有理数的加减法——提高题练习
有理数加减乘除混合运算基础试题(含答案)

数学练习(一)〔有理数加减法运算练习〕、加减法法则、运算律的复习。
24、(- 3.5) + (- 5 )3-9-△ 一个数同0相加,仍得 _____ 这个数 ___________ 。
1、(- 9) + 0=_-9 ___________ ;2、0 + ( +15) = _ 15 ________-29.151 X ZC 3 X 3 2 X2 22 X 3、(+3 — ) + (-2 —) + 5 + (- 8-) 4、 + + (-) 4 5 4 5 5 11 5211C .有理数的减法可以转化为 —正数—来进行,转化的“桥梁”是 ___________ (正号可以省略)或是(有理数减法法则)。
6加得0。
A . △同号两数相加,取 —相同的符号1、(- 3)+(- 9) -12________________,并把—绝对值相加2、 85+ (+15)1003、(- 1 23 ' ) + (- 32 )6 3 5 -6 61、( - 45) + (+23)-2213、2 — + (- 2.25)4 02、(- 1.35) +6.3554、(- 9) +7 -21、(- 1.76) + (- 19.15) + ( - 8.24)2、23+ (- 17) + (+7) + (- 13)B . 加法交换律: a + b = __b+a_ -21 C 3 7 C 21、 1 - 4 + 3 - 52、- 2.4 + 3.5 - 4.6 + 3.53、 3- -2- + 5 -8-8 5 85 -5-2二、综合提高题。
1、一个病人每天下午需要测量一次血压,下表是病人星期一至星期五收缩压的变化情况,该病人上个星期日的 收缩压为160单位。
请算出星期五该病人的收缩压。
160+30-20+17+18-20=185数学练习(二)(乘除法法则、运算律的复习)一、乘除法法则、运算律的复习。
A.有理数的乘法法则: 两数相乘,同号得_正 __________ ,异号得 负—,并把 绝对值相乘 _________________________任何数同O 相乘,都得 _____ 0__。
有理数加减法计算题练习题及答案

有理数加减法计算题练习题及答案一、基础练习1. 计算:(-3) + 5答案:22. 计算:16 - (-4)答案:203. 计算:(-9) + (-6)答案:-154. 计算:9 - 12答案:-35. 计算:(-5) + 0答案:-56. 计算:0 - 8答案:-87. 计算:(-11) + 11答案:08. 计算:(-4) - 13答案:-179. 计算:7 + (-7)答案:010. 计算:3 - (-9)答案:12二、应用题1. 阿明每天存钱,存入正数,取出则为负数。
星期一他存了20元,星期二他取了10元,星期三他又存了15元,星期四他取了5元。
请计算他的余额。
答案:20 - 10 + 15 - 5 = 20元2. 琳琳和小明比赛做数学题,她们答对的题数分别是15和12。
请计算琳琳和小明答题的总共题数差。
答案:15 - 12 = 3题3. 一个海拔为负数表示海平面以下。
某城市的海拔是-80米,另一个城市的海拔是-20米,哪个城市的海拔更高?答案:-20 > -80,所以第二个城市的海拔更高。
4. 温度计上的零度表示摄氏温度下的冰点,而摄氏温度下的沸点为100度。
某天的温度是5度,另一天的温度是-10度,哪一天的温度更低?答案:-10 < 5,所以第二天的温度更低。
5. 一根铁棒原长为30厘米,被切了两刀,分成了三段,第一段长为5厘米,第二段长为10厘米,剩下的一段铁棒长多少厘米?答案:30 - 5 - 10 = 15厘米三、挑战题1. 计算:(4 + 5) - (-3)答案:122. 计算:(-3) - (7 + 4)答案:-143. 计算:12 - 4 - (-8)答案:164. 计算:(-5) + (-3) + 2 - (-7)答案:15. 计算:(7 - 3) + (10 - (-2))答案:22四、综合应用题1. 一家商店的收入情况如下:星期一赚了80元,星期二亏了50元,星期三又赚了40元,星期四赚了90元。
有理数加减乘除混合运算基础试题(含答案)

数学练习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。
A.△同号两数相加,取___相同的符号_______________,并把__绝对值相加__________________________。
1、(–3)+(–9)2、85+(+15)-12 1003、(–3)+(–3)4、(–3.5)+(–5)-6 -9△绝对值不相等的异号两数相加,取_绝对值较大的加数的符号________________________,并用________较大的绝对值减去较小的绝对值____________ _____________. 互为__________________的两个数相加得0。
1、(–45) +(+23)2、(–1.35)+6.355-223、+(–2.25)4、(–9)+70 -2一个数同0相加,仍得___这个数__________。
1、(–9)+ 0=___-9___________;2、0 +(+15)=____15_________。
