,1092+2187=3279,又∵2020÷4=505,∴3+32+33+34+…+32020的末位数字是0,故答案为0.【点评】本题考查尾数特征,解题的关键是通过观察题目中的数据,发现其中的规律.18.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.【解答】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=4,∴BC•EO=4,即BC×OE=8=BO×AB=|k|.∵反比例函数图象在第一象限,k>0.∴k=8.故答案是:8.【点评】本题考查反比例函数系数k的几何意义.反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三.解答题(共8小题,满分66分)19.【分析】直接利用特殊角的三角函数值以及绝对值的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=+1﹣3×+=+1﹣+=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.依此即可求解.【解答】解:,去分母得:x(x+3)﹣3=x2﹣9,解得:x=﹣2.检验:把x=﹣2代入x2﹣9=﹣5≠0,故方程的解为x=﹣2.【点评】考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.21.【分析】(1)分别作出点A和点B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;(2)由所得图形可得点的坐标;(3)利用勾股定理可得答案.【解答】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.22.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.23.【分析】根据等边三角形的性质及平行四边形的判定(两组对边分别相等的四边形是平行边形)来证明四边形ADEF是平行四边形.【解答】证明:四边形ADEF是平行四边形,∵等边三角形BCE和等边三角形ABF,∴BE=BC,BF=BA.又∵∠FBE=60°﹣∠ABE,∠ABC=60°﹣∠ABE,∴∠FBE=∠ABC,在△BFE和△BCA中,∴△BFE≌△BCA(SAS),∴DE=AC∵在等边三角形ACD中,AC=AD,∴FE=AD,同理FA=ED.∴四边形ADEF是平行四边形.【点评】本题主要考查平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的性质,掌握平行四边形的判定和性质是解题的关键24.【分析】(1)由图象可得甲行走的路程和时间,即可求甲的速度;(2)由待定系数法可求乙离景点A的路程s与t的函数表达式;(3)两人相遇实际上是函数图象求交点;(4)由乙从B景点开始行走的路程+360=景点B和景点C之间的距离,可列方程解即可.【解答】解:(1)甲的速度==60米/分钟,故答案为:60(2)当20≤t≤30时,设s=mt+n,由题意得解得∴s=300t﹣6000(3)当20≤t≤30时,60t=300t﹣6000,解得t=25,∴乙出发后时间=25﹣20=5,当30≤t≤60时,60t=3000,解得t=50,∴乙出发后时间=50﹣20=30,综上所述:乙出发5分钟和30分钟时与甲在途中相遇;(4)设乙从B步行到C的速度是x米/分钟,由题意得5400﹣3000﹣(90﹣60)x=360,解得x=68,所以乙从景点B步行到景点C的速度是68米/分钟.【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.25.【分析】(1)根据角平分线的尺规作图的方法即可得出结论;(2)利用ASA判断出△ABE≌△AFE即可得出结论;(3)先利用同角的余角相等判断出∠BAE=∠FBC,再在Rt△ABE中,求出BE,即可得出结论.【解答】解:(1)如图1所示,AE就是所作的图形;(2)AF=AB,∵AB是⊙O的直径,∴∠AEB=∠AEF=90°,∵AE平分∠BAC,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(ASA),∴AB=AF;(3)∵BC是⊙O的切线,∴AB⊥BC,∴∠ABE+∠FBC=90°,∵∠ABE+∠BAE=90°,∴∠BAE=∠FBC,∵sin∠FBC=,∴sin∠BAE=,在Rt△ABE中,AB=10,sin∠BAE==,∴BE=AB=2,∵AF=AB,∠BAE=∠FAE,∴BF=2BE=4.【点评】此题是圆的综合题,主要考查了利用尺规作图作角的平分线,全等三角形的判定和性质,等腰三角形的性质,锐角三角函数,判断出∠BAE=∠FBC是解本题的关键.26.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;(3)根据平行四边形的性质和坐标特点解答即可.【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,解得:,所以a=﹣1,k=﹣1,b=﹣2,关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.∵A(﹣1,﹣1),B(2,﹣4),∴C(﹣1,﹣4),AC=BC=3,设点P的横坐标为m,则点P的纵坐标为﹣m2.过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),∴PD=m+1,PE=﹣m2+4.∴S△APB=S△APC+S△BPC﹣S△ABC===.∵<0,,﹣1<m<2,∴当时,S△APB的值最大.∴当时,,S△APB=,即△PAB面积的最大值为,此时点P的坐标为(,)(3)存在三组符合条件的点,当以P,Q,A,B为顶点的四边形是平行四边形时,∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),可得坐标如下:①P′的横坐标为﹣3,代入二次函数表达式,解得:P'(﹣3,﹣9),Q'(0,﹣12);②P″的横坐标为3,代入二次函数表达式,解得:P″(3,﹣9),Q″(0,﹣6);③P的横坐标为1,代入二次函数表达式,解得:P(1,﹣1),Q(0,﹣4).故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

