三角函数求值

三角函数求值
三角函数求值

查漏补缺4 三角函数的求值问题

知识点归纳:

1.给出一个角,求出其某一三角函数值.

2.给出一个角的某一三角函数值,求出这个角的其他三角函数值.

3.齐次式的求值.

4.有关x x cos sin ± ,x x cos sin ?的求值问题.

5.给值求值,即给出一个(或两个)角的三角函数值,求出其他角的三角函数值.

6.给值求角,即给出三角函数值,求符合条件的角.

练习:

1. cos 330?= ( )

.

A 12

.B 12

-

.

C 2 .

D 2

-

2. α是第四象限角,5tan 12

α=-

,则sin α= ( )

.A 15

.B 15

-

.C 513

.D 513

-

3. 已知2sin 23

A =

,()0,A π∈,则sin cos A A += ( )

.A 3

.B 3

- .C 53

.D 53

-

4. 已知,2tan =α求下列各式的值 (1)

α

αααcos 9sin 4cos 3sin 2--,(2)

α

ααα2

22

2cos 9sin 4cos 3sin 2--,(3)αααα22cos 5cos sin 3sin 4--

5. 已知a =

200sin ,则

160tan 等于

A 、2

1a

a --

B 、

2

1a

a - C 、a

a 2

1--

D 、

a

a 2

1-

6. 已知3sin 35πθ?

?

+

=- ??

?,,2πθπ??

∈ ???

,求cos θ的值.

7. 已知1cos 7

α=

,()11cos 14

αβ+=-

,且,0,

2παβ?

?

∈ ??

?

,求cos β的值.

8. 如图,在平面直角坐标系xo y 中,以ox 轴为始边做两个锐角

,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B

的横坐标分别为

105

.

⑴求tan()αβ+的值; (2)求2αβ+的值.

三角函数式的求值

三角函数式的求值 1 给角求值要求熟练掌握两角和与差得三角函数得差不多公式、二倍角公式,专门要注意逆向使用和差角公式与二倍角公式,以此将非特别角得三角函数转化为特别角得三角函数. 例1 求值:sec50°+tan10° 解析:sec50°+tan10° =1cos50°+cos10°sin10° =1sin40°+cos80°sin80° =2cos40°+cos80°sin80°=cos40°+cos40°+cos80°sin80° =cos40°+cos(60°-20°)+cos(60°+20°)cos10° =cos40°+cos20°cos10°=2cos30°cos10°cos10°=3 总结评述:本题得解题思路是:变角→切割化弦→化异角为同角→转化为特别角→约去非特别角得三角函数.c 解此类咨询题得方法是,转化为特别角,同时能消去非特别角得三角函数. 2 给值求值给出角得一种三角函数值,求另外得三角函数式得值,常用到同角三角函数得差不多关系及其推论,有时还用到“配角”得技巧,解题得关键是寻出已知条件与欲求得值之间得角得运算及函数名称得差异,对已知式与欲求式施以适当得变形,以达到解决咨询题得目得. 例2 已知1+tanα1-tanα=5+26求1-sin2αcos2α得值 策略:要求1-sin2αcos2α得值,条件1+tanα1-tanα=5+26 是特别重要得,要从这一条件动身,将α得某一三角函数值求出,即可获解. 解析:1+tanα1-tanα= tan45°+tanα1-tan45°tanα=tan(45°+α)=5+26 ∵ cos2α1-sin2α=sin(90°+2α)1+cos(90°+2α)=tan(45°+α) ∴ 1-sin2α1cos2α=1tan(45°+α)=15+26=5-26 3 给值求角 给出三角函数值求角得关键有二: (1)求出要求角得某一三角函数值(通常以正弦或余弦为目标函数). (2)确定所求角在(已求该角得函数值)相应函数得哪一个单调区间上(注意已知条件和中间所求函数值得正负符号). 例3 若α、β∈(0,π),cosα=-750,tanβ= -13求α+ 2β得值. 解析:由已知不难求出tanα与tan2β得值,这就可求出tan(α+2β)得值,因此要求α+2β得值,关键是准确推断α+2β得范围. ∵cosα=-750且α∈(0,π) ∴sinα= 150,tanα=-17 又tanβ= -13,tan2β=2tanβ1-tan2β=-34 ∴tan(α+2β)= tanα+tan2β1-tan2βtanα =-17-341-(-17)(-17)(-34)=-1

