Dynamics of capacitively coupled double quantum dots

Dynamics of capacitively coupled double quantum dots
Dynamics of capacitively coupled double quantum dots

a r X i v :c o n d -m a t /0608186v 1 [c o n d -m a t .s t r -e l ] 8 A u g 2006Dynamics of capacitively coupled double quantum dots.Martin R Galpin ?,David E Logan ?and H R Krishnamurthy ??Oxford University,Physical and Theoretical Chemistry Laboratory,South Parks Road,Oxford OX13QZ,UK.?Department of Physics,IISc,Bangalore 560012,and JNCASR,Jakkur,Bangalore,India.Abstract.We consider a double dot system of equivalent,capacitively coupled semiconducting quantum dots,each coupled to its own lead,in a regime where there are two electrons on the double dot.Employing the numerical renormalization group,we focus here on single-particle dynamics and the zero-bias conductance,considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong coupling (SC)phase,from the spin-Kondo regime,across the SU (4)point to the charge-Kondo regime;and then towards and through the quantum phase transition to a charge-ordered (CO)phase.We ?rst consider the two-self-energy description required to describe the broken symmetry CO phase,and implications thereof for the non-Fermi liquid nature of this phase.Numerical results for single-particle dynamics on all frequency scales are then considered,with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase.The role of symmetry breaking perturbations is also brie?y discussed.PACS numbers:71.27.+a,72.15.Qm,73.63.Kv Published as:Martin R Galpin et al 2006J.Phys.:Condens.Matter 186571-6583Journal of Physics:Condensed Matter c

2006IOP Publishing Ltd.

1.Introduction

In a previous paper[1](referred to hereafter as I)we have studied a symmetrical, semiconducting double quantum dot system,with interdot capacitive coupling in

addition to the usual intradot Coulomb interaction.Employing the numerical renormalization group(NRG)approach[2,3,4,5],and focussing on the regime with two electrons on the double dot,a rich and diverse range of physical behaviour

was shown to arise on increasing the ratio U′/U of interdot to intradot coupling strengths[6].The system?rst evolves continuously from a spin-Kondo state,where the dot spins are in essence separately quenched(SU(2)×SU(2)),to an SU(4)Kondo

state with entangled charge and spin degrees of freedom arising at U′/U=1.This in turn precedes a rapid but smooth crossover to a charge-Kondo state in which a charge-pseudospin is Kondo quenched;followed by the suppression of charge-pseudospin tunneling,a continuous collapse of the underlying low-energy Kondo scale,and a Kosterlitz-Thouless quantum phase transition at a critical U′c to a degenerate charge-ordered state,itself a non-Fermi liquid with a ln2residual entropy.

Our primary emphasis in I was on the structure,stability and?ows between the underlying RG?xed points,on the overall phase diagram and evolution of the characteristic low-energy Kondo scale arising for all U′

A number of theoretical issues are discussed in section2.These relate in particular to the‘two-self-energy’description that we show is required to describe the broken symmetry charge-ordered(CO)phase,its connection both to the potential scattering inherent to the CO phase and to the‘single’self-energy of conventional?eld theory; and hence insights into the non-Fermi liquid character of the CO phase.Numerical results for dynamics are presented in section3,including the important issues of universality and scaling of the low-energy single-particle spectra throughout the strong coupling phase.

2.Theoretical issues

We focus then on the local single-particle spectrum for dot i,D i(ω)=?1

2e2

?V i V i=0=

?U

′πΓD i (0)

Figure 1.NRG results for the zero-frequency spectral density πΓD i (ω=0),or equivalently the linear di?erential conductance g i /(2e 2/h ),as a function of ?U ′for ?xed ?U =7.The dotted line marks the phase boundary ?U ′c ?7.046.

a rich evolution as the interdot interaction U ′is progressively increased through the spin-Kondo regime (U ′

To motivate subsequent discussion,we shown in ?gure 1NRG results for the linear di?erential conductance g i /(2e 2/h )=πΓD i (ω=0)vs the interdot ?U ′=U ′/(πΓ)for a ?xed intradot ?U =U/(πΓ)=7.As discussed further below,the transition between the strong coupling (SC)and CO phases (here occurring at ?U ′c ?7.046)is clearly evident:throughout the SC phase the conductance is ‘pinned’at the unitarity limit of g i =2e 2/h ,while it drops discontinuously on entering the CO phase and decreases montonically thereafter with increasing ?U

′.2.1.Two-self-energy description

In considering single-particle dynamics a number of rather subtle issues arise,which as we show have important rami?cations e.g.in understanding the non-Fermi liquid nature of the CO phase.The ?rst concerns the ‘two-self-energy’description that is required to describe the CO phase.

The SC phase is a Fermi liquid state,adiabatically connected to the non-interacting limit U =0=U ′and with Kondo screening ensuring that the ground state is locally non-degenerate.As such the traditional ‘single self-energy’description,based ultimately on perturbation theory in the interaction,is appropriate;where (with ω+=ω+i 0+)G ii (ω)is expressed as

G ii (ω)=1

The CO phase by contrast is not adiabatically connected to the non-interacting limit(and as such is a non-Fermi liquid),as evident e.g.from the phase diagram?gure 4of I,where the CO phase arises for U′>U′c and the critical U′c as a function of U satis?es U′c(U)>0for all U≥0.This phase is of course characterised by charge

symmetry-breaking,the ground state being doubly degenerate((n L,n R)=(2,0)and (0,2)occurring with equal weight in the?xed point Hamiltonian,section4.1of I). For this reason,as is obvious from its Lehmann representation,the local propagator in the CO phase is of form

G ii(ω)=1

πIm G ii;α(ω),denotes

the propagator obtained from one or other of the degenerate ground statesα=A or B mentioned above.This in turn may be expressed as

G ii;α(ω)=

1

[?iα/Γ]2+1

(2.6) where?iαdenotes the‘renormalized level’

?iα=?+?ΣR iα(ω=0)(2.7) (satisfying the obvious‘left/right’symmetry?Lα=?Rˉαwithˉα=B or A forα=A or B respectively);and such that the linear di?erential conductance

πΓD i(0)=1

This result may be recast equivalently in terms of the conduction electron phase shiftδiα=δiα(ω=0),whereδiα(ω)=arg(T iα(ω))with T iα(ω)=V2G ii;α(ω)the conduction electron https://www.360docs.net/doc/034322168.html,ing equations(2.4,2.5)givesδiα=arctan(Γ

2 α=A,B sin2(δiα)(2.9) for the linear di?erential conductance.