广西省南宁市2019-2020学年第二次中考模拟考试数学试卷含解析

广西省南宁市2019-2020学年第二次中考模拟考试数学试卷含解析

广西省南宁市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE 于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°2.下列计算正确的是()A.5﹣2=3B.4=±2C.a6÷a2=a3D.(﹣a2)3=﹣a63.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是104.计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.245.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x6.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是()A.①④⑤B.①②④C.①③④D.①③⑤7.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣18.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.129.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.10.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×10511.如图,在矩形纸片ABCD中,已知AB=3,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D 的过程中,则点F运动的路径长为()A.πB.3πC.3πD.233π12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=12S△CEF,其中正确的是()A .①③B .②④C .①③④D .②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.14.已知关于x 的方程有解,则k 的取值范围是_____. 15.关于x 的方程1101ax x +-=-有增根,则a =______. 16.如图,在菱形ABCD 中,AB=3,∠B=120°,点E 是AD 边上的一个动点(不与A ,D 重合),EF ∥AB 交BC 于点F ,点G 在CD 上,DG=DE .若△EFG 是等腰三角形,则DE 的长为_____.17.若关于x 的方程2222x m m x x++=--的解是正数,则m 的取值范围是____________________ 18.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s (单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y 与时间x (0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?20.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(6分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A 类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.(8分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC .求作:△ABC 的边BC 上的高AD .作法:如图2,(1)分别以点B 和点C 为圆心,BA ,CA 为半径作弧,两弧相交于点E ;(2)作直线AE 交BC 边于点D .所以线段AD 就是所求作的高.请回答:该尺规作图的依据是______.23.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.24.(10分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?25.(10分)P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把PA•PB 的值称为点P 关于⊙O 的“幂值”(1)⊙O 的半径为6,OP=1.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为_____;②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙0的“幂值”的取值范围;(2)若⊙O 的半径为r ,OP=d ,请参考(1)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围_____;(3)在平面直角坐标系xOy 中,C (1,0),⊙C 的半径为3,若在直线3上存在点P ,使得点P 关于⊙C 的“幂值”为6,请直接写出b 的取值范围_____.26.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。