高考三角函数化简求值

高考 三角函数式的化简与求值三角函数式的化简和求值是高考考查的 重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍.●难点磁场(★★★★★)已知 2 π <β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值_________.● 案例探究[例1]不查表求sin 220°+cos 280°+3cos20°cos80°的值.命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高.属于★★★★级题目. 知识依托:熟知三角公式并能灵活应用.错解分析:公式不熟,计算易出错.技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体 会.解法一:sin 220°+cos 280°+3sin 220°cos80°= 21 (1-cos40°)+2 1 (1+cos160°)+ 3sin20°cos80°=1-21cos40°+21cos160°+3sin20°cos(60°+20°)=1-2 1 cos40° +2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°)=1- 21cos40°-41cos40°-43sin40°+43sin40°-23sin 220°=1-43cos40°-4 3 (1- cos40°)= 4 1 解法二:设x =sin 220°+cos 280°+3sin20°cos80°y =cos 220°+sin 280°- 3cos20°sin80°,则x +y =1+1-3sin60°=21 ,x -y =-cos40°+cos160°+3sin100°= -2sin100°sin60°+3sin100°=0∴x =y =4 1 ,即x =sin 220°+cos 280°+3sin20°cos80° =41.[例2]设关于x 的函数y =2cos 2x -2a cos x -(2a +1)的最小值为f (a ),试确定满足f (a )=21的a 值,并对此时的a 值求y 的最大值.命题意图:本题主要考查最值问题、三角函数的有界性、计算能力以及较强的逻辑思维能力.属★★★★★级题目知识依托:二次函数在给定区间上的最值问题.错解分析:考生不易考查三角函数的有界性,对区间的分类易出错.技巧与方法:利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座 等.解:由y =2(cos x -2 a )2-22 42+-a a 及cos x ∈[-1,1]得: f (a )?? ? ????≥-<<-----≤)2( 41)22( 122) 2( 12 a a a a a a ∵f (a )=21,∴1-4a =21?a =81?[2,+∞)故- 22a -2a -1= 21,解得:a =-1,此时,y =2(cos x +21)2+2 1 ,当cos x =1时,即x =2k π,k ∈Z ,y max =5.[例3]已知函数f (x )=2cos x sin(x + 3 π )-3sin 2x +sin x cos x (1)求函数f (x )的最小正周期;(2)求f (x )的最小值及取得最小值时相应的x 的值;(3)若当x ∈[12 π,127π ]时,f (x )的反函数

两角和与差的三角函数求值 高中数学教案

两角和与差的三角函数求值微课设计 一、教材分析 三角函数的求值主要有两种类型,即给值求值,给值求角. (1)正确地理解、选用公式,把非特殊角的三角函数值化为特殊角的三角函数值; (2)找出已知条件与所求结论之间的联系,一般可以适当变换已知代数式,从而达到解题的目的。 二、教学目标 知识与技能:探究已知与未知的内在联系,加深对公式的理解,培养学生的运算能力及逻辑推理能力。 过程与方法:通过两角和与差的三角函数公式的运用,会进行简单的求值、化简,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题的能力。 情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。 三、学情分析 (1)对公式记忆不准确而使公式应用错误; (2)公式不能灵活应用和变形应用; (3)忽略角的范围或者角的范围判断错误.。 四、教学重、难点 教学重点: 两角和与差的三角函数公式的理解; 教学难点: 两角和与差的三角函数公式的运用。 五、教法学法 讲授法。 六、教学过程设计

故知新 通过分析两角和与差的三角函数公式,加深对知识的理解. 创设情境问题情境: 通过对热点考向的分析, 明确本节主要内容与学习方 向。 通过设计一系列典型例 题,让学生进一步体会两角和 与差的三角函数公式的正用、 逆用,以及整体代换思想的融 合,,提高学生的观察分析能 力,培养学生的应用意识。

典 例 分 析 引导学生从多角度思考 问题,意识到解决问题方法的 不唯一性,加深学生对两角和 与差的三角函数公式的理解, 拓展学生思维。 课 堂梳理公式特点分析; 整体代换思想。 课堂梳理,可以把课堂探究生 成的知识尽快转化为学生的 素质,巩固深化这节课的内 容.