B.加法交换律:a + b = ____b+a_______ 加法结合律:(a + b) + c = ____a+(b+c)___________1、(–1.76)+(–19.15)+ (–8.24)2、23+(–17)+(+7)+(–13)-29.15 03、(+ 3)+(–2)+ 5+(–8)4、++(–)-2C.有理数的减法可以转化为__正数___来进行,转化的“桥梁”是____(正号可以省略)或是(有理数减法法则)。
_____。
△减法法则:减去一个数,等于______加上这个数的相反数_________________________。
即a–b = a + ( -b )1、(–3)–(–5)2、3–(–1)3、0–(–7)2 5 7D.加减混合运算可以统一为____加法___运算。
即a + b–c = a + b + __(-c)___________。
有理数加减法培优提高卷

七年级数学上---有理数的加法复习提高试卷1、已知有理数a,b,c在数轴上的位置如图所示,则下列结论中错误的是()A、a+b<0B、-a+b+c<0c b 0 aC、|a+b|>|a+c|D、|a+b|<|a+c|2、两个有理数的和为零,则这两个有理数一定()A、都是零B、至少有一个是零C、一正一负D、互为相反数3、若3y=,且x y>,则x y+的值为()x=,2A.1 B.-5 C.-5或-1 D.5或14、在1,-1,-2这三个数中,任意两数之和的最大值是()A.1B.0C.-1D.35、x<0, y>0时,则x, x+y, x+(-y),y中最小的数是()A.x B.x+(-y) C.x+y D.y6、如果a、b是有理数,则下列各式子成立的是()A、如果a<0,b<0,那么a+b>0B、如果a>0,b<0,那么a+b >0C、若a>0,b<0,则a+b<0D、若a<0,b>0,且a>b,由a+b<07、若︱a-2︱+︱b+3︱=0,则a+b的值是()A、5 B、1 C、-1 D、-58、2008年8月第29届奥运会在北京开幕,5个城市标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )A 、巴黎时间2008年8月8日13时B 、纽约时间2008年8月8日5时C 、伦敦时间2008年8月8日11时D 、汉城时间2008年8月8日19时 01-589汉城北京巴黎伦敦纽约9、电子跳蚤落在数轴上的某点K 0,第一步从K 0向左跳一个单位到K 1,第二步向右跳两个单位到K 2,第三步向左跳两个单位到K 3,第四步向右跳三个单位到K 4……按以上规律跳了100步时,电子跳蚤在数轴上的点K 100表示的数是20,则电子跳蚤的初始位置K 0点表示的数是 .10、若a >0,则a = ;若a <0,则a = ;若a =0,则a = 。
11、绝对值小于2011的所有整数之和是 .12、填空:211+-+3121+-+4131+-+ ┉ +10191+-= .13、判断题:(对的打“√”,错的打“×”).(1)两个有理数的和为正数时,这两个数都是正数.( )(2)两个数的和的绝对值一定等于这两个数绝对值的和.( )(3)两个有理数的和为负数时,这两个数都是负数.( )(4)如果两个数的和为负,那么这两个加数中至少有一个是负数.( )(5)两数之和必大于任何一个加数.( )(6)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数.( )(7)两个不等的有理数相加,和一定不等于0.( )(8)两个有理数的和可能等于其中一个加数.( )14、计算题(尽量利用加法的运算律简化计算):(1)5.6+(-0.9)+4.4+(-8.1)+(-1);(2)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-+-+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)│-4.4│+(+831)+1132+(-0.1);(4)()().116105.1725.211594317⎪⎭⎫⎝⎛-+-+-+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+(5)1+(-2)+3+(-4)+5+……+2009+(-2010)+2011+(-2012)(6)1+(-2)+(-3)+4+5+(-6)+(-7)+8+……+101+(-102)+(-103)+104.15、一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42米,却下滑了0.15米;第二次往上爬了0.5米后又往下滑了0.1米;第三次往上爬了0.7米又下滑了0.15米;第四次往上爬了0.75米又下滑0.1米,第五次往上爬了0.55米,没有下滑;第六次蜗牛又往上爬了0.48米没有下滑,请回答:(1)第二次爬之前,蜗牛离井口还有米;第四次爬之前,蜗牛离井口还有米;(2)最后一次蜗牛有没有爬到井口?若没有,那么离井口还有多少米?16、某工厂某周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数):星期一二三四五六日增减/-1 +3 -2 +4 +7 -5 -10辆(1)生产量最多的一天比生产量最少的一天多生产了辆.(2)本周总生产量是多少?是增加了还是减少了?增减数为多少?17、一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+7,-2,+10,-8,-6,+11,-12. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米?18、若a=19,b=97,且ba+=a+b,求a+b的值. 19、已知x=2,y=3,求x y+的值.20、若3-y与4x互为相反数,求x y+的值.2-有理数加减运算中的结合技巧一、把符号相同的加数相结合例1:计算:(+5)+(-6)+(+4)+(+9)+(-7)+(-8)二、把和为零的加数结合例2:计算:(-15.43)+(-4.15)+(+15.20)+(+4.15)+(+0.23)+(-5)三、把和为整数的加数相结合四、把整数与整数,分数与分数分别相结合例4:计算:-423-313+612-214(在分拆带分数时,要注意符号)。
有理数的加减法提高题练习

有理数的加减法练习题——提高题班级: 学号: 姓名: 成绩:_________1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为()A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为() A.-3 B.-9 C.-3或-9D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数6、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定8、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数9、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、410、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0D 、a -b >011、下列各式中与a b c --的值不相等的是( )A 、a b c --()B 、a b c -+()C 、()()a b c -+-D 、()()-+-b a c12、下列各式与a -b +c 的值相等的是( )A .a -(b +c )B .c +(a +b )C .c -(b -a )D .a +(b +c )13、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )=(-c )D 、a +b -c =a +b +(-c )14、若0a b c d <<<<,则以下四个结论中,正确的是()A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数15、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,切被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能16、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是()A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b17、下列结论不正确的是()A 、若0a <,0b >,则0a b -<B 、若0a >,0b <,则0a b ->C 、若0a <,0b <,则()0a b -->D 、若0a <,0b <,且a b >,则0a b -<18、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )A 、xB 、x y +C 、x y -D 、y19、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是( )A 、m >m -n >m +nB 、m +n >m >m -nC 、m -n >m +n >mD 、m -n >m >m +n20、如果a <0,那么a 和它的相反数的差的绝对值等于( )A 、aB 、0C 、-aD 、-2a21、若a b >>00,,则下列各式中正确的是()A 、a b ->0B 、a b -<0C 、a b -=0D 、--<a b 022、在数轴上,点x 表示到原点的距离小于3的那些点,那么||||x x -++33等于()A 、6B 、-2xC 、-6D 、2x23、如果 a 、b 是有理数,则下列各式子成立的是( )A 、如果a <0,b <0,那么a +b >0B 、如果a >0,b <0,那么a +b >0C 、如果a >0,b <0,那么a +b <0D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <024、已知a <c <0,b >0,且|a |>|b |>|c |,则|a |+|b |-|c |+|a +b |+|b +c |+|a +c |等于()A 、-3a +b +cB 、3a +3b +cC 、a -b +2cD 、-a +3b -3c25、填上适当的符号,使下列式子成立:(1)(_____5)+(-15)=-10;(2)(-3)+(_____3)=0;(3)(_____37)+(-331)=-1. 