模具的失效分析

合集下载

刀具模具失效模式分析

刀具模具失效模式分析

PVD涂层刀具、模具失效分析郭 硕摘要:1、阐述了刀具、模具的基本失效模式;2、失效模式与原因分析的方法;3、刀具、模具经过PVD (物理气相沉积)处理后,失效模式的分析与改善方法。

关键字:PVD、ALTiN、TiCN、TiN、磨损、失效模式1、概述1.1失效:即产品丧失规定功能。

(国标GB3187-82中定义)比如刀具刃口磨损变钝,不能继续切削使用。

1.2失效模式:是指失效的外在宏观表现形式和过程规律,一般可理解为失效的性质和类型。

1.3失效分析:是指判断产品失效模式,查找失效机理和原因,提出改善和预防措施的活动。

2、失效模式2.1 主要的失效模式(针对模具、刀具、机械零件等)2.1.1 磨损2.1.2 断裂2.1.3 变形2.1.4 腐蚀2.2 磨损2.2.1 磨损过程(如下图所示)(1)磨合阶段(Ⅰ区,O~A)(2)正常磨损阶段(Ⅱ区,A~B)(3)快速磨损阶段,也称严重磨损阶段(Ⅲ区,B~C)图1 磨损过程示意图z磨损是一定会发生的,我们的分析与研究只是为了尽可能延长“正常磨损阶段”(即Ⅱ区)的时间,并能对B点的到来作出准确的预测。

2.2.2 磨损的分类(1)粘着磨损:相对运动的物体,接触表面发生了固相粘着,使材料从一个表面转移到另一个表面的现象。

粘着磨损情况严重时会出现“咬死”“卡死”现象。

z产生原因:①表面粗糙,表面凸起来的部分在摩擦过程中,受到很大压力发生塑性变形,进而彼此粘着。

②接触的两种材料之间物理、化学特性接近,有粘着在一起的可能,比如金属之间可能发生粘着,而金属和木材之间就不可能发生粘着。

z对于刀具、模具而言,轻微的情况就是粘料、积屑,以及进而形成的擦伤、拉毛等。

比如五金拉伸模具,模具表面粘料后,产品将出现拉毛、擦伤等异常。

(2)磨粒磨损:又称磨料磨损或研磨磨损,是指两物体接触时,一方硬度比另一方大得多时,或接触面之间存在着硬质颗粒时,所产生的磨损。

z此类磨损,在我们涂层的模具或零件应用中极为常见。

Cr12MoV钢模具失效分析及新工艺

Cr12MoV钢模具失效分析及新工艺

Cr12MoV型钢模具失效分析及模具新工艺唐俊摘要:简述 Cr12MoV型钢的材料特性, 对Cr12MoV型钢制若干常见冷作模具的失效案例进行分析和讨论, 探讨在当前生产环境下 Cr12MoV型钢制冷作模具常见失效形式的一些主要应对方法与提高模具寿命的新技术。

关键词: Cr12型钢; 冷作模具; 失效; 锻造; 热处理;表面处理;新技术1引言在过去的近20年,尤其是近几年,我国模具工业发展非常迅速。

模具需求一直以每年18%左右的速度快速增长,国民经济的高速发展对模具工业提出了越来越高的要求,也为其发展提供了强大的动力。

Cr12MoV 钢钢是目前国内广泛使用的冷作模具钢之一,属于高耐磨微变形冷作模具钢。

该钢具有淬透性好、硬度高且耐磨、热处理变形小、高抗弯强度等优点, 仅次于高速钢,常用于制作那些承受重负荷、生产批量大、形状复杂的冷作模具, 如冷冲压、冷镦、冷挤压模等,其消耗量在冷作模具钢中居首位。