The considerations above relating the Fermi level spectrum to the renormalized levels and/or phase shifts are quite general.For the particular case of particle-hole symmetry(?=?U

2),and hence from equations(2.6)or(2.10)that

πΓD i(0)=1–the unitarity limit,seen clearly in the NRG results of?gure1for U′

2.2.Potential scattering

We now relate the above results for single-particle dynamics at the Fermi level to potential scattering.To this end consider the Hamiltonian

H P S

i

= k,σ?k a?k iσa k iσ+K iα k,k′,σa?k iσa k′iσ(2.12)

in which potential scattering is operative in conduction channel i(with strength K iα),and for which the conduction electron t-matrix T iα(ω)is readily calculated[5]. Equating the resultant T iα(0)to T iα(0)=V2G ii;α(0)considered above,one?nds that (a)?ΣI iα(0)=0,i.e.equation(2.5)is recovered;and(b)that the renormalized level ?iαis related to the scattering strength by

?iα

πρK iα

(2.13) (withρas usual the conduction band density of states).

Equation(2.12)is in essence the?xed point Hamiltonian for the CO phase.More precisely,referring to equation(4.2)of I and noting that f?0iσ∝ k a?k iσ,the?xed point Hamiltonian is of form i H P S i(both channels are of course involved);with K iα≡(n i?1)K for the particle-hole symmetric case considered explicitly,where the

dot charges (n L ,n R )=(0,2)or (2,0)correspond respectively to the broken symmetry states we have denoted by α=A or B .Hence,considering explicitly the i =L channel,

?iA πρK

=??iB 1+1/(πρK )2(2.15)

in terms of the potential scattering strength ρK (and is obviously independent of whether i =L or R is considered).It is straightforward to relate ρK in turn to the potential scattering coupling constant ?K

that enters the Λ-discretized NRG Hamiltonian for the CO ?xed point (equation (4.3)of I):speci?cally,ρK =([1?Λ?1]/[2ln Λ])?K

.Since ?K itself is directly determined numerically in the NRG

calculations,the

linear

conductance can

thus

either be

determined

this way from equation (2.15),or as the ω=0limit of the single-particle spectrum D i (ω)(determined via the standard NRG method [8]reprised at the beginning of section 3).In practice we ?nd the two methods to be in very good numerical agreement.

As detailed in section 4.1of I the CO phase corresponds to a line of ?xed points,one for each U ′>U ′c .The critical endpoint,occurring at U ′=U ′c +on the CO side of the transition,corresponds to a critical ?K c given by equation (4.8)of I,and thus to

a critical πρK c =tan[π

√2 11+1/(πρK iB )2 (2.16)

with the K iαof form (again for i =L explicitly)K iA =?K +δK and K iB =K +δK ,where δK represents the additional potential scattering common to each channel that vanishes only at particle-hole symmetry.

2.3.Non-Fermi liquid behaviour

The conventional description of single-particle dynamics centres on the usual single self-energy Σi (ω),de?ned by equation (2.2)(and the Dyson equation implicit therein).The analysis above has however been couched in terms of a TSE description,so the obvious question arises:what are the implications for Σi (ω)?

The general relation between Σi (ω)and the two self-energies ?Σiα(ω)follows simply from direct comparison of equations (2.2)with (2.3,2.4),and is given by Σi (ω)=12(?ΣiA (ω)

??ΣiB (ω))]22(?ΣiA (ω)+?ΣiB (ω))].(2.17)

Since ?ΣI iα(ω=0)=0(equation (2.5)),the imaginary part of the single self-energy at the Fermi level follows from equation (2.17)as

ΣI i (ω=0)=[?iA ??iB ]2Γ

Γ= ?iα

(πρK )2(2.19)

(where equation (2.14)relating ?iαto the potential scattering strength is also used).And at U ′=U ′c +,using the critical πρK c ,ΣI i (0)is then given explicitly by

ΣI i (ω=0)

2(1?12)]?4.1:U ′=U ′c +(2.20)

3.Numerical results:dynamics

We now consider NRG results for the full frequency dependence of the local dynamics,analysing spectra (for a range of bare parameters)on both high and low frequency scales,and in particular (section 3.3)extracting the universal scaling behaviour in the SC phase.The single-particle spectrum at ?nite-ωis obtained using the standard method [8]—a set of poles corresponding to the single-particle excitations are calculated from the sequence of NRG iterations,and these are subsequently broadened on a logarithmic scale to compensate for the initial logarithmic discretization of the Hamiltonian and recover the continuum.

3.1.Spectra on high ωscales

We begin by considering brie?y the evolution of single-particle dynamics on non-universal ‘high’energy scales —in particular the Hubbard satellites —upon progressively increasing the interdot interaction U ′from the limit U ′=0where the dots are uncoupled.Figure 2shows πΓD i (ω)versus ω/Γfor a ?xed ?U =7and ?U ′=0(dotted line),6,7,8and 9(solid lines,top to bottom at ω/Γ=10).For all ?U

′≤?U ,the Hubbard satellites are seen to be centred at approximately the same frequency,whereas for ?U

′>?U the positions of the satellites become ?U ′-dependent.

ω/Γ

πΓD i (ω)

Figure 2.Single-particle spectra on ‘high’frequency scales:πΓD i (ω)vs ω/Γfor ?U ′=0(dotted line),6,7,8and 9(solid lines,top to bottom)with a ?xed ?U

=7.It is straightforward to explain this behaviour by recourse to the atomic limit Γ=0.For U ′

self-energy description of local dynamics,even in this non-symmetry-broken SC phase. We emphasise again that,whether even or odd iterations are considered,the resultant D i(ω)obtained from the NRG calculations is the same.But the key point is that a two-self-energy description of dynamics,which is a necessity in describing the broken symmetry CO phase,is equally applicable in describing the SC phase;a point not widely appreciated,but one which also underlies the Local Moment Approach to correlated electron systems[12,13,14].The situation sketched here is directly parallel to that detailed in[11],to which the reader is referred for further discussion.

3.2.Spectra with increasing U′

We now consider dynamics on the low-energy scales characteristic of the Kondo resonance that arises in the SC phase.For convenience we shall analyse the two regions0≤?U′≤?U and?U′≥?U separately.The former displays the crossover from SU(2)to SU(4)behaviour on increasing?U′towards the SU(4)point U′=U,whereas

in the latter region we show how the Kondo resonance is destroyed as?U′moves through the phase transition.Throughout the SC phase the Fermi level spectrum is(as above)pinned at the unitarity limit,πΓD i(ω=0)=1;and we note that this behaviour is accurately captured by the numerics on employing the standard AΛ-factor (Γ→AΛΓ)[3]that corrects for the?nite-Λdiscretization inherent to the NRG.