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

三角函数式的化简与求值

三角函数式的化简与求值 三角函数式的化简和求值是高考考查的重点内容之一.通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍. ●难点磁场 已知 2π<β<α<43π,cos(α-β)=13 12,sin(α+β)=-53 ,求sin2α的值_________. ● 案例探究 [例1] 不查表求sin 220°+cos 280°+3cos20°cos80°的值. 命题意图:本题主要考查两角和、二倍角公式及降幂求值的方法,对计算能力的要求较高. 知识依托:熟知三角公式并能灵活应用. 错解分析:公式不熟,计算易出错. 技巧与方法:解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会. 解法一:sin 220°+cos 280°+3sin 220°cos80° = 21 (1-cos40°)+21 (1+cos160°)+ 3sin20°cos80° =1-21cos40°+21 cos160°+3sin20°cos(60°+20°) =1-21cos40°+2 1 (cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20° -sin60°sin20°) =1- 21cos40°-41cos40°-43sin40°+43sin40°-2 3sin 220° =1-43cos40°-43(1-cos40°)= 41 解法二:设x =sin 220°+cos 280°+3sin20°cos80° y =cos 220°+sin 280°-3cos20°sin80°,则 x +y =1+1-3sin60°= 2 1 ,x -y =-cos40°+cos160°+3sin100° =-2sin100°sin60°+3sin100°=0 ∴x =y = 41,即x =sin 220°+cos 280°+3sin20°cos80°=4 1.

三角函数的求值

三角函数的求值 一、教学目标:能正确地运用三角函数的有关公式进行三角函数式的求值. 二、教学重点:有关公式的灵活应用及一些常规技巧的运用. 三、教学过程: (一)主要知识: 三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形 三角函数式的求值的类型一般可分为: (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形 重视角的范围对三角函数值的影响,对角的范围要讨论 (二)主要方法: 1.寻求角与角之间的关系,化非特殊角为特殊角; 2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值; 3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等. (三)例题分析: 例1、计算)310(tan 40sin 00-的值。 【分析】将切函数化成弦函数,3转化成特殊角的三角函数,再利用两角和与差的三角函数即可求解。 解:原式=)60cos 60sin 10cos 10sin (40sin 00000 - =0 000 60 cos 10cos 50sin 40sin -? =160cos 10cos 280sin 0 00 -=?- [点评] “给角求值” 观察非特殊角的特点,找出和特殊角之间的关系 注意特殊值象1、3等,有时需将其转化成某个角的三角函数,这种技巧在化简求值中经常用到。 练习:(全国高考)tan20°+4sin20° 解:tan20°+4sin20°=00020cos 40sin 220sin +=000020cos 40sin 10cos 30sin 2+=0 020cos 40sin 80sin +