该钢钢虽然强度、硬度高,耐磨性好,但其韧度较差,对加工工艺和热处理工艺要求高,处理工艺不当很容易造成模具过早失效。

例如:某模具加工厂生产制造的冷冲模具,材料为Cr12MoV冷作模具钢,生产工艺为:冶炼→锻造→球化退火→粗加工→热处理→精加工成型。

热处理为(980±10)℃油冷+(510±20)℃空冷。

模具投入生产后,仅生产2000件即发生断裂崩落,出现过早失效,为了找出模具过早失效原因,本文对该模具进行失效分析,并进行锻造、热处理工艺的分析与改进。

2 模具的失效分析2.1 模具的化学成分及冶金质量分析通过提取模具材料样品, 对其化学成分进行分析, 所得结果如表 1 所示( 括号内为 Cr12MoV 钢的化学成分范围)。

化学成分(%)元素 C Si Mn Cr Mo V S P 质量分数 1.62 0.32 0.31 12.1 0.54 0.22 0.015 0.017成分范围(1.5~1.7) (<0.4) (<0.35) (11.5~12.5) (0.4~0.6) (0.15~0.3)(<0.03) (<0.03) 表1 Crl2MoV 钢冷冲裁模具的化学成分( 质量分数)由表1中的数据可以看出, 失效冷冲裁模具的化学成分在Cr12MoV 钢的化学成分范围内, 不会对模具的金相显微组织和力学性能造成较大的影响; 另一方面, 杂质元素硫和磷的质量分数未超标, 不至于导致模具的开裂与失效. 由此判断, 该模具的过早失效不是由材料的化学成分引起的。

模具失效的案例分析

模具失效的案例分析
磨损失效、疲劳失效、断裂失效和综合因素导致的失效。
模具失效的分类
按失效原因可分为
按失效形式可分为
01
02
03
04
模具设计不合理
模具材料选择不当
模具制造工艺问题
使用和维护不当
模具失效的原因
如加工精度不足、装配不良等。
如材料性能不匹配、热处理不当等。
如结构不合理、热平衡性差、强度不足等。
如操作不规范、保养不及时等。
03
模具失效的检测与预防
外观检测
尺寸检测
硬度检测
无损检测
模具失效的检测方法
通过观察模具的表面状况,检查是否有裂纹、磨损、变形等失效迹象。
定期测量模具的尺寸,检查是否超出了公差范围,导致产品不合格。
检测模具材料的硬度,判断是否因硬度不足而导致模具失效。
利用超声波、X射线等技术对模具进行无损检测,发现表面和内部缺陷。
随着科技的不断发展,相关行业的发展趋势也在不断变化。未来,随着智能制造和数字化技术的广泛应用,模具的设计、制造和使用将更加智能化和高效化。同时,随着环保意识的提高,绿色制造和可持续发展将成为行业的重要发展方向。
作为从事模具设计和制造的专业人员,我希望能够不断学习和掌握新技术、新工艺和新材料,提高自身的专业素养和技术水平。同时,我也希望能够积极参与行业交流和合作,与同行共同探讨和解决模具失效等关键问题,为相关行业的发展做出更大的贡献。
根据模具的使用条件和要求,选择具有适当性能和耐久性的材料。
合理选材
对模具结构进行优化,减少应力集中和薄弱环节,提高模具的强度和稳定性。
优化设计
严格控制模具加工和装配精度,确保各部件之间的配合良好,减少磨损和应力集中。
制造精度控制

模具失效的原因分析

模具失效的原因分析

第一节模具失效的原因分析塑料模具的失效形式主要体现在以下几个方面:选材、钢料品质、模具设计、模具加工质量、热处理、模具表面处理、模具使用等。

1)表面磨损、局部崩裂、变形及断裂;模具的耐磨性,随着模具硬度的提高而增加,但在硬度相同的情况下,韧性愈好耐磨性愈高,所以,模具硬度越高,冲击性能会下降,会促使磨损裂纹的形成和扩展,从而加速磨损的进程。

要提高耐磨性,必须注意硬度和韧性的良好配合。

2)由于塑料制品的表面粗糙度及精度要求较高,再加上不少塑料中含有氯氟元素,其产生的腐蚀性气体的腐蚀,会加剧模具的磨损失效,所以,因表面磨损造成的模具失效比例大;3)因未调整好低压保护,胶件的压模造成模具表面凹陷的情况也时有发生;4)小型模具在大吨位机台上超载使用时,容易产生表面凹陷、皱纹、堆塌等,特别是在棱角处易产生塑性变形;5)由于塑料制品成型模具形状复杂,存在许多棱角、薄壁等部位,在这些部位会产生应力集中,而发生断裂。