Figure3(a)thus showsπΓD i(ω)versusω/Γfor a?xed,strongly correlated?U=7, with increasing?U′=0,6.5,6.9and7(in order of increasing resonance width).As expected from the thermodynamic results discussed in I,the SU(2)physics of?U′=0 is found to persist with increasing?U′until one gets very close to the SU(4)point. For?U′=6.5for example,the functional form of the Kondo resonance is essentially the same as for?U′=0,the only di?erence being that its width is increased slightly in proportion to the Kondo temperature T K(the evolution of T K itself being shown explicitly in?gure5of I).

As U′moves closer to U however,the LM SU(4)?xed point begins to play an increasingly important r?o le in shaping the low-frequency form of the spectrum. This is evident in the case?U′=6.9,where there is a distinct shoulder in the Kondo resonance whenω/Γis on the scale of the crossover from LM SU(4)to LM SU(2) (~(U?U′)/πΓ=0.1).We discuss this point in more detail when considering the scaling characteristics of the spectrum in section3.3;for now we simply note that at frequencies below the crossover scale the spectrum is again of the same SU(2)form as for?U′=0,whereas on higher scales the tails of the resonance approach those of the?U′=?U SU(4)spectrum which is also shown in the?gure.

Figure3(b)illustrates the situation on the other side of the SU(4)point:we showπΓD i(ω)versusω/Γ,again for?xed?U=7but now with?U′=7,7.03,7.044, 7.048and7.1,spanning as such the transition occurring at?U′c?7.046.As shown in ?gure5of I,with increasing?U′the Kondo scale T K in the SC phase now decreases exponentially rapidly(following the Kosterlitz-Thouless form equation(6.3)of I),and ultimately vanishes at the critical?U′c.The vanishing of the low-energy Kondo scale as the transition is approached is seen vividly in the behaviour of the Kondo resonance. This narrows rapidly with increasing?U′(?gure3b for?U′=7.03and7.044),while maintaining the unitarity limitπΓD i(ω=0)=1.The Kondo resonance collapses‘on the spot’at?U′=?U′c,and for?U′>?U′c in the CO phase leaves only an incoherent continuum around the Fermi level(withπΓD i(0) 0.2).

(a)ω/Γ

πΓD i (ω

)

(b)

ω/Γ

πΓD i (ω)

Figure 3.Evolution of the single particle spectrum πΓD i (ω)vs.ω/Γwith increasing ?U ′at ?xed ?U =7.(a)shows the crossover from SU (2)to SU (4)physics,?U

′=0,6.5,6.9and 7(from bottom to top);while (b)for ?U ′=7,7.03,7.044,7.048and 7.1(from top to bottom)shows the destruction of the Kondo resonance as the phase transition occurring at ?U

′c ?7.046is crossed.3.3.Universal scaling behaviour

One of the most important results for the single-impurity Anderson model is the universality of the Kondo resonance,arising in the strongly correlated Kondo regime (?U

?1)when the frequency axis is rescaled in terms of the Kondo scale T K .Here,we examine corresponding issues of universality for the DQD model in the di?erent regimes of the SC phase.First recall brie?y the scaling behaviour of the spectra πΓD i (ω)for ?U ′=0,where the single-impurity limit (at particle-hole symmetry)is recovered.For ?U

?1,

ω/T K

π

Γ

D

i (

ω

)

Figure 4.Scaling

spectra in the spin-Kondo regime.Main ?gure:πΓD i

(ω)vs.ω/T K for ?xed ?U =7and ?U ′=0(top solid line),6.95,6.98,6.99(dotted lines

from top to bottom)and 7(bottom solid line).Inset:the

collapse of the SU (4)

scaling spectrum onto a common form with increasing ?U ,πΓD i (ω)vs.ω/T K for

?U ′=?U =7(solid line),9(dashed line)and 11(dotted line).Note that the ?U =9

and 11spectra are virtually indistinguishable.

spectra for di?erent values of ?U collapse onto a common form (see e.g.[5])when the frequency axis is rescaled as ω/T K ,with no dependence on the ‘bare’parameters of the model.Once

this ‘scaling spectrum’is known,the spectrum for any particular ?U can thus be determined on an absolute frequency scale simply from a knowledge of T K alone.The scaling spectrum naturally embodies the universal physics of the many-body Kondo resonance —the high-energy,non-universal Hubbard satellites for example (at |ω|?U

will be essentially that of?U′=0,?U′=?U,or a combination of the two.For example,if ?U′is not exponentially close to?U,the ratio(U?U′)/T

K

will be very large(recall that T K is always exponentially small in strong coupling),the LM SU(4)?xed point will thus have basically no in?uence on the low-frequency dynamics,and the spectrum should therefore collapse onto the SU(2)scaling spectrum.Similarly,if(U?U′)?T K,then one would expect the scaling spectrum to be essentially unchanged from the SU(4) spectrum on all but possibly the lowest frequency scales(and even here the Friedel sum rule guarantees thatπΓD i(ω)→1asω/T K→0throughout the SC phase). When(U?U′)~O(T K)however,we do expect to see qualitatively di?erent scaling spectra:here the crossover from SU(2)to SU(4)occurs on a scale of order T K itself, and we would thus expect the spectra to show characteristics of both regimes.

Our numerical results agree with the arguments given above.For?U′ 6.9 and frequencies in the range shown in?gure4,the single particle spectra plotted as a function ofω/T K collapse essentially perfectly onto the U′=0SU(2)scaling spectrum.For larger values of?U′however,the ratio(U′?U)/T K moves into the frequency range under consideration and hence the spectra begin to show signs of SU(4)tails.For example,the dotted lines in?gure4showπΓD i(ω)versusω/T K for?U′=6.95,6.98and6.99,from which it is clear that with increasing?U′towards ?U′=?U,the SU(2)low-frequency behaviour holds over a progressively decreasing range ofω/T K.For values of?U′much closer still to?U,the numerically obtained scaling spectra are virtually indistinguishable from that of the SU(4)line U′=U.