26、若有理数a >0,b <0,则四个数a +b ,a -b ,-a +b ,-a -b 中最大的是, 最小的是.27、已知的值是那么y x y x +==,213,6.28、三个连续整数,中间一个数是a ,则这三个数的和是___________.29、若8a =,3b =,且0a >,0b <,则a b -=________.30、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______.31、若0a <,那么()a a --等于___________.32、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是.33、若x +m =n ,则x =______;若x -m =n ,则x =_______.34、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,若a 1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。
50道有理数加减法计算题

50道有理数加减法计算题一、简单整数的有理数加减法(1 - 20题)1. 1 + (-2)- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|1| = 1,| - 2|=2,2>1,所以结果为-(2 - 1)=-1。
2. (-3)+5- 解析:异号两数相加,| - 3| = 3,|5| = 5,5>3,结果为+(5 - 3)=2。
3. 4+(-4)- 解析:互为相反数的两个数相加得0。
4. (-5)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。
| - 5|=5,| - 3| = 3,结果为-(5 + 3)=-8。
5. 2-3- 解析:2-3可以写成2+(-3),异号两数相加,|2| = 2,| - 3|=3,3>2,结果为-(3 - 2)=-1。
6. (-4)-(-2)- 解析:减去一个数等于加上这个数的相反数,(-4)-(-2)=(-4)+2,异号两数相加,| - 4| = 4,|2| = 2,4>2,结果为-(4 - 2)=-2。
7. 3-(-1)- 解析:3-(-1)=3 + 1=4。
8. (-2)-3- 解析:(-2)-3=(-2)+(-3)=-(2 + 3)=-5。
9. 0+(-5)- 解析:0加任何数等于这个数本身,结果为-5。
10. (-6)+0- 解析:任何数加0等于这个数本身,结果为-6。
11. 5+(-9)- 解析:异号两数相加,|5| = 5,| - 9| = 9,9>5,结果为-(9 - 5)=-4。
12. (-7)+7- 解析:互为相反数的两个数相加得0。
13. 8 - 10- 解析:8-10 = 8+(-10),异号两数相加,|8| = 8,| - 10| = 10,10>8,结果为-(10 - 8)=-2。
14. (-9)-(-9)- 解析:(-9)-(-9)=(-9)+9 = 0。
15. 10+(-3)- 解析:异号两数相加,|10| = 10,| - 3| = 3,10>3,结果为+(10 - 3)=7。
有理数的加减法训练题带答案

有理数的加减法训练题(带答案)自我小测1.2+(-2)的值是()A.-4B.C.0D.42.下列计算错误的是()A.+0.5=-1B.(-2)+(-2)=4C.(-1.5)+=-4D.(-71)+0=-713.一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A.11℃B.4℃C.18℃D.-11℃4.下列变形,运用运算律正确的是()A.2+(-1)=1+2B.3+(-2)+5=(-2)+3+5 C.[6+(-3)]+5=[6+(-5)]+3D.+(-2)+=+(+2)如图所示,数轴上A,B两点所表示的有理数的和是__________.6.(-7)+(-4)=__________,0+(-6)=__________,=____________,+=__________.7.如果□+2=2,那么“□”内应填的数是__________.8.7箱橘子,标准重量为每箱15kg,每箱重量与标准重量差值如下(单位:kg.超重的用正数表示,不足的用负数表示):0.3,-0.4,0.25,-0.2,-0.7,1.1,-1.试问称得的总重量与总标准重量相比超过或不足多少千克?7箱橘子共重多少千克?xkb1.参考答案1.答案:C2.答案:B3.答案:B4.答案:B5.答案:-16.答案:-11-60-17.答案:08.解:0.3+(-0.4)+0.25+(-0.2)+(-0.7)+1.1+(-1)=(0.3+0.25+1.1)+[(-0.4)+(-0.2)+(-0.7)+(-1)]=1.65+(-2.3)=-0.65(kg).15×7+(-0.65)=104.35(kg).答:称得的总重量与总标准重量相比不足0.65kg,7箱橘子共重104.35kg.。
有理数的加减法练习题

1.3有理数的加减法 一、填空题。
1、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________________。
2、若a =6,b =-2,c =-4,并且a -b +(-c)-(-d)=1,则d 的值是_________。
3、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