6)模具材质选择不当。

具体见《模具选材原则》。

7)模具工件热处理工艺不良。

从模具失效分析得知,70%的模具失效是由于热处理不当与选材不当造成的。

二、模具失效改善途经:采用正确的钢料热处理工艺与钢料表面处理工艺为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。

热处理加热温度的高低、保温时间的长短、冷却速度的快慢和炉内气氛等工艺参数的选择不当,都会造成淬火开裂或早期失效。

众所周知,磨损、粘结均发生在表面,疲劳、断裂也往往从表面开始,因此,对模具表面的加工质量要求非常高。

但实际上由于加工痕迹的存在,热处理时表面氧化脱碳也在所难免。

因此,模具的表面性能反而比基体差。

采用热处理新技术是提高模具性能的经济而有效的重要措施。

模具热处理工艺包括基体强韧化和表面强化处理。

基体的强韧化在于提高基体的强度和韧度,减少断裂和变形。

表面强化的主要目的的是提高模具表面的耐磨性、耐蚀性和润滑性能。

常见模具失效形式及机理.

常见模具失效形式及机理.

●磨损对断裂及塑性变形的促进作用
●塑性变形对磨损和断裂的促进作用

冷作模具的服役条件及失效形式
冷作模具是指在常温下对材料进行压力加工或其他 加工所使用的模具。 冷冲裁模 冷拉深模 冷挤压模 冷镦模 冷作模具都是在常温下对工件材料施力,使其产Байду номын сангаас 分离,从而获得一定形状、尺寸和性能的成品或半 成品件。
粘着磨损机理示意图
粘着磨损分类
磨 损 严 重 程 度
轻微粘着磨损(氧化磨损) 涂抹
严重粘着磨损 擦伤 撕脱 咬死
影响粘着磨损的因素
●表面压力
●材料性质 ●材料硬度
提高粘着磨损的措施 ●合理选择润滑剂
●进行表面强化处理
(三) 疲劳磨损
什么叫疲劳磨损?
两接触面相对运动时,在循环(交变)应力(机械应力与热应 力)的作用下,使表层金属脱落的现象。
油轮断裂和北极星导 弹发动机壳体爆炸与材 料中存在缺陷有关。
裂纹扩展的基本形式
1943年美国T-2油轮发生断裂
北 极 星 导 弹
断裂的分类及其特征
晶体结构的几个基本概念 空间点阵: (Lattice)
为了便于研究晶体中原子分子或离子的排列情况,近 似的将晶体看成无错排的理想晶体,忽视其物质性抽 象排列于空间的无数集合点,这些点代表原子(分子或 离子)的中心,也可是彼此等同的原子群或分子群的中 心,各点的周围环境相同,这些点的空间排列称为空间 点阵,简称点阵
(一) 磨粒磨损 磨料磨损形成机理 磨料磨损与其他磨损形式在形成机制方面有 显著的不同,发生磨料磨损时,材料首先受磨料 切削,并发生塑变和疲劳现象,形成切削,最终 从表面除去。
(一) 磨粒磨损
(1)高应力凿削磨损:所谓高应力是指磨料在 与工件接触时产生的应力已经超过了磨料本身的 破断强度。在此情况下,磨粒接触处集中的压应 力,使金属表面受到切削并产生塑性变形和疲劳 以及硬质相的开裂而造成材料磨损。 (2)低应力划伤磨损:是指磨料本身的强度超 过磨料与工件之间的接触应力,在磨损过程中磨 料不发生破碎的情况。磨料一般沿工件表面平移, 金属表面被划伤,但由于正向压力较低,划痕较 浅。