The discussion above has focussed on the crossover from SU(2)to SU(4) behaviour,i.e.for?U′≤?U.We now show that there is a third scaling spectrum in the SC phase,which describes the behaviour in the charge-Kondo regime(?U

?U′→?U′

c ?).The main part of?gure5showsπΓD i(ω)versusω/T K for?xed?U=7

and?U′=7.03,7.04and7.044:as?U′approaches?U′c(?7.046),the Kondo temperature T K rapidly diminishes and the rescaled spectra collapse onto a common form.The scaling spectrum shows a distinct‘charge-Kondo’resonance,the tails of which tend not to zero asω/T K→∞,but to the value sin2[π√

ω/T K

πΓD i (ω

)

Figure 5.Scaling spectra in the charge-Kondo regime.Main ?gure:πΓD i (ω)vs.ω/T K for ?U =7and ?U ′=7.03(dotted line),7.04(dashed line)and 7.044(solid line).Inset:πΓD i (ω)vs.ω/T K for ?U =7(solid line),8(dashed line)and 9(dotted line)where (?U ′??U )/(?U ′c ??U )is ?xed at ?0.86.Note that the spectra for the largest two values of ?U

are essentially indistinguishable.4.Discussion

Finally,we comment brie?y on symmetry breaking perturbations which destroy the stability of the CO ?xed point.Particle-hole asymmetry does not of course fall into this category.As we have emphasised several times here and in I the particle-hole symmetric case (?=?U

2δ?(with ?=?(U

?U

′πΓD L (0)

Figure 6.Linear di?erential conductance πΓD L (ω=0)vs ?U

′for a ?xed ?U =7and δ?/T SU (4)K =0(dotted line),0.3(dashed)and 2(solid).Note that the lowest

?U

′shown in the ?gure is ?U ′=6.9.T SU (4)K /Γ?0.01the ?U ′=?U =7SU (4)scale for δ?=0).The pristine transition occurring for δ?=0is as anticipated smeared out,on a scale determined by δ?;albeit remaining clearly visible (note that the lowest ?U

′shown in ?gure 6is ?U ′=6.9),and as such robust in an obvious sense.

Acknowledgments

We are grateful to the EPSRC for supporting this research,and to the Royal Society for travel support.

References

[1]Galpin M R,Logan D E and Krishnamurthy H R 2006J.Phys.:Condens.Matter ,submitted

for publication.

[2]Wilson K G 1975Rev.Mod.Phys.47773

[3]Krishnamurthy H R,Wilkins J W and Wilson K G 1980Phys.Rev.B 211003

[4]Krishnamurthy H R,Wilkins J W and Wilson K G 1980Phys.Rev.B 211044

[5]Hewson A C 1993The Kondo Problem to Heavy Fermions (Cambridge:Cambridge University

Press)

[6]For a preliminary account of some of these results see:Galpin M R,Logan D E and

Krishnamurthy H R 2005Phys.Rev.Lett.94186406

[7]Meir Y and Wingreen N S 1992Phys.Rev.Lett.682512

[8]Costi T A,Hewson A C and Zlati′c V 1994J.Phys.:Condens.Matter 62519

[9]Garst M et al 2004Phys.Rev.B 69214413

[10]Hofstetter W and Schoeller H 2002Phys.Rev.Lett.88016803

[11]Galpin M R and Logan D E 2005J.Phys.:Condens.Matter 176959

[12]Logan D E,Eastwood M A and Tusch M T 1998J.Phys.:Condens.Matter 102673

[13]Glossop M T and Logan D E 2002J.Phys.:Condens.Matter 146737

[14]Logan D E and Glossop M T 2000J.Phys.:Condens.Matter 12985

[15]Dickens N L and Logan D E 2001J.Phys.:Condens.Matter 134505

项目管理方法和项目实施方法的关系

项目管理方法和项目实施方法的关系 在一个项目的执行过程中还同时需要两种方法:项目管理方法 和项目实施方法。 项目实施方法指的是在项目实施中为完成确定的目标如某个应 用软件的开发而采用的技术方法。项目实施方法所能适用的项目范围会更窄些,通常只能适用于某一类具有共同属性的项目。而在有的企业里,常常把项目管理方法和项目实施方法结合在一起,因为他们做的项目基本是属于同一种类型的。 实际上,只要愿意,做任何一件事情,我们都可以找到相应的 方法,项目实施也是一样。以IT行业的各种项目为例,常见的IT项目按照其属性可以分成系统集成、应用软件开发和应用软件客户化等,当然,也可以把系统集成和应用软件开发再分解成一些具备不同特性的项目。系统集成和应用软件开发的方法很显然是不一样的,比如说:系统集成的生命周期可能会分解为了解需求、确定系统组成、签订合同、购买设备、准备环境、安装设备、调试设备、验收等阶段;而应 用软件的开发可能会因为采用的方法不同而分解成不同的阶段,比如说采用传统开发方法、原型法和增量法就有所区别,传统的应用软件开发的生命周期可能分解成:了解需求、分析需求、设计、编码、测试、发布等阶段。 至于项目管理,可以分成三个阶段:起始阶段,执行阶段和结 束阶段。其中,起始阶段是为整个项目准备资源和制定各种计划,执

行阶段是监督和指导项目的实施、完善各种计划并最终完成项目的目标,而结束阶段是对项目进行总结及各种善后工作。 那么,项目管理方法和项目实施方法的关系是什么呢?简单的说,项目管理方法是为项目实施方法得到有效执行提供保障的。如果站在生命周期的角度看,项目实施的生命周期则是在项目管理的起始阶段和执行阶段,至于项目实施生命周期中的阶段分布是如何对应项目管理的这两个阶段,则视不同项目实施方法而不同。 一、实际意义 项目管理方法和项目实施方法对项目的成功都是有重要意义的,两者是相辅相成的,就如管理人员和业务技术人员对于企业经营的意义一样。从IT企业的角度看,任何一个IT企业如果要生产高质量的软件产品或者提供高质量的服务,都应该对自身的项目业务流程进行必要的分析和总结,并逐步归纳出自己的项目管理方法及项目实施方法,其中项目实施方法尤其重要,因为大部分企业都有自己的核心业务范围,其项目实施方法会比较单一,在这种情况下,项目管理方法可能会弱化,而项目实施方法会得到强化,两者会较紧密的结合在一起。只有总结出并贯彻实施符合企业自身业务的方法,项目的成功才不会严重依赖于某个人。在某种程度上,项目管理方法和项目实施方法也是企业文化的一部分。 从客户的角度看,如果希望得到有保障的产品或服务,那就既 需要关注提供产品或服务的企业是否有恰当的项目管理方法和项目 实施方法,也必须尊重该企业的项目管理措施与方法。