4、1 ―3 +5―7 +9―11+…+97―99= 。
二、选择题。
1、已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c2、两个非零有理数的和为正数,那么这两个有理数为( )A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数。
3、下列各式与c b a +-的值相等的是( )A .()()c b a -+-+B .()()c b a +-+-C .()()c b a --+-D .()()c b a ---- 4、下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为O ,则这两个数都为OD .若两个数的和为正数,则这两个数中至少有一个为正数 5、把6-(+3)-(-7)+(-2)写成省略括号的形式为( )A .-6+3-7-2B .6+3-7-2C .6-3+7-2D .6-3-7-2 6、算式-4-5不能读作( )A .-4与5的差B .-4与-5的和C .-4与-5的差D .-4减去5的差7、-7,-12,+2的和比它们的绝对值的和小( )A .-38B .-4C .4D .38 8、计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-3 三、计算题(能用简单方法的必须用简单方法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减法练习题——提高题
班级: 学号: 姓名: 成绩:_________
1、若m 是有理数,则||m m +的值( )
A 、可能是正数
B 、一定是正数
C 、不可能是负数
D 、可能是正数,也可能是负数
2、若m m m <-0,则||的值为( )
A 、正数
B 、负数
C 、0
D 、非正数
3、如果0m n -=,m n 则与的关系是 ( )
A 、互为相反数
B 、 m =±n ,且n ≥0
C 、相等且都不小于0
D 、m 是n 的绝对值
4、下列等式成立的是( )
A 、0=-+a a
B 、a a --=0
C 、0=--a a
D 、a --a =0
5、若230a b -++=,则a b +的值是( )
A 、5
B 、1
C 、-1
D 、-5
6、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( )
A.-3 B.-9 C.-3或-9 D.3或9
7、两个数的差为负数,这两个数 ( )
A 、都是负数
B 、两个数一正一负
C 、减数大于被减数
D 、减数小于被减数
6、负数a 与它相反数的差的绝对值等于( )
A 、 0
B 、a 的2倍
C 、-a 的2倍
D 、不能确定
8、下列语句中,正确的是( )
A 、两个有理数的差一定小于被减数
B 、两个有理数的和一定比这两个有理数的差大
C 、绝对值相等的两数之差为零
D 、零减去一个有理数等于这个有理数的相反数
9、对于下列说法中正确的个数( )
①两个有理数的和为正数时,这两个数都是正数
②两个有理数的和为负数时,这两个数都是负数
③两个有理数的和,可能是其中的一个加数
④两个有理数的和可能等于0
A 、1
B 、2
C 、3
D 、4
10、有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A 、a +b =0
B 、a +b >0
C 、a -b <0
D 、a -b >0
11、下列各式中与a b c --的值不相等的是( )
A 、a b c --()
B 、a b c -+()
C 、()()a b c -+-
D 、()()-+-b a c
12、下列各式与a -b +c 的值相等的是( )
A .a -(b +c )
B .c +(a +b )
C .c -(b -a )
D .a +(b +c )
13、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )
A 、a +b -c =a +b +c
B 、a -b +c =a +b +c
C 、a +b -c =a +(-b )=(-c )
D 、a +b -c =a +b +(-c )
14、若0a b c d <<<<,则以下四个结论中,正确的是( )
A 、a b c d +++一定是正数
B 、c d a b +--可能是负数
C 、d c a b ---一定是正数
D 、c d a b ---一定是正数
15、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )
A 、被减数a 为正数,减数b 为负数
B 、a 与b 均为正数,切被减数a 大于减数b
C 、a 与b 两数均为负数,且减数 b 的绝对值大
D 、以上答案都可能
16、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )
A 、-b <-a <b <a
B 、-a <b <a <-b
C 、b <-a <-b <a
D 、b <-a <a <-b
17、下列结论不正确的是( )
A 、若0a <,0b >,则0a b -<
B 、若0a >,0b <,则0a b ->