模具失效案例分析

模具失效案例分析

2 模具失效分析
• 通常,热锻模的常见失效形式有: 表面磨损,高温 氧化,热疲劳裂纹。本公司的前胎模具的主要失 效形式为型腔表面磨损。表面磨损是指坯料在模 具型腔中塑性变形时,沿型腔表面既流动又滑动 ,使型腔表面与坯料之间产生剧烈的摩擦,从而 导致模具磨损而失效。型腔磨损的结果是使成型 的坯料实际尺寸偏离设计尺寸,因此磨损达一定 程度后的模具因不能再使用而报废。对失效模具 进行如下分析。
模具失效分析案例1Fra bibliotek012Al 钢模具失效分析
以高速锻前胎模具为 对象,研究其早期失效 机制,在此基础上优化 热处理工艺,提高模具 使用寿命,取得了一定 成效。
2
1 前胎模具材料及寿命
前胎模具的外形如图1 所示,是 轴承行业普遍应用的热挤压模, 用012Al( 5Cr4Mo3SiMnVAl) 模 具钢制作。012Al 钢具有较高的 高温强度和较优良的热疲劳性能 [1],其热处理工艺流程为: 球 化退火—淬火—3 次回火,最终 硬度要求为59 ~ 61HRC。
1) 材料成分
用直读光谱法对前胎模具材料成分进行分 析,结果列于表1,模具成分与012Al 钢 的标准成分[1]相符合。
2) 材料硬度
• 沿前胎模具横向切割 试块,如图2箭头所示 从里到外测定的硬度 值依次为58 HRC,57 HRC,56 HRC,54 HRC,56 HRC,56 HRC,57HRC,没有 达到技术要求值( 59 ~ 61 HRC)
5 结论
• 012Al 钢热挤压模具早期失效是由于球化退 火和淬火工艺不合理,导致模具显微组织 不良、硬度偏低所致。按改进后的工艺退 火和淬火后,该模具的显微组织明显改善 ,硬度也达到了技术要求,因此使用寿命 有了大幅度提高。

冲压模具常见故障分析及解决方式

冲压模具常见故障分析及解决方式

冲压是大量量零件成型生产实用工艺之一。

在冲压生产进程中,模具出现的问题最多,它是整个冲压生产要素中最重要的因素。

直接影响到生产效率和本钱。

影响到产品的交货周期。

模具问题主要集中在模具损坏、产品质量缺点和模具的刃磨方面,它们长期困扰着行业生产。

只有正确处置这几个关键点。

冲压生产才能够顺利进行。

1 模具故障模具故障是冲压生产中最容易出现的问题,常常造成停产,影响产品生产周期。

因此,必需尽快找到模具故障原因,合理维修。

模具损坏模具损坏是指模具开裂、折断、涨开等,处置模具损坏问题,必需从模具的设计、制造工艺和模具利用方面寻觅原因。

首先要审核模具的制造材料是不是适合,相对应的热处埋工艺是不是合理。

通常,模具材料的热处置工艺对其影响很大。

若是模具的淬火温度太高,淬火方式和时间不合理,和回火次数和温度、肘间选择不妥,都会致使模具进入冲压生产后损坏。

落料孔尺寸或深度设计不够,容易使槽孔阻塞,造成落料板损坏。

弹簧力设计过小或等高套不等高,会使弹簧断裂、落料板倾斜.造成重叠冲打,损坏零件。

冲头固定不妥或螺丝强度不够.会致使冲头掉落或折断。

模具使历时,零件位置、方向等安装错误或螺栓紧固不好。

工作高度调整太低、导柱润滑不足。

送料设备有故障,压力机异样等,都会造成模具的损坏。

若是出现异物进入模具、制件重叠、废料阻塞等情况未及时处置,继续加工生产,就很容易损坏模具的落料板、冲头、下模板和导柱。

卡模冲压进程中,一旦模具合模不灵活,乃至卡死,就必需当即停止生产,找出卡模原因,排除故障。

不然,将会扩大故障,致使模具损坏。

引发卡模的主要原因有:模具导向不良、倾斜。

或模板间有异物,使模板无法平贴;模具强度设计不够或受力不均。

造成模具变形,例如模座、模板的硬度、厚度设计过小,容易受外力撞击变形;模具位置安装不准,上下模的定位误差超差。

或压力机的精度太差,使模具产生干与;冲头的强度不够、大小冲头位置太近,使模具的侧向力不平衡。

这时应提高冲头强度,增强卸料板的引导保护。

Cr12MoV模具开裂失效原因分析

Cr12MoV模具开裂失效原因分析

2019年热加工(a )淬火(b )回火图1 Cr12MoV 钢的热处理工艺曲线表2 失效件样品表面硬度 检测结果 (HRC )(a )(b )图2 试样中的共晶碳化物分布(100×)图3 试样中基体组织分布(500 ×)2019年 第10期 热加工20处理注意事项模具的表面硬度和化学成分符合技术要求。