高考 三角函数的求值 专题训练及答案

专题6 三角函数的求值 ★★★高考在考什么 【考题回放】 1.若πθ20<≤且同时满足cos sin θθ<和tan sin θθ<,那么角θ的取值范围是( A ) (A )),2( ππ (B ))43 ,4( ππ (C ))23,(ππ (D ))4 5 ,43(ππ 2.函数?????≥<<-π=-0 ,0 1),sin()(12 x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为 ( B ) (A )1 (B )22,1- (C )22- (D )2 2 ,1 3. 在△OAB 中,O 为坐标原点,]2 ,0(),1,(sin ),cos ,1(π θθθ∈B A ,则当△OAB 的面积达最大值时,=θ ( D ) (A ) 6 π (B ) 4 π (C ) 3 π (D ) 2 π 4.△ABC 中,若)cos(cos ,5tan tan C B A C B -=?则的值为 2 3 . 5.设,4 0,2cos ,2sin π θθθ<<==b a 给出)4 tan(π θ+ 值的四个答案: ① a b -1;②b a -1;③a b +1;④b a +1.其中正确的是 ①④. 6.已知函数f (x )=-3sin 2 x +sin x cos x . (Ⅰ) 求f (256 π )的值; (Ⅱ) 设α ∈(0,π),f (2α)=41 ,求sin α的值. 【专家解答】(Ⅰ) 25125sin ,cos 626ππ== 225252525()sin cos 06666 f ππππ∴= += (Ⅱ ) 1()2sin 2222f x x x =-+,11()sin 222242 f ααα∴=+-=-011sin 4sin 162=-α-α 解得8 5 31sin ±= α 0sin ),0(>α∴π∈α 8 5 31sin += ∴a

【全】初中数学 三角函数知识点总结

锐角三角函数 锐角三角函数 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边, 余弦(cos)等于邻边比斜边 正切(tan)等于对边比邻边; 余切(cot)等于邻边比对边 正割(sec)等于斜边比邻边 余割(csc)等于斜边比对边 正切与余切互为倒数 互余角的三角函数间的关系。 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 同角三角函数间的关系 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ?积的关系: sinα=tanα?cosα cosα=cotα?sinα tanα=sinα?secα cotα=cosα?cscα secα=tanα?cscα cscα=secα?cotα ?倒数关系: tanα?cotα=1 sinα?cscα=1 cosα?secα=1

直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°<α<90°间变化时, tanα>0, cotα>0. 特殊的三角函数值 0° 30° 45° 60° 90° 0 1/2 √2/2 √3/2 1 ←sinα 1 √3/ 2 √2/2 1/2 0 ←cosα 0 √3/3 1 √3 None ←tanα None √3 1 √3/3 0 ←cotα 解直角三角形 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

初中数学竞赛:三角函数

初中数学竞赛:三角函数 直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这佯便定义了直角三角形中锐角的三角函数(如图3-14),常用的有: 利用比例的变形并且结合勾股定理,可以从三角函数定义中推出同角三角函数间的关系式: (1)倒数关系 tgα·ctgα=1; (2)商的关系 (3)平方关系 sin2α+cos2α=1. 这些同角三角函数关系式对任意锐角都成立,它们在求值、化简以及三角式的变形中有着重要的应用. 如图3-15所示,在直角三角形ABC中,∠A与∠B互为余角,根据三角函数定义不难得到互为余角的三角函数之间的关系:

sinB=sin(90°-A)=cosA, cosB=cos(90°-A)=sinA, tgB=tg(90°-A)=ctgA, ctgB=ctg(90°-A)=tgA. 上述四个公式可以概括为:一个锐角的余角的三角函数值,等于该锐角相应的余函数的函数值 由图3-16可以看到,在直角三角形ABC中,如果斜边长度不变,当锐角A增大时,sinA 与tgA的值也随之增大,而cosA与ctgA的值随之减小.特别地,当A=0时,sin0=0,tg0=0,cos0=1,ctg0值不存在;当A=90°时,sin90°=1,tg90°值不存在,cos90°=0,ctg90°=0. 由于一个角的正弦或余弦值等于直角边与斜边的比,而直角三角形的斜边总是大于直角边,所以,当α为锐角时,总有 0<sinα<1,0<cosα<1. 我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题. 例1 不查表,求15°的四种三角函数值. 分析 30°,45°,60°这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15°角的三角函数值,也可以利用直角三角形的性质将其推出.