广西省南宁市直属学校四大学区2020年中考第二次模拟联考数学试卷

广西省南宁市直属学校四大学区2020年中考第二次模拟联考数学试卷

2020年南宁市直属学校四大学区中考第二次模拟联考数 学(考试时间:120分钟 满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.请在答题卡上作答,在本试...卷上作答无效....... 2.答题前,请认真阅读答题卡上的注意事项............... 3.不能使用计算器.考试结束时,将本试卷和答题卡一并交回................... 第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡...上对应题目的答案标号涂黑.) 1.下列实数中,属于无理数的是A .πB .0C .9D .-2 2.下列有关环保的图案中,属于轴对称图形的是A .B .C .D .3.新冠病毒的直径约是0.0000001米,其中数据0.0000001用科学记数法表示为A .7110-⨯B .7110⨯C .61010-⨯D .61010⨯ 4.关于x 的不等式3x -2≥2x +1的解集是A .x ≤3B .x <-3C .x ≥-3D .x ≥3 5.下列运算错误的是A .2a 2+3a 2=5a 4B .(3ab 3)2=9a 2b 6C .(x 2)3=x 6D .23a a a ⋅=6.如图,将木条a ,b 与c 钉在一起,∠1=80°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是A .10°B .20°C .30°D .50° 7.下列说法正确的是A .“三角形任意两边之和大于第三边”是不可能事件B .了解一批灯泡的使用寿命,应采用全面调查C .“明天的降水概率是80%”,是指明天有80%的时间在下雨D .抛一枚质地均匀的硬币,正面朝上的概率为218.如图,二次函数:2(0)y ax bx c a =++≠与一次函数:y =mx +n (m ≠0)的(第6题图)(第8题图)图象交于A ,B 两点,则一元二次方程2ax bx c mx n ++=+的解为A .121x x ==-B . 11x =,22x =C .11x =-,22x =D .122x x == 9.近年来,快递业发展迅速,2018年我国快递业务量为507亿件,2020年预计快递量将达到700亿件,设快递量平均每年增长率为x .则下列方程中正确的是A . 700)1(507=+xB . 700)21(507=+xC . 700)1(5072=+xD . 700)1(5072=-x 10.中国魏晋时期数学家刘徽首创“割圆术”,提出圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得圆周率π的近似值.如图,设半径为r 的内接正 n 边形的周长为C ,圆的直径为d ,则π≈C d .例如当n =6时,π632C r d r ==≈,则当n =12时,π的值约为(参考数据:sin15°=cos75°≈0.26) A .3.11 B .3.12 C .3.13 D .3.14 11.如图,在平面直角坐标系中,四边形ABCD 是菱形,点A 的坐标为(0,3),分别以A ,B 为圆心,大于21AB 的长为半径作弧,两弧交于E ,F 两点,直线EF 恰好经过点D ,交AB 于点H ,则四边形HBCD 的周长为A .5+3B .6C .34D .3+3 12.如图,四边形ABCD 内接于直径为3的⊙O ,AB =AC ,E 是弦AC 和直径BD 的交点,ED =53,则弦AD 的长为A .3B .2C .5D .6第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.) 13.若分式21+-x x 的值为0,则x 的值为 ▲ .14.一个不透明的袋子里装有2个黄球,3个红球,这些球除颜色外无其他差别,从袋子里随机摸出一个球,则摸到红球的概率为 ▲ .15.如图,△ABC ≌△DEC ,点E 在边AB 上,∠DEC =76°,则∠BCE 的度数是 ▲ .16.某公司招聘员工一名,一应聘者进行了三项素质测试,其中创新能力70分,综合能力80分,语言表达能力90分.如果将这三项成绩按5:3:2计入总成绩,则他的总成绩为 ▲ 分. 17.