C 、若0a <,0b <,则()0a b -->
D 、若0a <,0b <,且a b >,则0a b -<
18、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )
A 、x
B 、x y +
C 、x y -
D 、y
19、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( )
A 、m >m -n >m +n
B 、m +n >m >m -n
C 、 m -n >m +n >m
D 、m -n >m >m +n
20、如果a <0,那么a 和它的相反数的差的绝对值等于( )
A 、a
B 、0
C 、-a
D 、-2a
21、若a b >>00,,则下列各式中正确的是( )
A 、a b ->0
B 、a b -<0
C 、a b -=0
D 、--<a b 0
22、在数轴上,点x 表示到原点的距离小于3的那些点,那么||||x x -++33等于( )
A 、6
B 、 -2x
C 、-6
D 、2x
23、如果 a 、b 是有理数,则下列各式子成立的是( )
A 、如果a <0,b <0,那么a +b >0
B 、如果a >0,b <0,那么a +b >0
C 、如果a >0,b <0,那么a +b <0
D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <0
24、已知a <c <0,b >0,且|a |>|b |>|c |,则|a |+|b |-|c |+|a +b |+|b +c |+|a +c |等于( )
A 、-3a +b +c
B 、3a +3b +c
C 、a -b +2c
D 、-a +3b -3c
25、填上适当的符号,使下列式子成立:
(1)(_____5)+(-15)=-10;(2)(-3)+(_____3)=0;(3)(_____37)+(-33
1)=-1. 26、若有理数a >0,b <0,则四个数a +b ,a -b ,-a +b ,-a -b 中最大的是 , 最小的是 .
27、已知的值是那么y x y x +==,2
13,6 .
28、 三个连续整数,中间一个数是a ,则这三个数的和是___________.
29、若8a =,3b =,且0a >,0b <,则a b -=________.
30、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______.
31、若0a <,那么()a a --等于___________.
32、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是 .
33、若x +m =n ,则x =______;若x -m =n ,则x =_______.
34、有若干个数,第一个数记为a 1,第二个数记为a 2,第3个数记为a 3,…,第n 个数记为a n ,
若a 1=-0.5,从第二个数起,每个数都等于“1”与它前面的那个数的差的倒数。
(1)计算:a 2= ,a 3= ,a 4= ;
(2)根据以上计算的结果,请写出a 2009- a 2011= .
35、 若||||a b a b =-=312,,且、异号,则a b -=___________.
36、用“>”或“<”号填空:有理数a ,b ,c 在数轴上对应的点如图:
则a +b +c ______0;|a |______|b |;a -b +c ______0;a +c ___b ;c -b ___a ;
37、如果|a |=4,|b |=2,且|a +b |=a +b ,则a -b 的值是 .
38、观察下列的排列规律,其中(●是实心球, ○是空心球)
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2011个 球上,共有实心球 个.
39、分别输入-1,-2,按图所示的程序运算,则输出的结果依次是 、 .
40、已知3a =,5b =,a b a b -=+. c a b
(1)你能判断a b 、是正数还是负数吗? (2)试求a b +和a b -的值.
41、如图,已知
a 、
b 、
c 在数轴上的位置,化简:|a -b |-|b -c |+|c -a |。
42、已知有理数a 、b 满足:a <0,b >0且a b <,化简a b a b a b b a -++---+-.
43、一个小吃店去超市买10袋面粉,这10袋面粉的重量分别为:24.8千克,25.1千克,
24.3千克,24.6千克,25.5千克,25.3千克,24.9千克,25.0千克24.7千克,25.1千克,你能很快就求出这10袋面粉的总重量吗?
44、).
(1) 如果现在时间是北京时间上午8∶30,那么现在的纽约时间是多少?东京时间是多少?
(2) 小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?
45、有依次排列的3个数:3、9、8,对相邻的两个数,都用右边的数减去左边的数,所
得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后,也可以产生一个新数串:3,3,6,3,9,-10,-1,9,8.继续依次操作下去,问:从数串3,9,8开始操作100次以后所产生的那个新数串的所有数之和是多少?
c a b。