2018版高考数学二轮复习特色专题训练专题04解密三角函数之给值求值问题理.doc

专题04 解密三角函数之给值求值问题一、单选题 1.若0, 2 ,cos 2 2cos2 4 ,则sin2 等于() A. 15 16 B. 7 8 C. 31 16 D. 15 32 【答案】 A 2.已知sin π 1 6 3 , 则cos 2 2π 3 的值是 A. 5 9 B. 8 9 C. 1 3 D. 7 9 【答案】 D 【解析】∵sin π 1 6 3 ∴ 1 cos a cos a 2 6 3 3 ∴cos a 1 3 3

2 2π 1 7 2 cos 2 2cos a 2 1 3 3 3 9 故选 D 二、填空题 3.已知sin 3 4 5 ,, 4 2 ,则tan __________. 【答案】7 点睛:本题主要考查同角三角函数的基本关系、两角和差的三角公式、二倍角的正弦公式的应用,属于基 础题.一般sin cos ,sin cos ,sin *cos ,这三者我们成为三姐妹,结合 2 2 sin cos 1,可以知一求三。 4.已知sin 4 5 ,,则cos 2 4 __________. 【答案】 2 10 【解析】sin 4 5 ,,所以 2 cos 3 5 . 2 2 2 3 2 4 2 cos cos sin 4 2 2 2 5 2 5 10 . 答案为: 2 10 . 5.已知锐角, 满足tan 1 tan 1 2,则的值为________.3 【答案】 4 【解析】因为tan 1 tan 1 2 ,所以tan tan tan tan 1

因此 tan tan tan 1 1 tan tan 因为0, 3 4 6.若sin cos 3, t an 2 sin cos , 则tan 2 ______. 【答案】4 3 点睛:这个题目考查了三角函数中,两角和差的正切公式的应用,考查了给值求值的应用;一般这种题目是尽量用已知三角函数值的角表示要求的角;在这种题型中需要注意角的范围,已知三角函数值的角的范围是否能通过值缩小。 7.若tan 3 cos 2 , 2 2 2 ,则sin2 __________. 【答案】4 5 9 【解析】由题意, 1 3 cos 3cos 2 cos sin tan 2 sin 2 3 , 又,所以0 cos ,得 2 2 5 3 , 所以sin2 2sin cos 4 5 9 。 点睛:三角函数恒等关系的题型关键在于公式的掌握和应用。本题中,首先应用诱导公式将条件化简,切 3

三角函数化简求值专题复习

三角函数化简求值专题复习 高考要求 1、理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。 2、 掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 3、 能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 热点分析 1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强. 2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至20XX 年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. 【例1】求值: ? +?? ??+?+?80cot 40csc 10sin 20tan 10cos 20sin 2. 解:原式的分子? ? ?+??+ ?=20cos 10sin 20sin 20cos 10cos 20sin 2 ? ?+ ?=20cos 10cos 20sin 2?? +?=20cos 10cos 40sin 320cos 20cos 60sin 220cos 80sin 40sin =? ? ?=??+?= , 原式的分母= ? ? +?=??+?80sin 80cos 40cos 280sin 80cos 40sin 1 ()??+?+?=80sin 80cos 40cos 40cos ?? ?+?=80sin 20cos 60cos 240cos 310cos 10cos 30cos 280sin 20cos 40cos =? ? ?=??+?= , 所以,原式=1. 【变式】1、求值 () ? +??+?+?10cos 110tan 60tan 110cos 40cos 2 解:()()2 5cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 23 10cos 21240cos 25cos 210sin 310cos 40cos 2=? ??=??+?=??-?+?=? ?? ? ? ???+?+?=??+?+?=·原式 【变式】2、求00 20 210sin 21)140 cos 1140sin 3( ?- 。 分析:原式= 202020210sin 21 140cos 140sin 140sin 140cos 3? -

三角函数式的求值

三角函数式的求值 【知识点精讲】 三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形 三角函数式的求值的类型一般可分为: (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形 重视角的范围对三角函数值的影响,对角的范围要讨论 【例题选讲】 例1、计算)310(tan 40sin 00-的值。 【分析】将切函数化成弦函数,3转化成特殊角的三角函数,再利用两角和与差的三角函数即可求解。 解:原式=)60cos 60sin 10cos 10sin (40sin 00000 - =000 060cos 10cos 50sin 40sin -? =160cos 10cos 280sin 0 00 -=?- [点评] “给角求值” 观察非特殊角的特点,找出和特殊角之间的关系 注意特殊值象1、3等,有时需将其转化成某个角的三角函数,这种技巧在化简求值中经常用到。 练习:tan20°+4sin20° 解:tan20°+4sin20°=00020cos 40sin 220sin +=000020cos 40sin 10cos 30sin 2+=00 020cos 40sin 80sin + =320cos 20cos 60sin 20 0= 例2、已知tan(45°+θ)=3,求sin2θ-2cos 2 θ的值