数字化校园建设与管理办法

数字化校园建设与管理办法 第一章总则 第一条为加强学校数字化校园的建设和管理,规范数字化校园建设各项工作,提高学校信息化应用水平,保证信息化建设的实效性与可持续发展,实现学校信息资源和软硬件资源的有机集成和共享,充分发挥信息化建设成果在人才培养、科学研究、社会服务和文化传承创新等方面的支撑作用,根据相关的法律法规、国家和教育部对教育信息化建设的指导意见,以及《教育信息化十年发展规划2011—2020》、《陕西省教育信息化十年(2011—2020年)发展规划》、《陕西省教育信息化建设三年行动计划》等有关精神,特制定本办法。 第二条学校数字化校园建设,在学校信息化建设领导小组的领导下,由教务处信息中心统一规划、统一审批、统一建设、统一管理,并按照整体规划、分步实施的原则,以应用为中心,以数字资源建设为重点,逐步达到为师生、领导和管理部门提供良好的服务和辅助决策的建设目标,提升学校的综合竞争力。 第三条本办法适用于全校范围内各部门所拥有或负责管理运行的与数字化校园相关的基础网络、信息化公共平台、数字教育资源、管理信息系统、网站、数字监控网络及其相关网络接入设备、服务器、大容量存储设备等的建设和管理。 第二章管理机构与工作职责 第四条信息化建设领导小组是全面推进学校数字化校园建设的

最高管理与决策机构,负责审议学校数字化校园建设发展的中长期规划与经费预算;负责审议学校数字化校园建设、运维管理及校园网安全规章制度;明确学校数字化校园建设中各部门的责任分工、资源分配以及考核机制;对学校数字化校园建设中的重大问题和政策性问题进行决策。 第五条学校信息化建设领导小组负责对学校教育信息化建设发展的中长期规划进行论证,对数字化校园提出意见和建议;对学校数字化校园建设发展战略、政策、规划和发展中的重大问题提出建议和咨询意见;对学校数字化校园建设进程中各子项目的建设与验收提供技术层面与应用层面的意见或建议;指导学校数字化校园建设和信息化教育新模式的探索和研究工作。 第六条信息中心是学校数字化校园建设与管理具体实施的主体部门,全面负责学校数字化校园建设和管理工作。负责制定学校数字化校园建设发展的中长期规划与经费预算,制定学校数字化校园建设、运行与管理及保障校园网安全的规章制度;负责组织、实施学校数字化校园各项建设工作;负责对学校数字化校园建设相关项目和各部门申报的信息化新建和改造项目进行审核和实施;负责学校信息编码规范和数据标准的制定;负责学校信息资源共享、信息资源整合和系统集成;为各部门信息化建设提供技术指导、支持、监督和评比;负责公共平台应用的推广与培训;负责健全和完善信息化工作管理体系。 第七条各部门信息管理员负责本部门信息化相关数据的收集、整理和上报,负责本部门网站信息的更新、备份和维护;网络协管员

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

数字化校园建设方案.doc

天津市东丽区职业教育中心学校“数字校园实验校”建设实施方案 一、信息化发展战略定位和愿景 根据学校十三五战略发展规划,在国家级示范校的基础上,立足东丽,面向天津,辐射全国,走向世界,实现“工学结合高要求、专业建设高品位、教育教 学高质量、就业服务高水平、学校发展高效益”的五高目标,“十三五”末期实现学校向世界一流水平的跨越,充分发挥示范和辐射作用。通过本期数字化校园项目建设,将我校打造成全国一流的中职数字化校园,构建技术先进、扩展性强、安全可靠、高速畅通、覆盖全校的校园网络环境。 建立一整套校园信息管理系统,为实现“环境数字化、管理数字化、教学数 字化、产学研数字化、学习数字化、生活数字化”提供全面的系统支持,使之成 为一个全面、集成、开放、安全的信息系统,成为一个网络化、数字化、智能化、虚拟化的新型教育、学习、实训和管理平台。通过数字化校园项目建设,推动教学模式变革,提高人才培养质量,促进学校对外交流。通过项目建设,使全体师 生提高信息化思维能力,养成信息化行为方式,遵守信息化交往规则,发展信息化职业能力。 二、数字化校园建设目标 按照“顶层设计、统一标准、数据共享、应用集成、硬件集群(虚拟化)” 的规划建设理念,实现: 1.为教学、科研、管理、生活提供一个开放、协同、高效、便捷的数字化 环境,实现规范高效的管理 2.为领导的决策提供实时有效的信息依据 3.为提升学校的核心竞争力,实现学校的跨越式发展提供有力的支撑 具体目标就是实现“六个数字化”: 环境数字化:构建结构合理、使用方便、高速稳定、安全保密的基础网络。 在此基础上,建立高标准的共享数据中心和统一身份认证及授权中心,统一门户平台以及集成应用软件平台,为实现更科学合理的数字化环境打下坚实的基础。 管理数字化:构建覆盖全校工作流程的、协同的管理信息体系,通过管理信息的同步与共享,畅通学校的信息流,实现管理的科学化、自动化、精细化,突出以人为本的理念,提高管理效率,降低管理成本。 教学数字化:构建综合教学管理的数字化环境,科学统一的配置教学资源, 提高教师、教室、实训室等教学资源的利用率,改革教学模式、手段与方法,丰 富教学资源,提高教学效率与质量。 产学研数字化:构建数字化产学研信息平台,为产学研工作者提供快捷、全面、权威的信息资源,实现教学、科研和实训一体化,提供开放、协同、高效的

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.360docs.net/doc/034322168.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.360docs.net/doc/034322168.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

(完整版)项目管理思路(提纲)

项目管理思路(提纲) 原则:规范创新项目管理方法,提供标准化的项目管理体系。(这次的思路主要考虑整体、不突出重点。) 一、工程项目管理的基本内容: 1、项目部管理 2、前期管理 3、招标合同管理 4、设计管理 5、总承包管理 6、进度管理 7、质量管理 8、成本管理 9、竣工(收尾)管理 二、项目部管理 1、项目部组织结构:项目部的构成根据项目的发展进度再不断进行调整,先补充预算员、资料员及熟悉酒店项目的机电工程师; 2、项目部职责(分工):落实责任到岗位,落实责任到人,着重把后面的所有管理内容一项不漏的分配到具体的管理人员上,真正做到“权责明晰,有据可依”; 3、加强项目管理人员的培训及学习工作,紧跟社会行业的前进步伐,提高项目管理人员的业务能力,为新项目的顺利进行提供坚实的基