如图,已知圆环内直径为4cm ,外直径为5cm ,将30个这样的圆环一个接一个环套成一条铁链,那么这条铁链拉直后的长度为 ▲ cm . 18.如图,已知动点A 在函数4y x=(x >0)的图象上,AB ⊥x 轴于点B , (第12题图)(第11题图)(第10题图)(第17题图)(第15题图)H成绩x 人数 学校50≤x ≤59 60≤x ≤69 70≤x ≤79 80≤x ≤89 90≤x ≤100甲校 1 2 5 15 7 乙校12▲▲10学校 平均数 中位数 众数 甲校 83.4 86 88 乙校83.2▲▲甲校94 82 77 76 77 88 90 88 85 86 88 89 84 92 87 88 80 53 89 91 91 86 68 75 94 84 76 69 83 92 乙校8364 91 88 71 92 88 92 86 61 78 91 84 92 92 747593 8257868989948384819472 902(21)4(1)a a a +--,AC ⊥y 轴于点C ,延长CA ,交以A 为圆心,AB 为半径的圆弧于点D ; 延长BA ,交以A 为圆心,AC 为半径的圆弧于点E .直线DE 分别交 x ,y 轴于点P ,Q ,当QE :DP =4:9时,图中阴影部分的面积等于 ▲ .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分6分)计算:20202121104()22-+÷⨯-() .其中1.8a =20.(本题满分6分)先化简,再求值: 21.(本题满分8分)如图,在平面直角坐标系中,将△ABC 进行位似变换得到△A 1B 1C 1. (1)△ABC 与△A 1B 1C 1的位似比是 ▲ . (2)画出△ABC 绕点O 逆时针旋转180°得到的△A 2B 2C 2.(3)若点P (a ,b )为△ABC 内一点,求点P在△A 2B 2C 2 内的对应点P 2的坐标.22.(本题满分8分)为发展学生的数学核心素养,培养学生的综合能力,某市开展了初三学生的数学学业水平测试.在这次测试中,从甲、乙两校各随机抽取了30名学生的测试成绩进行调查分析.(说明:成绩80分及以上为优秀,60~79分为合格,60分以下为不合格)整理、描述数据:分析数据:(第21题图)表2表1(第18题图)(1)请你补全表格;(2)若甲校有300名学生参加测试,请估计甲校此次测试的优秀人数约为多少;(3)利用表2的数据,请你对甲乙两所学校的测试成绩进行评价.23.(本题满分8分)如图,在等腰△ABC 中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线;(2)若3cos4C=,AC=8,求DE的长.24.(本题满分10分)受疫情的影响,很多农产品滞销,各大电商发起了“爱心助农”活动,帮助农户进行农产品销售.已知某种橘子的成本为4元/千克,经过市场调查发现,一天内橘子的销售量y(千克)与销售单价x(元/千克)(4≤x≤10)的函数关系如下图所示:(1)当4≤x≤8时,求y与x的函数解析式;(2)当4≤x≤8时,要使一天内获得的利润为1200元,单价应定为多少?(3)求橘子的单价定为多少时,一天内获得的利润最大,最大利润为多少?25.(本题满分10分)如图1,矩形ABCD的对角线AC与BD相交于点O,将矩形沿对角线AC 折叠,折叠后点B落在点E处,CE交AD于点F,连接DE.(1)求证:AC∥DE;(2)当AB与BC满足什么数量关系时,四边形AODE是菱形?请说明理由;(3)将图1中的矩形ABCD改为平行四边形ABCD,其它条件不变,如图2,若AB=34,∠ABC=30°,点E在直线AD上方,试探究:△AED是直角三角形时,BC的长度是多少.26.(本题满分10分)如图,在平面直角坐标系中,二次函数32++=bxaxy的图像与x轴交于点A3(-,0),B3(3,0),与y轴交于点C,其对称轴与x轴交于点D.(1)求二次函数的解析式及其对称轴;(2)若点E是线段BC上的一点,过点E作x轴的垂线,垂足为F,且EF=2EC,求点E的坐标;(3)若点P是抛物线对称轴上的一个动点,连接PA,PC,设点P的纵坐标为t,当∠APC 不小于60°时,求t的取值范围.(第24题图)(第23题图)(第25题图)图1图2备用图(第26题图)。