初中数学三角函数难题(含答案)

1.已知等边△ABC内接于⊙O,点D是⊙O上任意一点,则sin∠ADB的值为() A.1 B.C. D. 2.在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,将△BCD沿着直线BD折叠,点C落在点C1处,如果AB=5,AC=4,那么sin∠ADC1的值是.3.观察下列等式 ①sin30°=cos60°= ②sin45°=cos45°= ③sin60°=cos30°= … 根据上述规律,计算sin2a+sin2(90°﹣a)= . 4.有四个命题: ①若45°<a<90°,则sina>cosa; ②已知两边及其中一边的对角能作出唯一一个三角形; ③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数; ④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个. 其中正确命题的序号是(注:把所有正确命题的序号都填上). 5.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.

6.在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA= . 7.如果α是锐角,且sin2α十cos235°=1,那么α=度. 8.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣; 因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣; 猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于. 9.在△ABC中,已知sinA=,cosB=,则∠C= . 10.在△ABC中,(tanC﹣1)2+|﹣2cosB|=0,则∠A= . 11.若α、β均为锐角,则以下有4个命题:①若sinα<sinβ,则α<β; ②若α+β=90°,则sinα=cosβ;③存在一个角α,使sinα=1.02;④tanα=.其中正确命题的序号是.(多填或错填得0分,少填的酌情给分) 12.附加题:如图,在Rt△ABC中,BC、AC、AB三边的长分别为a、b、c,则sinA=,cosA=,tanA=.我们不难发现:sin260°+cos260°=1,…试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.

初中三角函数教案

初中数学 三角函数 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3 4 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) A 90 B 90∠-?=∠? =∠+∠得由B A 对边 邻边 C A 90 B 90∠-?=∠? =∠+∠得由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 :i h l =h l α

【原创】三角函数求值教学设计

三角函数求值 一、三维目标: (1)知识目标:能运用三角函数有关公式进行简单的恒等变换。 (2)能力目标:对于遇到角、函数名及其整体结构的分析,提高公式选择的恰当性。 (3)情感态度和价值观:角的变换体现出将未知化为已知的思想方法,这是解决三角中关于角的变换问题常用的数学方法之一。 二、教学重点:能正确地运用三角函数的有关公式进行三角函数式的求值. 三、教学难点:有关公式的灵活应用及一些常规技巧的运用.角度范围的控制。 四、教学过程: 1.讲授新课 问题一(给角求值) 50sin80(13tan10) ++ . 解:原式 2sin 80132sin 50(cos10sin10)cos102cos5+ +=2sin 80 2sin 50cos(6010 ) cos10cos5 +-= 250cos50) 22cos5+= 2cos(5045)2cos5-== [点评] 观察非特殊角的特点,找出和特殊角之间的关系。实现函数 名与角度的统一。 问题二(给值求值) 已知tan(45°+θ)=3,求sin2θ-2cos 2θ的值