模具在轧制和锻打过程中,如果锻造工艺选用不当或锻打不充分,即未经反复的锻造将碳化物打散、打碎,就会使碳化物粗大,呈网状和树枝状分布。

网状碳化物的原始状态仍会保持在基体组织中,破坏整个基体的完整性,无形中把整个基体分割成许多小部分,使得组织的均匀性有了很大的差异(在网状及其边缘,碳和合金元素大量富集,而离网状稍远处,碳和合金元素贫乏),这样在热处理或机加工时,基体组织与网状碳化物之间产生巨大的应力差,从而使两者之间分离开来,随着组织应力进一步释放,进而向四周扩展,当应力不断加大到一定程度时,就容易导致整个模具开裂。

另外,模具材料在淬火时要控制入炉温度,多段预热,并在淬火后及时进行回火等,以减少和消除材料的组织应力,防止模具材料的变形和开裂。

7. 分析结论从上述检验及分析可以看出,试样中共晶碳化物呈网状分布、共晶碳化物不均匀度5级属于超标,不合格;材料中碳化物偏析严重,局部区域碳化物堆积,其导热性和变形率与周围基体有很大差异,并且容易引起该部位组织过热,故在锻打时形成锻造裂纹,在其后的热处理过程中该裂纹进一步延伸扩展,最终导致该模具在热处理后的精(机)加工过程中产生开裂。