广西省南宁市2019-2020学年中考数学二模试卷含解析

广西省南宁市2019-2020学年中考数学二模试卷含解析

广西省南宁市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF2.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()A.B.C.D.3.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B.C.D.4.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元5.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②7③S平行四边形ABCD=AB•AC④OE=14AD⑤S△APO=312,正确的个数是()A .2B .3C .4D .56.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹7.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟8.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且−2≤x≤1时,y 的最大值为9,则a 的值为A .1或−2B .−或C .D .1 9.关于x 的一元二次方程(m ﹣2)x 2+(2m ﹣1)x+m ﹣2=0有两个不相等的正实数根,则m 的取值范围是( )A .m >34B .m >34且m≠2C .﹣12<m <2D .54<m <2 10.已知5a b =r r ,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r方向相同 C .//a b r rD .||5||a b =r r 11.已知A (,1y ),B (2,2y )两点在双曲线32m y x+=上,且12y y >,则m 的取 值范围是( ) A .m 0> B .m 0< C .3m 2>- D .3m 2<-12.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.14.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.15.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算△ABC的周长等于_____.(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).___________________________.16.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则DEBC的值为_________.17.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是18.-3的倒数是___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?20.(6分)先化简,再求值:(m+2﹣52m-)•243mm--,其中m=﹣12.21.(6分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为»BD的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长22.(8分)先化简,再求值:221121()1a aa a a a-+-÷++,其中a=3+1.23.(8分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF 交DG于M;(1)求证:AM=FM;(2)若∠AMD=a.求证:DGAF=cosα.24.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE 是平行四边形.25.(10分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:7.5(04)510(414)x x y x x ≤≤⎧=⎨+<≤⎩工人甲第几天生产的产品数量为70件?设第x 天生产的产品成本为P 元/件,P 与x 的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 的函数关系式,并求出第几天时利润最大,最大利润是多少?26.(12分)已知抛物线y=x 2﹣6x+9与直线y=x+3交于A ,B 两点(点A 在点B 的左侧),抛物线的顶点为C ,直线y=x+3与x 轴交于点D .(1)求抛物线的顶点C 的坐标及A ,B 两点的坐标;(2)将抛物线y=x 2﹣6x+9向上平移1个单位长度,再向左平移t (t >0)个单位长度得到新抛物线,若新抛物线的顶点E 在△DAC 内,求t 的取值范围;(3)点P (m ,n )(﹣3<m <1)是抛物线y=x 2﹣6x+9上一点,当△PAB 的面积是△ABC 面积的2倍时,求m ,n 的值.27.(1220112(1)6tan 303π-︒⎛⎫--+- ⎪⎝⎭解方程:544101236x x x x -++=--参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE 的关系,根据三角形外角的性质,可得答案.【详解】在△ABC 和△DEB 中,AC BD AB ED BC BE =⎧⎪=⎨⎪=⎩,所以△ABC ≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键.2.A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A .3.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A .4.C【解析】【分析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1.所以该商品的原价为1元;故选:C.【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.5.D【解析】【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=12AB=12,OE∥AB,根据勾股定理计算2=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=1212POEAOPSS=VV,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,=∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,2=,∴,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=12BC,BC=AD,∴OE=12AB=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=2,∴S△AOE=S△EOC=12OE•OC=12×12×28=,∵OE∥AB,∴12 EP OEAP AB==,∴12POEAOPSS=VV,∴S△AOP=23S△AOE=23本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.6.B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B.7.C【解析】【分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.8.D【解析】【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.9.D【解析】【分析】根据一元二次方程的根的判别式的意义得到m -2≠0且Δ=(2m -1)2-4(m -2)(m -2) >0,解得m >54且m≠﹣2,再利用根与系数的关系得到2m m -1-2, m ﹣2≠0,解得12<m <2,即可求出答案.【详解】解:由题意可知:m -2≠0且Δ=(2m ﹣1)2﹣4(m ﹣2)2=12m ﹣15>0, ∴m >54且m≠﹣2, ∵(m ﹣2)x 2+(2m ﹣1)x+m ﹣2=0有两个不相等的正实数根, ∴﹣2m m -1-2>0,m ﹣2≠0, ∴12<m <2, ∵m >54,∴54<m <2, 故选:D . 【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键. 10.A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r r r ,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行. 11.D 【解析】 【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32my x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32my y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】 请在此输入详解! 12.C 【解析】 【分析】根据多项式乘以多项式的法则进行计算即可. 【详解】故选:C. 【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x 1=1,x 2=﹣1. 【解析】 【分析】直接观察图象,抛物线与x 轴交于1,对称轴是x =﹣1,所以根据抛物线的对称性可以求得抛物线与x 轴的另一交点坐标,从而求得关于x 的一元二次方程﹣x 2+bx+c =0的解. 【详解】解:观察图象可知,抛物线y =﹣x 2+bx+c 与x 轴的一个交点为(1,0),对称轴为x =﹣1, ∴抛物线与x 轴的另一交点坐标为(﹣1,0), ∴一元二次方程﹣x 2+bx+c =0的解为x 1=1,x 2=﹣1. 故本题答案为:x 1=1,x 2=﹣1. 【点睛】本题考查了二次函数与一元二次方程的关系.一元二次方程-x 2+bx+c=0的解实质上是抛物线y=-x 2+bx+c 与x 轴交点的横坐标的值. 14.25【解析】 【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【详解】解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=82. 205故答案为2 5 .【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.15.12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN 与AB交于P.【解析】【分析】(1)利用勾股定理求出AB,从而得到△ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)∵AC=3,BC=4,∠C=90º,∴根据勾股定理得AB=5,∴△ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故答案为:99.
16.【解答】解:连接 、 ,
由题意得. ,
由勾股定理得, ,