础; 4、项目部管理制度:以公司现有的规章制度及考核制度为基础,再根据新情况进行一些适当补充与调整。 三、前期管理 1、各种手续、审批报建工作的推进及跟踪,无法办理的事项及时将具体情况及原因反馈给公司领导; 2、联络街道办和公证处对本项目周边毗邻建筑物的现状(特别是裂缝、下沉)进行拍照确认并公证; 3、拆除施工场地内的原有基础或其他障碍物;通水(自来水公司)、通电、办理临时占道、开路口(城管局) 及其他相关手续; 4、根据公司领导的要求及项目实际情况编制项目总开发计划; 四、招标合同管理 1、除审查入围单位的资质等级、营业执照、财务状况外,还应着重对入围单位的办公地点、在建项目(生产厂房)针对人员、质量、安全、环境等进行实地考察,以确定是否满足我方质量、进度等综合要求; 2、根据总开发计划编制专业分包与主要材料、设备的进场计划,明确进场时间;根据专业分包与主要材料、设备的进场计划编制招标、采购计划,并严格执行; 3、对于专业分包,要细化、深化各类发包工程内容的自身招标条件,应事先研究各工程内容建设的时间、验收、保修、交接、资料、协作、费用、安全、场地等接口配合条件,就甲方发包(含总承包)的各内容

数字化校园建设项目计划

项目一:数字化校园特色项目建设计划 一、需求论证 信息技术的飞速发展,迅速地改变着人们的学习、工作和生活,也改变着人们的思想、观念和思维方式。这一切都对快速发展中的职业教育和职业学校提出了十分严峻的挑战。现代信息技术正在向职业学校教学、科研、管理的每一个环节渗透,将改变传统的教学模式并大幅度提高教育资源的利用效率。数字化校园、网上学校已被人们熟悉,职业教育正在走向全面的信息化。 数字化校园的建设应用是教育系统信息化的关键,在职业学校建设数字化校园,对于促进教师和学生尽快提高应用信息技术的水平,促进学校教学改革,推行素质教育,促进教学手段的现代化水平,为教师提供一种先进的辅助教学工具、提供丰富的资源库,全面提高学校现代化管理水平,加强学校与外界交流等方面都具有重要作用。 2005年学校完成校园网建设,同时接入因特网,校园网覆盖了所有使用计算机的实验室、各处办公室、各专业组。目前校园网已覆盖整个校园。但数字化教与学以及服务区域职业教育、实现教育资源共享的能力还远远不够。作为一所综合性国家级重点职业学校,以及建设国家中等职业教育改革发展示校的要求,要使其发挥辐射带动作用,达到资源利用最大化,迫切需要我校建设数字化校园,将更大的注意力放在信息化的深入应用上,及早做好规划,将信息化发展推向新水平。 二、建设目标

数字化校园建设的目标主要包括:一是完善校园网基础设施建设,构建技术先进、扩展性强、安全可靠、高速畅通、覆盖本部、一分部、实训基地的校园网络环境;二是建设全校防盗系统;三是完善校园广播系统;四是各种资源应用平台建设;五是建设校园一卡通。 学校通过构建技术先进、扩展性强、安全可靠、高速畅通、覆盖全校的校园网络环境,建立全校公共信息系统,为教与学提供先进数字化管理手段,提高管理效率;建立功能齐全的教学管理系统;配合“工学结合”教学模式,建设容丰富的网络教学资源平台,实现数据资源共享,提高全校师生的信息化水平素养。通过数字化校园的建设项目,为培养高技能应用型人才和服务社会搭建公共服务平台。 三、建设思路 以服务专业建设为出发点,建设数字化校园和教学资源中心。构筑信息交流与资源共享平台,创建开放的教学资源环境,实现优质教学资源网上共享,为实用型技能人才的培养和构建现代化学习环境搭建公共平台,提高管理效率与教学水平。提高全校师生信息化水平素养,以网络为基础,利用先进的信息手段和工具,将学校的各个方面,实现环境(包括网络、设备、教室等)、资源(如图书、讲义、课件等)、活动(包括教、学、管理、服务、办公等)的数字化,逐步形成一个数字校园空间,从而使现实校园在时间和空间上获得延伸,完成数字校园建设,对本地区职业教育信息化建设和发展起到示与带动作用。 四、建设容 (一)校园安全防盗系统

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.360docs.net/doc/034322168.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

建设银行规划项目管理章程与工作方法

中国建设银行科技应用规划项目项目管理章程和工作方法 中国建设银行 2020年4月2日

目录 1项目人员角色和职责3 2项目运行中的沟通机制 (5) 3项目文档资料管理机制8 4项目人员的考核机制 (12) 5项目培训机制 (14) 6项目验收机制15 项目人员角色和职责 项目领 导委员会 项目总监 /项目管理办公 项目小组 项目领 导委员会 项目总监 质量总监 项目经理 项目小组 1) 项目领导委员会:

由双方的高层领导参加,直接负责项目的成功实施,负责: a)确定项目目标和方向 b)保证资源合理调动,支持项目的推行 c)促使管理层对项目的全力参与和支持 d)验收和审批项目成果 e)授权项目经理开展工作 2)项目总监和质量总监: 项目总监由双方选出的高层领导担任,主要负责: a)对项目过程进行指导和监督 b)确认双方工作职责和安排 c)组织协调项目所需资源的合理调配 d)按项目进度向项目领导委员会汇报 e)定期对项目的工作进度进行监督 f)对项目成果进行确认和验收 毕博管理咨询将另派高层管理人员作为本项目的质量总监,主要负责: a)对本项目的整体质量进行检查和考核 3)项目经理: 项目经理成员由双方的项目经理组成,具体负责: a)策划项目推进和控制项目进程 b)确认项目小组及其成员的工作职责 c)指导及安排项目小组的日常工作 d)定期安排双方沟通、及时调整工作安排 e)现场处理双方可能产生的意见不一致 f)执行项目所需资源的有效调配 g)组织对项目成果的确认和验收 4)项目小组:

项目小组将由小组负责人、咨询顾问、行业专家以及中国建设银行的项目参与人员共同组成。项目小组的职责包括: a)确定项目的工作步骤和具体工作方法 b)具体开展项目工作,包括:收集数据和信息,分析并确定问题,设计解决方案, 讨论和修改工作成果,协助实施 c)根据项目要求,在规定的时间内提交符合质量要求的项目设计方案 项目运行中的沟通机制