参考文献:(a )50×(b )100×(c )100×(d )200×(e )200×(f )100×(g )500×图4 试样中裂纹及组织[1]郭联金,金林奎,欧海龙,等. H13钢模具镶块研配期断裂失效分析[J].锻压技术, 2018(12):126-130+135. [2]劳动部培训司.热处理工工艺学[M].北京:中国劳动出版社,1995:334.[3]蔡美良,丁惠麟,孟沪龙.新编工模具钢金相热处理[M].北京:机械工业出版社,2012:72.[4]陈永刚,金林奎,樊开夫,等.W6M o5C r4V2钢模具淬火开裂失效分析[J].金属热处理,2019(5):239-245.[5]周斌,金林奎,黄持伟,等.45K 钢冷镦钢螺栓装配过程断裂失效分析[J].金属加工(热加工),2018(10):14-19.[6]金林奎,欧海龙,黄持伟,等.铝合金用ASSAB 8407钢压铸模早期断裂失效分析[J].金属热处理,2019(2):227-233.[7]张燕敏.淬火钢高速车削过程动态特性及加工参数研究[D].北京:北方工业大学,2006.[8]金林奎,欧海龙,黄持伟,等.Stavax ESR 钢洗衣机面板模具开裂原因分析[J].锻压技术,2017(11):136-143.[9]全国钢标准化技术委员会.钢的共晶碳化物不均匀度评定法:GB/T14979—1994[S].北京:中国标准出版社,1995.[10]谢俊堂,郭联金,金林奎,等.SLD 钢模具失效原因分析[J].热处理技术与装备,2019(2):9-14.2019年热加工(a ) (b )图1 开裂轴承外圈外观形貌。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模具的失效分析№1一, 目的1, 模具设计人员必须熟知如何保证模具设计正确,合理,提高模具寿命,降低成本.2, 生产中模具失效时,能分析原因,提出改进措施,也是工艺员应掌握的技能.二, 模具的工作条件1, 工装模具组成凹模- 冷镦, 正挤, 反挤, 冲孔, 锥形凸模, 切边凹模, 切边凸模,孔类` 螺母用凹模等.套- 推出销套, 衬套垫- 带孔垫块轴类冲头–正挤, 反挤, 六方冲头, (螺母冲头), 推出销, 凸模销,光凸模(无孔)销, 轴, 杆.板,块类型- 垫块,切断刀,送料滚,刀体,钳片,夹子,弹簧板,弹簧片螺旋弹簧–拉,压弹簧碟簧板簧2, 易损件(服役期短,经常更换的件)冲头, 凹模重点分析易损件–冲头, 凹模.3, 模具工作条件①挤压冲头工作条件–以活塞销为例上冲头上冲头–向下运动, 下冲头–固定不动.挤压中,上冲头受力大于下冲头. 上冲头受力情况如下:A) 向下运动–反挤坯料,冲头受压应力. B)向上运动–脱离坯料,因摩擦力冲头受拉应力. C)可能因冲头偏心,产生弯曲应力.结论: 上冲头受力复杂,易导致失效. 上冲头最大名义压力可达2500 MPa.在尺寸过渡处,由于应力集中, 有时应力更大于此值.② 冷挤压凹模的工作条件 № 2 冷挤压过程中,凹模型腔表面受很大的压力,该压力使凹模产生巨大的切向拉应力.(以下插图)p 0材料力学厚壁筒受力分析理论公式拉应力压应力P 1R 21 - P 0 R 20R 20 -R 21P 1 -P 0R 21 R 20σt σr =()+R 2R 20-R 21()=R 20 -R 21P 1R 21 - P 0 R 20-)(R 20-R 21R 2)(R 21 R 20P 1 -P 0①②③④⑤⑥当采用整体模时,如下图P 0 =0 代入①,②式)(R 20 -R 21R 2+=σt R 21 R 20P 1R 20 -R 21P 1R 21=P 1R 21R 20 -R 21(1+R 20R 2)P 1 R 21 R 20R 2R 20 -R 21()-P 1R 21 R 20 -R 21=σr =R 20 -R 21P 1R 21 )R 2R 201-(当R=R 1 时,分别代入公式③,④得σtR1σrR1=)R 21R 201+(R 20 -R 21P 1R 21)R 21R 21-(R 20 -R 21P 1R 21=P 1R 20 -R 21R 20 +R 21==-P 1所以实际应用中,整体式凹模 d外/ d内比值取4-6 符合上面计算结果.σtR0=P1(6R1)2 -R212R21=2 /35 P1=0.0571P1由公式⑦得当R0 = 6 R1时,=0.133P1=2 /15 P12R21(4R1)2 -R21P1=σtR0由公式⑦得3,整体模孔与外径的尺寸关系当R0 = 4 R1时,结论:1,σt切向应力不是均匀分布,靠近内表面处最大,靠近外表面处最小.2,凹模承载能力并非随壁厚的增加而按比例增加.