∴ ,
∴ ,
则图中阴影部分的面积=扇形 的面积 的面积-扇形 的面积
,故答案为: .
17.【解答】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和 ;
∵第2个图由11个正方形和10个等边三角形组成,
B、本题中为了了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查就
具有代表性.故选B.
6.【解答】解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误;
故选:B.
7.【解答】解:画树状图得:
∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,
∴两次摸出的小球标号之和等于6的概率 .
A. B. C. D.
4.如图,直线 、 被直线 、 所截,若 , ,则 的度数为()
A. B. C. D.
5.下列的调查中,选取的样本具有代表性的有()
A.为了解某地区居民的防火意识,对该地区的初中生进行调查
B.为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查
C.为了解某商场的平均日营业额,选在周末进行调查
D.为了解全校学生课外小组的活动情况,对该校的男生进行调查
6.下列运算正确的是()
A. B. C. D.
7.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()
A. B. C. D.
8.如图,在 中, , 为 边上的高,若点 关于 所在直线的对称点 恰好为 的中点,则 的度数是()
22.某中学团委会开展书法、诵读、演讲、征文四个项目(每人只参加一个项目)的比赛,初三(1)班全体同学都参加了比赛,为了解比赛的具体情况,小明收集整理数据后,绘制了以下不完整的折线统计图和扇形统计图,根据图表中的信息解答下列各题:
(1)初三(1)班的总人数为________,扇形统计图中“征文”部分的圆心角度数为________度;
(3)如图2,点 为抛物线对称轴上一点,是否存在点 ,使以点 、 、 为顶点的三角形是直角三角形?若存在,求出点 的坐标;若不存在,请说明理由.
参考答案与试题解析
1.【解答】解:根据有理数比较大小的方法,可得

∴在-2,-1,0,1这四个数中,最小的数是-2.
故选:A.
2.【解答】解:A、该几何体是长方体,正确;
A. B. C. D.
11.已知,在河的两岸有 , 两个村庄,河宽为4千米, 、 两村庄的直线距离 千米, 、 两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥 垂直于两岸, 点为靠近 村庄的河岸上一点,则 的最小值为()
A. B. C. D.
12.如图,在数轴上,点 表示1,现将点 沿数轴做如下移动,第一次将点 向左移动3个单位长度到达点 ,第二次将点 向右移动6个单位长度到达点 ,第三次将点 向左移动9个单位长度到达点 ,…按照这种移动规律进行下去,第51次移动到点 ,那么点 所表示的数为()
①当 时, 在 左边,

∴当 时,最大值
②当 时, 在 右边,

∴当 时,最大值
综上所述,矩形 周长的最大值是
(3)存在满足条件的点 .
①若 ,则
∵点 ,
∴直线 解析式为:
∴直线 解析式为:
当 时,

②若 ,则
故选:A.
8.【解答】解:∵在 中, , 为 边上的高,点 关于 所在
直线的对称点 恰好为 的中点,
∴ , ,
∴ , ,
∴ 是等边三角形,
∴ ,
∴ .
故选:C.
9.【解答】解:连接 ,交 于点 ,
∵ 是 的切线,
∴ ,
∵四边形 是矩形,
∴ ,
∴ , ,
设圆 的半径为 ,在 中, 米,

∵ ,
∴ ,
解得 .
解得: ,
经检验 符合实际且有意义;
(2)设购进的餐桌为 张,则餐椅为 张,

解得: ,
设利润为为 元,则:

当 时, 最大值 ;
(3)设成套销售 套,零售桌子 张,零售椅子 张,
由题意得: ,
化简得: ,
∴ ,
则 ,
又 ,
∴ , , .
25.【解答】解:(1)直线 与 相切,
如图1,连接 ,
∵ 平分 ,
15.“手机阅读”已逐渐成了眼科病的主要病因,据调查表明在“中年人”中有“手机阅读”习惯的占比约达66%.若随机选择150名“中年人”进行调查,则估计有________人有此习惯.
16.如图,在矩形 中, , ,以点 为圆心, 的长为半径作 交 于点 ;以点 为圆心, 的长为半径作 交 于点 ,则图中阴影部分的面积为________.
∵“征文”中的人数为6人,
∴“征文”部分的圆心角度数 ,
故答案为:48,45;
(2)∵国学诵读占50%,
∴国学诵读人数为: (人),
∴书法人数为: (人);
补全折线统计图;
(3)分别用 , , , 表示书法、国学诵读、演讲、征文,
画树状图得:
∵共有16种等可能的结果,他们参加的比赛项目相同的有4种情况,
A. B. C. D.
9.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的, , ,且 、 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()
A. B. C. D.
10.用长为4米的铝材制成一个矩形窗框,使它的面积为25平方米,若设它的一边长为 米,根据题意列出关于 的方程为()
三、解答题(共8小题)
19.(1)计算:
(2)解方程: .
20.先化简: ,并从0,-1,2中选一个合适的数作为 的值代入求值.
21.如图,在平面直角坐标系中, 的三个顶点分别为 , , .
(1)将 向右平移6个单位后得到 ,请在图中画出 ,并写出 点坐标;
(2)图中点 与点 关于直线 成轴对称,请在图中画出直线 及 关于直线 对称的 ,并直接写出直线 对应的函数关系式.
B、该几何体的高为3,正确;
C、底面有一边的长是1,正确;
D、该几何体的表面积为: 平方单位,故错误,
故选:D.
3.【解答】解:28000亿用科学记数法表示为 ,
故选:D.
4.【解答】解:如图,
∵ ,
∴ ,
∴ ,
∴ ,
故选:A.
5.【解答】解:A,C,D中进行抽查,对抽取的对象划定了范围,因而不具有代表性.
第5次从点 向左移动15个单位长度至点 ,则 表示的数为 ;
…;
则点 表示: .
故选:B.
13.【解答】解:由题意得: ,
解得: ,故答案为: .
14.【解答】解:∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,
∴甲淘汰;
乙成绩 ,
丙成绩 ,
乙将被录取.故答案为:乙
15.【解答】解:根据题意知估计有此习惯的人数为 (人),
(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,但销售价格保持不变.商场购进了餐桌和餐椅共200张,应怎样安排成套销售的销售量(至少10套以上),使得实际全部售出后,最大利润与(2)中相同?请求出进货方案和销售方案.
25.如图, 是 的内接三角形, 的角平分线 交 于点 ,交 于点 ,过点 作直线 .
∴他们参加的比赛项目相同的概率为: .
23.【解答】(1)证明:连接 ,
∵ 为圆 的直径,
∴ ,
∴ ,
∵ ,
∴ ,
∵ ,
∴ ,
∴ ,即 ,
则 为圆 的切线;
(2)解:∵直径 平分弦 ,
∴ ,
∵ ,
∴ ,
∵ , ,
∴ ,
∴ ,
在 中,根据勾股定理得: ,
则圆 的半径为 .
24.【解答】解:(1)根据题意,得: ,
(2)请把折线统计图补充完整;
(3)平平和安安两个同学参加了比赛,请用“列表法”或“画树状图法”,求出他们参加的比赛项目相同的概率.
23.如图,在 中,直径 平分弦 、 与 相交于点 ,连接 、 ,点 是 延长线上的一点,且 .
(1)求证: 是 的切线.
(2)若 , ,求 的半径.
24.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
∴正方形和等边三角形的和 ;
∵第3个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和 ,
…,
∴第 个图中正方形和等边三角形的个数之和 .
故答案为: .
18.【解答】解:作 关于 的对称点 ,过 作 于 ,交 于 ,
则 ,
此时, 的值最小, 的最小值 ,
∵ , ,
∴ ,
∴ ,
∴ ,
∴ ,故答案为: .
2020年广西南宁市中考数学模拟考试试卷(二)
一、选择题(共12小题)
1.在-2,-1,0,1这四个数中,最小的数是()
A.-2B.-1C.0D.1
2.某几何体的三视图如图所示,则下列说法错误的是()
A.该几何体是长方体B.该几何体的高是3
C.底面有一边的长是1D.该几何体的表面积为18平方单位
3.我国是一个干旱缺水严重的国家.我国的淡水资源总量为28000亿立方米,占全球水资源的6%,仅次于巴西、俄罗斯和加拿大.用科学记数法表示28000亿是()
(1)判断直线 与 的位置关系,并说明理由;
相关文档
最新文档