数字化校园管理系统

中小学数字化校园管理系统软件 拟 定 方 案

目录 一、数字校园基础平台: (3) 二、协同办公系统: (5) 三、招生管理系统: (6) 四、学籍管理系统: (7) 五、学费管理系统: (7) 六、学生管理系统: (8) 七、学生请销假管理: (8) 八、量化考核管理系统: (8) 九、教务管理系统: (9) 十、成绩管理系统: (9) 十一、离校管理系统: (10) 十二、资产管理系统: (10) 十三、人事档案管理系统: (11) 十四、数字化图书馆教学资源库、精品课程及网上教学平台: (11)

“数字化校园管理系统” “数字校园管理系统”是针对职业院校信息化建设,研发的数字化校园管理系统。通过电脑或手机等终端,为校长、老师、学生、行政办公人员、学生父母、来访用户及相关应用人员提供高效、便捷的一站式信息服务。实现了校园内各类应用软件高效集成和数据资源高度共享,是最适合中学高中及大学校园信息化建设的管理软件。 下面是平台界面示意图: 一、数字校园基础平台:

数字校园管理系统特点: 产品开发以学校为原型, 技术选型性价比更高。 采用windows server +php + mysql + apache的技术架构。 优势:采用win server 作为操作系统,更容易维护,也符合学校服务器现有情况 采用mysql开源数据库,无需支付软件授权费用,因为mysql是一个开源免费的数据库。但是其性能及稳定性堪称一流,许多大型网站系统都在使用。 PHP是全世界使用量排名第四的编程语言,在B/S结构的系统中有其得天独厚的优势。 我方在提供以开发完毕的整套系统的基础上,后期可根据学校需求进行系统的第二次开发,以适应学校的需求。 数字校园管理系统:多终端访问: 数字校园管理系统基础平台包含内容:

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

项目管理方法

项目管理方法 项目管理方法是关于如何进行项目管理的方法,是可在大部分项目中应用的方法。主要有:阶段化管理、量化管理和优化管理三个方面. 管理概述 项目管理是一个管理学分支的学科,指在项目活动中运用专门的知识、技能、工具和方法,使项目能够在有限资源限定条件下,实现或超过设定的需求和期望。项目管理是对一些与成功地达成一系列目标相关的活动(譬如任务)的整体。这包括策划、进度计划和维护组成项目的活动的进展。项目管理方法是关于如何进行项目管理的方法,是可在大部分项目中应用的方法。在项目管理方法论上主要有:阶段化管理、量化管理和优化管理三个方面。[1] 阶段管理 阶段化管理指的是从立项之初直到系统运行维护的全过程。根据工程项目的特点,我们可将项目管理分为若干个小的阶段。 市场信息 1)市场信息方面可分为:信息采集、信息分析、工程项目立项及项目申请书的编写。 ①信息采集:可分为工程项目信息与常规设备与器材的市场信息的采集。这些信息通过业务员或其它通道获得,一旦获得后,信息提供者应以书面形式向公司有关部门予以报告。 ②信息分析:公司在这方面应该设立专门的部门对各种信息进行分类、编辑、管理、核实、分析与论证,在考虑项目时不但要看社会是否需要,而且还要研究个人、组织或社会是否有能力投入足够的资源将其实现,实现之后能否为资源投入者和社会真正带来利益。通过对项目的可行性研究为信息的确定提供切实可行的依据。并监督业务工作人员的

工作效率以及其绩效评价。 ③工程项目立项:根据信息分析部门所提供的分析与认证报告,确定信息的处理方式,并上报公司决策层予以决策。公司决策层通过信息分析部门的信息分析报告结合公司的经营状况,对信息进行确定是否立项,一旦立项,就要分析会有哪些承约商参加投标,各自的优势以及他们同客户的关系。主要考虑的因素包括自身的技术能力、项目风险、资源配置能力及其它因素。同时也可对信息分析部门的工作效率以及其绩效评价。 申请书填写 项目申请书:当决定参加投标竞争的时候上,就需要完成一份项目的申请书或称为投标书,一份完整的申请书一般包括三个部分的内容,即技术、管理、成本三个方面。如果是一份较复杂的申请书,这三部分可能是三个独立的册子: 技术部分的目的是让客户认识到:承约商对其需求和问题的理解,并且能够提供风险最低且收益最大的解决方案。 管理部分的目的是使客户确信,承约商能够做好项目所提出的工作,并且收到预期的结果。 成本部分的目的是使客户确信,承约商申请项目所提出的价格是现实的、合理的。 这一部分任务将由公司的技术支持部门根据市场信息部门的有关报告完成,同样也可以通过其工作效率及质量对其进行绩效评价。 申请书完成后 在项目申请书完成的同时,市场信息部门的所有部门都应密切注视该项目的进展情况,及时更新项目的最新状况,并通报各有关部门特别是技术支持部门,使该部门能根据项目的最新情况调整项目申请书。以增大我们在项目中的竞争能力。 在合同的签订即项目确定之后,项目管理又可划分为项目准备阶段、项目实施阶段、竣工验收阶段及系统运行维护阶段等。各阶段的工作内容的不同,其实施与管理也应各异。 ①项目准备阶段:其项目实施管理方式的确定(即项目组织),各种资源的配备与落实,以及具体项目实施方案的进一步确定。即根据项目的特点,对项目作业进行分解,确定其阶段性成果验收,以及必要的监督反馈,这样就能够很好地解决项目组织与客户的分歧,增加项目风险的可控性。 ②项目实施阶段:根据项目实施的具体方案,并以各阶段性成果按其技术要求、质量保证进行验收。这样,在每个阶段完成后,客户和项目

数字化校园项目申请书

附件2 内蒙古建筑职业技术学院院长科研基金课题申请·评审书 课题名称:高职院校校园数字化建设系统研究 主持人: 所在部门:) 联系电话: 申请日期:

填报说明 一、课题(项目)主持人必须从事教学或管理工作五年以上并具有中级以上职称。课题主持人必须是该课题的实际主持者和指导者,并在课题研究中担负实质性的任务。 二、课题(项目)主持人原则上不超过55岁。鼓励35岁以下优秀青年教师和科技人员特别是博士、硕士学位的年轻教师申报。申报项目的课题组必须具有良好的政治思想素质、独立开展和组织教育教学研究工作的能力,有较充分的前期准备和相应合理的学术梯队。 三、课题论证应尽量充分。研究计划和阶段成果应尽量明确。 四、申请书各项内容,要实事求是,逐条认真填写。表达要明确、严谨,字迹要清晰易辩。外来语要同时用原文和中文表达。第一次出现的缩写词,须写出全称。 五、申请书复印时用A4复印纸,于左侧装订成册。各栏空格不够时,请自行加页。一式三份,由所在部门签署意见后,报高职教育研究所。 六、每一个课题的主要成员(含主持人)只允许申报一个项目。 七、本申请书与任务批准书同时作为立项依据。