如已知一整体模及 P1 ,R0 ,R1 , 则可求出模中某点应力状态,见下图σtR0σrR0=)R21R201+(R20 -R21P1R21)R20R201-(R20 -R21P1R21=P1R2-R212R21==0当R=R0时,分别代入公式③,④得⑧⑦三,模具失效的基本形式及原因模具失效形式–模具丧失服务能力的某种损伤形式.大多数模具出现损伤后,不会立即丧失服务能力,仅在其中一种损伤发展到足以妨碍模具正常工作或生产出废品时,此模具才停止服役.№3凸凹模磨损失效是一种正常失效,但有时发生早期磨损失效值得研究.1,模具磨损过程磨损量mg C①初期磨损阶段 A新模具 B 刃口锋利(切边模,冲切模),模孔形状误差(不圆度等),与坯料接触面积小,局部压力大, A以及产生塑性变形,导致磨损速度加快.冲击次数N②正常磨损阶段 B初期磨损阶段达到一定程度,刃口与工件接触单位压力减轻,不再产生塑性变形,进入摩擦磨损阶段. 在此过程中,由于反复冲击,而模具渐渐趋于疲劳.③过激磨损阶段 C刃口, 模孔呈现疲劳,模具急剧磨损,不能正常工作,甚至因冲击出现表面剥落,剥落硬粒子成为磨粒,加快了磨损速度.(四) 模具疲劳失效原因1,特征: 在模具某些部位△在模具某些部位,经一定的服役期,萌生了细小的裂纹,并逐渐向纵深扩展.裂纹扩展到一定的尺寸后,严重的削弱模具的承载能力,而引起断裂.疲劳裂纹萌生于应力较大的部位,特别是应力集中的部位(尺寸过渡,缺口,刀痕,磨削裂纹等).△模具通常在高强度,低塑性状态下服役,在模具的微观疲劳断口处,很难观察到典型的疲劳条带,但是其宏观断口上,往往呈现出海滩状形貌.△高碳高合金钢模具,其疲劳断口往往出现粗糙的木纹状条纹.对宏观断口的形貌观察产生严重的干扰.2,疲劳裂纹分析根本原因是循环载荷.疲劳失效过程分两个阶段, ①疲劳裂纹的萌生②疲劳裂纹的扩展.1)疲劳裂纹的萌生①位置–经常在尺寸过渡处, 刀痕处,磨削沟痕处,磨削裂纹处.②萌生机理–见下图模具表面某些微区域内,可先发生滑移,滑移随载荷变化反复进行,到达某一程度后,材料滑移抗力下降,可能从滑移带中挤出金属,成为挤出锋,与此同时形成凹槽.当循环应力较大或晶界相对弱化时,疲劳裂纹可萌生于晶界.疲劳裂纹也可以萌生于粗大的第二相颗粒与基体的界面上.水介质(自来水,盐水等)显著加速疲劳裂纹的萌生和扩展,剧烈降低疲劳寿命.2)疲劳裂纹的扩展–分两个阶段A,扩展第一阶段: 形成滑移带裂纹源后,沿着与拉伸应力轴成45°角的滑移面扩展.这种切变式扩展称为第一阶段扩展.对钢铁材料,第一阶段扩展为数百微米.如疲劳裂纹萌生于夹杂物,第一阶段扩展的深度仅为数个微米以后就转向垂直于拉应力轴的方向扩展.B,扩展第二阶段: 疲劳裂纹沿垂直于拉力轴的方向扩展,在此阶段有多种机制,有拉伸,有压缩.3, 冷模具钢对疲劳裂纹萌生扩展的影响模具钢具有很高的屈服强度和很低的断裂韧性.高的屈服强度–有利于推迟疲劳裂纹的萌生.低的断裂韧性–加快疲劳裂纹的扩展,使疲劳裂纹扩展循环数剧烈缩短.№74,模具疲劳失效原因№8 根本原因是循环载荷,凡促使表面拉应力增大的因素均增加疲劳裂纹的萌生.(五) 模具冷热疲劳失效1,失效形态在极冷,极热条件下服役的模具,锻压数千次或数百次之后,型腔表面出现许多细小裂纹,其形状有网状,放射状,平行状等,这些裂纹仅有数毫米深,不会向纵深扩展,冷热疲劳裂纹经常萌生于刀痕及磨损沟槽,外观呈现直线状.2,模具冷热疲劳失效原因锻压钢件的模具与坯料接触时,表面迅速升温到600℃-900℃而内层尚处于较低的温度,表面层受热而膨胀,但受内层的约束,因而在表面产生压应力,压应力的数值一般均大于模具材料在该状态下的屈服强度,因而引起塑性变形.锻件脱模后,由于向模具表面喷洒冷却剂,使表面急剧冷却而收缩,当表面收缩受到约束时,便产生拉应力,模具表面层中的循环热应力是引起冷热疲劳的根本原因.高温氧化,冷却水的电化学腐蚀以及坯料的摩擦作用,加速了冷热疲劳过程.因此,冷热疲劳过程是极其复杂的物理化学过程.(六) 模具的断裂失效模具在服役过程中,突然出现大裂纹或分离为两部分或数部分使模具立即丧失服务能力,属于断裂失效.常见断裂失效形式有: 崩牙,崩刃(冲头,搓丝板,滚丝轮等)劈裂,折断(冲头),胀裂等1,模具断裂(折断)失效过程可分一次性断裂和疲劳断裂两类①一次性断裂模具在冲压时突然断裂,称为一次性断裂.主要原因是严重超载或模具材料严重脆化(如过热,过烧,回火不足,严重的应力集中及严重的冶金缺陷等)②疲劳断裂模具在服役中,在应力最大或应力集中处,萌生微裂纹,在冲击力作用下,微裂纹慢慢扩展,模具有效承载面积逐渐缩小,直至外加应力超过模具材料的断裂强度,模具发生断裂或是随裂纹逐渐扩展裂纹尖端的应力强度因子不断增大,直至超过材料的断裂韧性值时,裂纹发生失稳性扩展,模具发生脆性断裂。