解:法一:由已知 21 tan ,3tan 1tan 1=?=-+θθθ sin2θ-2cos 2 θ=θθθθ222cos sin 2cos -sin2+=5 4tan 12tan 22 -=+-θθ 法二: sin2θ -2cos 2θ=sin2θ-cos2θ -1=-cos(θπ 22 +)-sin(θπ 22 +)-1 =5 41) 4(tan 1) 4tan(2)4(tan 1) 4( tan 1222-=-+++-+++--θπθπ θπθπ [点评]法一:弦化切;法二:角度的配凑 问题三(给角求值)(1)已知A 、B 均为钝角且5SinA = ,10 SinB =。求A B +。 解:cos()cos cos sin sin A B A B A B +=-,2A B ππ<+<, 74 A B π∴+= [点评]选取恰当的函数名。 (2)已知11tan()tan (0)2 7 αββαβπ-==-∈,,且,,, 求2αβ-的值。 解:tan 2()tan tan(2)tan[2()]1tan 2()tan αββ αβαββαββ -+-=-+= --?, 又22tan()4tan 2()1tan ()3 αβαβαβ--===--,4137tan(2)141137 αβ- -= =+?, 而tan()tan 1 tan tan[()]1tan()tan 3 αββααββαββ-+=-+===--?,(0)αβπ∈,,,所以 04π α<< ,所以13tan 202724 ππ ββππαβαβ= -<<-<-<-=-,所以,,所以。 [点评]注意角度范围控制。 2.课堂练习 (1)11cos(2),sin(2)14αβαβ-=- -=已知

人教版初中数学锐角三角函数的知识点复习

人教版初中数学锐角三角函数的知识点复习 一、选择题 1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( ) A .asinα+asinβ B .acosα+acosβ C .atanα+atanβ D .tan tan a a αβ + 【答案】C 【解析】 【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】 在Rt △ABD 和Rt △ABC 中,AB =a ,tanα= BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】 本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 2.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( ) A .35 B .45 C .34 D .43 【答案】C 【解析】

试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4. ∵∠A=1 2 ∠BOC,∴∠A=∠BOD. ∴tanA=tan∠BOD= 4 3 BD OD . 故选D. 考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 3.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图: (1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C; (2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D; (3)连接BD,BC. 根据以上作图过程及所作图形,下列结论中错误的是() A.∠ABD=90°B.CA=CB=CD C.sinA= 3 2 D.cosD= 1 2 【答案】D 【解析】 【分析】 由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论. 【详解】 由作法得CA=CB=CD=AB,故B正确; ∴点B在以AD为直径的圆上, ∴∠ABD=90°,故A正确; ∴点C是△ABD的外心,

3.6三角函数式的求值

3.6 三角函数式的求值 【考点回顾】 1.“给值求值”问题的求法; 2.题型结构;给出某些角的三角函数式的值,求另外一些角的三角函数式的值; 3.正确运用三角公式及整体化归思想方法; 4.探索已知式与欲求式之间的差异和联系的途径和方法; 5.常用的“变角”技巧和方法. 【典型例题】 例1.已知.tan 1tan 2sin 2sin ,471217,53)4cos(的值求x x x x x x -+<<=+πππ 例2.设)cos(,2 0,2,32)2sin(,91)2cos(βαπβπαπβαβα+<<<<=--=-求的值. 例3.已知.tan tan ),sin(,2 tan ),cos(,332cos cos ,2sin sin βαβαβαβαβαβα++-=+=+求 例4.已知)2cos 2)(2cos 2(,2 3tan tan βαβα--=求之值. 【基础训练】 1.已知αββαππβπαsin ,13 5cos ,6533)sin(),,2(),2,0(则且-==+∈∈的值是 -------------- 2.已知)4 tan(,41)tan(,542)tan(παπββα+=-=+那么的值是 --------------- 3.已知x x x x tan ),0[,5 1cos sin 则π∈=+的值是 ----------------- 4.._____________)sin()sin(,2 1sin ,31sin =-+==βαβαβα则已知 5.已知θθ且,2524sin -=是第三象限的角,求_______,2sin _______,)6 sin(θπθ=+ ._____________2 tan ________,2cos ==θθ 【拓展练习】 1.在C B A ABC cos ,13 5cos ,53sin ,则若中==?的值是----------------- 2,0433tan ,tan 2两根是一元二次方程=++x x βαα、β)cos(),0,2 (βαπ+-∈则等于-------------------- 3.已知α、β为锐角,αβαβαsin ,1sin 6tan ,7sin 2tan 2则=-=+的值是-------------- 4.已知.___________4 tan ,540450,552cos 2sin =<<-=-ααα α 则且 5.已知.___________)cos (cos )sin (sin ,3 1)cos(22=+++=-βαβαβα则

相关文档
最新文档