课题主持人承诺 我确认本申请书及附件内容真实、准确。如果获得资助,我将认真履行课题负责人职责,积极组织开展研究工作,合理安排研究经费,按时报送有关材料并接受检查。若申请书及附件内容失实或在课题执行过程中违反科研项目管理的有关规定,本人将承担全部责任。 负责人签字: 20 年月日 课题依托部门承诺 本部门已按照课题申报要求对课题主持人的资格及课题申请书内容进行了审核,课题主持人及课题组主要成员具备课题研究的素质与水平,能够保证课题研究计划实施所需的人才、物力及工作时间,课题如获资助,本部门将根据学院要求和课题申请书内容,落实课题研究所需其他条件,并按照学院科研课题管理有关规定,认真履行课题依托部门的管理职责。 部门公章负责人签章 20 年月日

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

(工作心得体会)项目管理工作心得感想

项目管理工作心得感想 项目管理工作在企业是很重要的。项目管理作为企业及组织的一种管理方法,已经在实际的经济运作中扮演了越来越重要的角色并起到了越来越高效的成果。下面是为大家整理的项目管理工作心得感想,供你参考! 项目管理工作心得感想篇1 两天认真听了《全面项目化管理》这门课,***教授从五大类分别给我们详细讲述了全面项目化管理基础思想、成功项目的必备条件、全面项目化、项目化管理和全面、项目化管理的导入。通过学习将我们如何运用全面项目化管理又提升到一个新的高度,让我们又发现了诸多平时工作中存在的问题,也对我们今后的工作起到了指导与改正的作用,真正是受益匪浅。 通过赵教授对专业理论知识的阐述再到典型案例的剖析,做得好的方面也得到了课程中理论知识的支持,对一些常见的错误也以鲜活的案例加以呈现,让我们将日常工作中常犯的错误集中展现并一一剖析其错误所在以及对工作的影响,对我们今后的工作起到了一定的改善作用。 老师讲项目的标准化时,重点说明了要重视基本习惯的培养,可以大大提高工作质量,任何规范的基础都很重要。还有项目经理的选择,应具备的三大素养和应具备的工作能力等,这一点我在工作中深有体会。 无论是企业还是个人,一个好的完善的计划必定能够帮助我们更快更有效的确定行动方向,从而能达到事半功倍的效果。无论办什么事情都应明确其目的和意义,有个打算和安排。有了计划,就有了明确的奋斗目标,具体的工作程序,就可以更好地统一大家的思想,协调行动,增强工作的自觉性,减少盲目性,调动员工的积极性和创造精神,合理地安排和使用人力、物力,少走弯路,少受挫折,保障工作顺利进行,避免失误。计划一旦形成,就在客观上变成了对工作的要求,对计划实施者的约束和督促,对工作进度和质量的考核标准。这样,计划又反过来成了指导和推动工作前进的动力。总之,搞好工作计划,是建立部门正常工作秩序,提高工作效率必不可少的程序和手段。编制好工作计划,对于我们的工作,都有十分重要的意义。为提高工作效率,我们还编制了相关工作计划进度表,部门每一个人在工作例会上必须对自己一周的工作完成情况进行汇报,然后由经理再对部门的工作做出总结,通过表格计划管理有效的加快了工作进度。 作为一个优秀的项目经理必须具备一定的管理能力、工作能力及执行能力,还需具备良好的心理素质和抵御压力的能力和具备良好的素养。我们要为公司广结良缘,广交朋友,形成公司与政府部门之间沟通的桥梁,形成人和的氛围和环境。为此要把握交往的技巧、艺术、原则。能力+人脉=成功。维持良好的人脉关系有效的实现工作成功的目标。就在今年

(完整word版)项目管理的方法

项目管理方法 项目管理是一个管理学分支的学科,指在项目活动中运用专门的知识、技能、工具和方法,使项目能够在有限资源限定条件下,实现或超过设定的需求和期望。项目管理是对一些与成功地达成一系列目标相关的活动(譬如任务)的整体。这包括策划、进度计划和维护组成项目的活动的进展。项目管理方法是关于如何进行项目管理的方法,是可在大部分项目中应用的方法。在项目管理方法论上主要有:阶段化管理、量化管理和优化管理三个方面。阶段管理 阶段化管理指的是从立项之初直到系统运行维护的全过程。根据工程项目的特点,我们可将项目管理分为若干个小的阶段。 市场信息 1)市场信息方面可分为:信息采集、信息分析、工程项目立项及项目申请书的编写。 ①信息采集:可分为工程项目信息与常规设备与器材的市场信息的采集。这些信息通过业务员或其它通道获得,一旦获得后,信息提供者应以书面形式向公司有关部门予以报告。 ②信息分析:公司在这方面应该设立专门的部门对各种信息进行分类、编辑、管理、核实、分析与论证,在考虑项目时不但要看社会是否需要,而且还要研究个人、组织或社会是否有能力投入足够的资源将其实现,实现之后能否为资源投入者和社会真正带来利益。通过对项目的可行性研究为信息的确定提供切实可行的依据。并监督业务工作人员的工作效率以及其绩效评价。 ③工程项目立项:根据信息分析部门所提供的分析与认证报告,确定信息的处理方式,并上报公司决策层予以决策。公司决策层通过信息分析部门的信息分析报告结合公司的经营状况,对信息进行确定是否立项,一旦立项,就要分析会有哪些承约商参加投标,各自的优势以及他们同客户的关系。主要考虑的因素包括自身的技术能力、项目风险、资源配置能力及其它因素。同时也可对信息分析部门的工作效率以及其绩效评价。 申请书填写 项目申请书:当决定参加投标竞争的时候上,就需要完成一份项目的申请书或称为投标书,一份完整的申请书一般包括三个部分的内容,即技术、管理、成本三个方面。如果是一份较复杂的申请书,这三部分可能是三个独立的册子: 技术部分的目的是让客户认识到:承约商对其需求和问题的理解,并且能够提供风险最低且收益最大的解决方案。