疲劳断裂全过程其寿命长短不一,通常冷作模具从萌生疲劳裂纹直到最后断裂只需较短时间。

这是由于冷作模具材料的断裂韧性较低所至。

模具的工作条件极为复杂。

因此,一个模具上可同时出现多种损伤形式,这些损伤又相互促进,加速了模具的失效。

四,提高模具使用寿命的措施1,提高模具钢的质量国外一些发达国家用冲模(凸模,凹模)与我国采用的基本一样,多为高碳,高铬合金工具钢及韧性较好的高速钢。

德国,瑞士等国使用的模具钢是经过二次精炼的。

而我国用的模具钢很少经二次精炼,造成模具钢坯质量差。

如铸锭头部缩孔,疏松,铸锭边缘与心部之间碳化物的混合物及夹渣,在钢锭的断面上有颗粒大小不匀的碳化物,有严重的宏观偏析与显微偏析。

钢的杂质多,纯度差。

这样铸锭或锻压成材在质量上得不到改善。

锻坯中碳化物不均匀及网状碳化物超标,热处理后会产生硬度不均,微裂纹,冲压中造成崩刃,掉块等。

因此期待钢厂生产出钢锭边缘,锭心无夹杂碳化物的混合物,使钢锭任意断面上碳化物颗粒大小均布,无纤维偏析。

№92,模具厂提高凸,凹模锻坯质量 № 10 凸凹模锻坯要求锻造技术较高,锻造理想的几何形状,清除锻件内疏松及非氧化孔洞,细化晶粒及紧密组织,选择合理锻造比,打碎钢中碳化物粗大晶粒及偏析,使其均布于钢中,改进机械,物理性能及热处理工艺.3,提高冲模制造工艺水平 冲模制造方法(凸凹模)4,采用推荐的热处理工艺如Cr12MoV 凸,凹模, 加热650℃ 消除内应力退火 800℃~820℃预热保温3小时 1020℃ 淬火 500℃回火 (高温回火,彻底消除坯件内应力,减少裂纹危险) 回火(防变形及尺寸变化) 5,表面强化处理增加抗磨能力, 方法分三类: ① 改变基体表面化学成分如 渗金属,渗碳,渗硼,渗硫,氮化.气体软氮化,TD 处理,离子氮化等 ② 不改变基体化学成分如 激光,电子束,真空热处理,低温和超低温处理等. ③ 基体表面形成硬化层如 镀硬铬,电镀沉积,热喷涂,电火花强化,等离子喷涂,熔烧法涂复,碳化钛复层,化学沉积(CVD), 物理沉积(PVC) 等.6,冲模的润滑及润滑剂① 普通冲裁用润滑剂A) GB443-64 20号机械油 100%B) 对有色金属冲裁 GB486-65 轻质锭子油 100%C) 不锈钢冲裁菜油100%, 或乳化石腊油100% №11或氯化乙烯漆100%②精冲(强力齿圈压边)用润滑油A)氯化石腊100%, 推荐用于≤3mm的精冲件B)精冲挤压油氯化石腊66%, 矿物油16%, 麦缩丙三醇7%油酸蓖麻醇酯4%, 二苄基二硫7%C)进口或国产精冲专用润滑油②拉伸,弯曲及成形用润滑油A)低碳钢板拉伸推荐GB486-65 轻质锭子油43%, 鱼肝油8%,石墨15%, 油酸8%, 硫磺粉5% 钾肥皂6%, 水15%配方的润滑剂.用于有色金属板的拉伸可用50%浓肥皂水配成的润滑剂.B)以上润滑剂也可用于弯曲与成形.。

相关文档
最新文档